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Abstract: Modeling increases the importance of processes significantly, but also imposes higher requirements for the 
accuracy of process specifications, since an error in the design of a process may only be discovered after it 
already produces large cumulative losses. We believe that modeling tools can help build better models in a 
shorter time. This inevitably results in the need to build formal models that can be theoretically verified.  
A category as well as a model is a mixture of graphical information and algebraic operations. Therefore, 
category language seems to be the most general to describe the models. The category theory offers an 
integrated vision of the concepts of a model, and also provides mechanisms to combine models, mechanisms 
to migrate between models, and mechanisms to build bridges between models. So, category theory simplifies 
how we think and use models. In this paper we will use the language offered by the category theory to 
formalize the concept of Modeling Method with the demonstration of the Categorical Modeling Method 
concept for the Petri Net grammar. 

1 INTRODUCTION 

Nowadays, modeling is the main engine for 
increasing business process performance. But the 
modeling of business processes has led to dramatic 
changes in the organization of work and has allowed 
new ways of doing business. Therefore, process 
modeling has become an extremely important factor 
in increasing company performance. As a result, 
process models are widely used in organizing and 
managing companies. 

There are very general models such as: operations 
management and, in particular, operational research, 
which have standard solutions, but business processes 
are very diverse so that metamodels have to be built 
ad-hoc. 

If the operations management can be based on 
standard immutable models with precise semantics 
such as linear programming, queueing models, 
Markov chains, etc. process models in BPM typically 
serve multiple purposes and are more heterogeneous. 

Therefore, making a good BPM model is a hard 
task especially if the modeling tool is not appropriate. 

It is not easy to make good process models within 
a reasonable time. However, process models are very 

important. We believe that modeling tools can help 
build better models in a shorter time. 

The purpose of a process model is to decide what 
tasks to perform and in what order. Activities may be 
sequential, parallel or concurrently, may also be 
optional or mandatory, and the execution of some 
activities may be repetitive. 

The best known process model is the transition 
system. A transition system consists of states and 
transitions. Any process model with executable 
semantic can be mapped to a transition system. 
Transition systems are simple but cannot efficiently 
express concurrency. For example, if we have a 
system with n parallel activities that can be executed 
in any order then there is n! possible execution 
sequences. The transition system therefore requires 2n 
states and n×2n-1 transitions (van der Aalst, 2011). 

Given the concurrency nature of business 
processes, more expressive models such as Petri Nets, 
BPMN, EPC and UML are needed to make them 
more concise and legible. Many features defined for 
transition systems can easily be translated into these 
top-level mechanisms. 

All these process models have in common that 
processes are described in terms of activities (and 
possibly subprocesses). The ordering of these 
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activities is modeled by describing casual 
dependencies. 

The main concepts used in processes modeling 
are: case, task, routing (van der Aalst and van Hee, 
2004). 

The life cycle of a case in a process represents the 
routing of the case. Routing on certain branches is 
based on four basic constructions that determine what 
tasks must be performed and in what order (van der 
Aalst and van Hee, 2004): 

The behavior of a case is defined by a process and 
therefore has a finite life, with a beginning that marks 
the occurrence of a case, and an end that marks the 
completion of the case. 

Most of the times, the formalization of workflow 
patterns is based on the graph theory. We will use in 
this paper the category theory for this purpose. 

A category as well as a model is a mixture of 
graphical information and algebraic operations. 
Therefore, category language seems to be the most 
general to describe the models 

The category theory works with patterns or forms 
in which each of these forms describe different 
aspects of the real world. Category theory offers both, 
a language, and a lot of conceptual tools to efficiently 
handle models. 

Generally, building a model begins with an 
informal model, used for discussion and 
documenting, and ends with an executable model 
useful for analyzing, simulating, or actually executing 
the process. 

Informal models are easy to understand but suffer 
from ambiguity, while executable models are too 
detailed to be easy to understand by all the parties 
involved in building the model. 

This conflict (dichotomy) between the informal 
and the executable model largely reflects a certain 
incompatibility between the metamodel and the 
modeled object, and therefore is mainly due to the 
insufficient alignment between the metamodel and 
reality. 

Due to the very large diversity of real world 
processes, it is impossible for an existing metamodel 
of a process to be well aligned in all cases. 

This problem is often solved by endlessly adding 
new facilities to existing metamodels to cover the 
modeling requirements of processes that were not 
foreseen in the initial phase. Obviously, these 
additions lead to complicated metamodels, difficult to 
understand and difficult to learn by those who are 
going to use them. 

Hence the need to build specific metamodels for 
each domain that are totally compatible with the 
specific processes of a given field. 

2 THEORETICAL 
FOUNDATIONS AND NOTES 

Definition 1. (Manes, 1986; Barr and Wells, 2012) A 
category ऍ is defined as follows: We consider a 
collection of objects A, B, .. X, Y, Z, ... which we 
denote by ob(ऍ) and we call it the set of objects of ऍ. 
For each pair of objects (X,Y) of ऍ, we consider a set 
of arrows from X to Y denoted by ऍ(X,Y). On the set 
of arrows we consider a composing operator denoted 
by ∘, which attaches to each pair of arrows (f,g) of the 
form: f:XY, g:YZ a morphism g∘f:XZ and 
respecting the axioms 1 and 2.  

1. The composition is associative:  
 If  f:XY, g:YZ and  

h:ZW(h∘g)∘f=h∘(g∘f):XW.  

2. For each object X, there is the identity arrow 
idX:XX with the property that idX∘f=f, g∘idX=g 
for all pairs of arrows f:XY and g:UX. 

Definition 2. (Barr and Wells, 2012; Walters, 2006) 
Let ऍ and ऎ be two categories, a functor  from ऍ to 
ऎ consists of the functions: ob:ob(ऍ )ob(ऎ), and 
for each pair of objects A, B of ऍ we have the 
functions: A,B:ऍ(A,B)ऎ((A),(B))  which fulfills 
the following conditions:  

 (1A)=1(A), (fg) = fg if A1
௙
→ A2

௚
→A3. 

Typically, all functions ob, A,B are denoted by the  
symbol, for simplicity.     

Definition 3. (Barr and Wells, 2012; Walters, 2006) 
Let , be functors from category ऍ  to category ऎ. 
A morphism from  to , also called natural 
transformation, is a family of arrows in ऎ: 
A:AA (A ऍ). So, for any arrow f:A  B in ऍ, 
we have (f)∘A=B∘(f). This condition is called the 
naturality condition.  

Definition 4. (Barr and Wells, 2012; Barr and Wells, 
2002) Let च and ऑ be two graphs. A diagram in ऑ of 
the च graph is a functor: D: चऑ. च is called the 
shape graph of the diagram D. 

Definition 5. (Barr and Wells, 2012; Barr and Wells, 
2002) Let ऑ be a graph and ऍ a category. Let D:ऍ 
be a diagram in ऍ with the form ऑ and C:ऑऍ be a 
constant functor (which maps all objects in C and all 
arcs in idC). A commutative cone with base D and 
vertex C is a natural transformation p:CD.  

Definition 6. The set of cones along with the 
morphisms between them form a category that we call 
the category of cones. A terminal object (cone) in the 
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category of cones, if any, is called a limit of the D 
diagram. This limit is also called universal cone. 

Definition 7. (Barr and Wells, 2012; Barr and Wells, 
2002) Let ऑ be a graph and ऍ a category. Let D:ऍ 
be a diagram in ऍ with the shape ऑ and C:ऑऍ 
constant functor (which maps all objects in C and all 
arcs in idC). A commutative cocone with base D and 
vertex C is a natural transformation p:DC.  

Definition 8. The set of cocones along with the 
morphisms between them form a category we call the 
category of cocones. 

Definition 9. An initial object (cocone) in the 
category of cocones, if any, is called colimit of 
diagram D. This colimit is also called the universal 
cocone. 

Definition 10. (Barr and Wells, 2012; Barr and Wells, 
2002) A sketch झ = (ऑ, ऎ, ख,	क) consists of a graph 
ऑ, a set ऎ of diagrams in ऑ, a set ख of cones in ऑ, and 
a set क of cocones in ऑ. The graph arrows of a sketch 
are often called sketch operations. 

Definition 11. (Barr and Wells, 2012; Barr and Wells, 
2002) A model of a sketch झ=(ऑ,ऎ,ख,क) is a functor 
M from ऑ to Set that takes each diagram from ऎ to a 
commutative diagram in Set, each cone from ख to a 
cone limit and every cocone from क to a colimit 
cocone. 

We will denote with numbers the nodes of the shape 
graph, with lowercase letters the nodes of the graph 
of sketches and with uppercase letters, the objects of 
the categories.  

3 CATEGORICAL SKETCH OF 
THE MODELING METHOD 

A model is a point of view over a domain. To be able 
to perceive the purpose of this paper, it is important 
to understand the term modeling method 
(Karagiannis and Kühn, 2002), and the difference 
between a modeling language and a modeling 
method. 

A modeling method consists of two components: 
(1) a modeling technique, which is divided in a 
modeling language and a modeling procedure, and (2) 
mechanisms & algorithms working on the models 
described by a modeling language (Karagiannis and 
Visic, 2011). 

The static part of a process model is a graph with 
some syntactic restrictions (Karagiannis and 
Junginger and Strobl, 1996). These restrictions will 

then be introduced into the sketch of a modeling 
method metamodel based on mechanisms specific to 
the category theory such as commutative diagrams, 
limits and colimits. The result is the concept of 
Categorical Modeling Method. 

In this paper we will define and demonstrate the 
concept of Categorical Modeling Method for the Petri 
Net grammar. A Petri Net is a type of transition 
system in which a transition does not affect a global 
state, but the occurrence of an event affects only a 
subset of conditions in its neighborhood. 

Also, Petri Nets are an established model of 
parallel computing (Glynn, 2009). In addition, 
expressive graphics determine a wide use of Petri 
Nets in modeling, analysis and design, covering a 
significant area of sequentially controlled processes, 
from the dynamics of individual entities, to the 
dynamics of some collective entities. 

The static part of a Petri Net is a directed graph, 
weighted and bipartite graph, i.e. consisting of two 
types of nodes, called places, and transition 
respectively. Oriented arcs combine either a place 
with a transition or a transition with a place. There are 
no arcs connecting two places between them, or two 
transitions between them. As graphical 
representation, places are represented by circles, and 
transitions through bars or rectangles. 

The dynamic part of a Petri Net is represented by 
the distribution of tokens on the nets places and the 
modification of this distribution by conditional 
triggering of the transitions. 

The edges can be labeled with weights that are 
positive and integer values. If the weight is one, it is 
usually omitted in the graphical representations. 

Frequently, concepts of conditions and events are 
used, places are conditions, and transitions are events. 
A transition (event) possesses a number of input 
places called preconditions and a number of output 
positions, which are postconditions for the event in 
question. 

A transition is triggered if all preconditions and 
all postconditions are met. The triggering of a 
transition affects only the conditions of its neighbor, 
i.e. its preconditions and postconditions. 
From a syntactic point of view, a Petri Net can be 
defined as follows: 

Definition 13. A Petri Net (PN) is a directed graph   
= (X,, , ) which satisfies the following properties:  

1. ऑ is a bipartite graph: X=PT , PT=  
where: P- is a finite set of places, T- is a finite set of 
transitions . 

2.  is a finite set of arcs, divided into two subsets: 
 = PTTP, PTTP=, 
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3. , : X; are functions that associate to each 
arc a source and a target. We will use the following 
notations: PT=/PT, TP=/TP, PT=/PT, 
TP=/TP,  

4.	ऑ is a connected graph.   
5. There is only one arc between any two nodes. 

A place p∈P is an input place for a transition q∈T if 
and only if there is a directed arc aPT so that (a)=p 
and (a)=q. The set of input places in the transition q 
is denoted with ୯

ିଵ. 
A place p∈P is an output place for a transition q∈T 

if and only if there is a directed arc aTP so that 
(a)=q and (a)=p. The set of the output places of the 
transition q is denoted with ୯

ଵ . 
A transition q∈T is an input transition for a place 

p∈P if and only if there is a directed arc aTP so that 
(a)= q and (a)=p. The set of input transitions in the 
place p is denoted with ୮

ିଵ. 
A transition q∈T is an output transition for a place 

p∈P if and only if there is a directed arc aPT  so that 
(a)=p and (a)=q. The set of output transitions from 
p is denoted with ୮

ଵ . 
Let's build the sketch corresponding to Petri Net. 

We obviously start from the general sketch 
corresponding to a directed multigraph with loops and 
introduce the restrictions in the Petri Net definition 
from above. 
1. G is a bipartite graph: X=P⊔T. That is, the set of 

objects X is the disjoint union of two subsets of 
object P and T. This means that X is the coproduct 
of a discrete diagram formed by two nodes and 
with the vertex X, which in Set will become the 
colimit of this discrete diagram. This discrete 
diagram is reflected in the graph of the sketch as 
in Figure 1. 

2.  is a set of arcs divided into two subsets  = 
pt⊔tp. Therefore, the set of arcs  is the disjoint 
union of the two subsets of arcs pt and tp. This 
means that  is the coproduct of a discrete 
diagram formed by two nodes. This discrete 
diagram is reflected in the graph of the sketch as 
in Figure 1. 

3 , : X are functions that associate to an arc, 
a source and a target. The additional notations pt, 
tp, pt and tp will also be reflected in the graph 
of the sketch (Figure 1) because they are operators 
of the sketch. 

4 G is a connected graph. For this we will put the 
condition that the pushout of  with  to be a 
terminal object in the Set category.  

5 There is only one arc between any two nodes. To 

impose this constraint we will build the XX 
product. This is the limit of a discrete diagram 
formed by two nodes. The condition that is 
required in this commutative diagram to have no 
more than one arc between any two nodes is that 
the function  becomes a monomorphism in Set 
(Figure 1). But  is a monomorphism if and only 
if the pullback of  with  exists and is equal to .  

We have seen that a sketch झ = (ऑ, ऎ, ख, क) consists 
of a graph ऑ, a set ऎ of diagrams in ऑ, a set ख of cones 
in ऑ, and a set क of cocones in ऑ.  

Graph ऑ (Figure 1) has 8 nodes and 15 arrows. 
These will be interpreted in a model as follows: (1) x 
- all object X in a Petri Net model; (2) T - all 
transactions objects T from a Petri Net model; (3) P - 
all places objects P from a Petri Net model; (4) xx - 
the Cartesian product of the set X with X; (5)  
represents a terminal object in Set; (6)  - represents 
all relations  between the objects of the model; (7) 
pt - represents the subset of relations PT that links 
places with transactions; (8) tp - represents the subset 
of relations TP that links transactions with places. 
We have numbered these nodes to refer to them in the 
shape graph of the diagrams. 

 

 

Figure 1: The graph of the PN sketch. 

The constraints will be imposed by commutative 
diagrams, cones and cocones (Barr and Wells, 2012) 
as follows. 

1. The sketch will contain a commutative diagram. 
The condition that a model does not contain more 
than one arrow between two objects is ensured by 
the injectivity of a function :XX. The shape 
graph of this diagram is in Figure 2. The functor 
d1 is defined as follows: d1(6)=; d1(1)=x; 
d1(4)=xx; d1(1’)=x; d1()=;d1()=; d1()=; 
d1(1

)=
1
; d1(2

)=
2
. 
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Figure 2: Shape graph of the commutative diagram. 

2. The set ख of cones consists of the following:  
The node denoted by xx in the graph of the 
sketch will have to become the Cartesian product 
XX in the Set category. For this, it will have to 
be the limit of the discrete diagram with the shape 
graph given by nodes 1 and 1'. The functor l1 
corresponding to this diagram will be defined as: 
l1(1)=x; l1(1’)=x, and XX will be the limit of this 
discrete diagram, i.e. the Cartesian product XX. 
The node denoted with  in the graph will become 
the limit of a cone with an empty base, i.e. a 
terminal object from Set. 
At point v) the pullback of  with  is the limit of 
the diagram l2. The shape graph of this diagram is 
in Figure 3. and the functor l2 corresponding to 
this diagram is defined as: l2(6)=; l2(6’)=; 
l2(4)=xx; l2()=. The limit of this diagram in 
the Set category will have to be . 

 

 

Figure 3: Shape graph of 
pullback diagram. 

Figure 4: Shape graph of 
pushout diagram. 

3. The set क of cocones consists of the following: 
At point i) X=P⊔T, i.e. X is the colimit of the 
discrete diagram formed by the nodes p and t. The 
shape graph of this diagram is made up of nodes 3 
and 2 and the functor k1 corresponding to this 
diagram is defined as: k1(3)=p; k1(2)=t. Therefore, 
the node denoted with x in the graph of the sketch 
will become in the Set category the set X of all 
objects involved in the model and will be the 
colimit to this discrete diagram, i.e. the disjunctive 
union of the P and T sets.  
At point ii) = PT⊔TP, i.e. X is the colimit of the 
discrete diagram formed by nodes pt and tp. The 
shape graph of this diagram is made up of nodes 7 
and 8 and the functor k2 corresponding to this 
diagram is defined as: k2(7)=pt; k2(8)=tp. 
Therefore, the node denoted with  in the graph of 

the sketch will become in the Set category the set 
 which will be the colimit of this discrete 
diagram. 
At point iv) the pushout of  with  is a terminal 
object. The condition that this colimit is a terminal 
object in Set assures us that the graph G is 
connected. The shape graph of this diagram is in 
Figure 4. and the functor k3 corresponding to these 
diagram is defined as follows: k3(6)=; k3(1)=x; 
k3(1’)=x; k3()=; k3()=.  

So we’ve got the sketch of a Petri Net, we denote it 
with L1(PN)=(ऑ, ऎ, ख,	क). 

4 THE METAMODEL 

A model M of a sketch L1=(ऑ,ऎ,ख,क) in the Set 
category is a functor from ऑ to Set that takes each 
diagram in ऎ to a commutative diagram, each cone in 
ख to a cone limit and each cocone in क to a cocone 
colimit.   

From the way we constructed the sketch L1(PN) it 
follows that any model of the sketch L1(PN) in Set  is 
a Petri Net in the sense of the definition 13 and any 
Petri Net in the sense of the definition 13 may be a 
model of this sketch. 

The sketch L1 is the basic sketch of a modeling 
method. The nodes of this sketch represent the types 
of objects that can be defined in this modeling method 
as well as the types of relations that can be defined 
between these objects in this modeling method and 
the arcs are the sketch operators. 

Therefore these concepts will have to be 
represented in the modeling tool on PaletteDrawers to 
be used when visually building a model. Therefore we 
consider a model  of the sketch L1, :LଵSets  
which associates to each class (node) from L1 with an 
instance of that class. These objects will be put into 
PaletteDrawers for use when visually building a 
model. In PaletteDrawers are only the necessary 
entities for use when visually building a model. 

For Petri Net, in sketch L1(PN) the basic concepts 
that will be put in the PaletteDrawers for use when 
visually building a model will have the type indicated 
by the vertex of the sketch from Figure 1. 
PaletteDrawers will contain only the following 
entities: (p),(t),(pt) and (tp). Therefore, 
PaletteDrawers will be populated with four elements.  

Any model of the sketch L1=(ऑ,ऎ,ख,क) is a 
concrete model that complies with the conditions 
imposed by the sketch L1. To construct such a model, 
it is sufficient to consider a model Hଶ:LଵSets that 

Categorical Modeling Method, Proof of Concept for the Petri Net Language

285



 

associates the classes (nodes) in the sketch L1 with 
sets of extensions of these classes. 

For Petri Net the model  Hଶ:LଵSets becomes: 
Hଶሺp)=P is the set of all extensions of type place in a 
Petri Net model; Hଶሺt)=T is the set of all extensions 
of type transition in a Petri Net model; Hଶሺpt)=PT 
represents the subset of relations PT; Hଶሺtp)=TP 
represents the subset of relations TP; The other 
objects and arcs of the sketch are useful for imposing 
constraints on the model. The arrows of the graph will 
be interpreted as functions with the same name as the 
domains corresponding to the model image H2. 

Let H୧
ଶ and H୨

ଶ be two models of the sketch L1 
defined as above. Then we can define a natural 
transformation :H୧

ଶH୨
ଶ. It is obvious that there isn’t 

always a natural transformation between two models 
and it is equally obvious that there are models among 
which we have such transformations. 

Therefore, the set of models H୩
ଶ, k0 together with 

the natural transformations between models form a 
category that we call the category of specifiable 
models in a Modeling Method. Each object in this 
category is a specifiable model in a Modeling 
Method, represented by the sketch L1. 

The natural transformations in the category of 
specifiable models in a Modeling Method transfers 
the properties of a Model to another Model, and can 
be the basis for model comparison. 

5 THE DYNAMIC BEHAVIOR OF 
MODELS 

The dynamic behavior of a system over time is 
modeled by procedures. The simulation begins by 
initializing the system with data that describe its 
initial state. The dynamics of the system is 
accomplished through the succession of procedures 
being executed. 

In the concept of modeling method, simulation of 
a model is based on mechanisms and algorithms that 
are written in an imperative programming language. 
The behavior of the model is based on the state idea, 
determined by the values of the variables.  

Transitions will look like (Vk, k, Vk+1) where Vk 
is the state vector of the system before the transition, 
Vk+1 is the state vector of the system at the end of the 
transition, and k is a process  represented by natural 
transformation. 

On the other hand, executing a transition changes 
an instance of the model by turning it into another 
instance. As a result, we will use transitions of the 
form (ণ1, p,	ণ2) where ণ1 is the instance of the model 

before the execution of the functions p and ণ2 is the 
instance of the same model after executing the 
functions p. 

Let H2 be a model of the Petri Net sketch, L1 
defined as above, i.e. an object of the Petri Net 
category. We denote with L2 this model L2 = H2(L1). 

The L2 model represents a concrete Petri Net. The 
object X of this model is a set of classes of type 
transitions or places; T is a set of classes of 
transitions, P is a set of classes of type places. 

The object  is a set of relation types that can be 
defined between these entities. 

The arcs of the sketch indicate between what types 
of objects the corresponding relations can be 
established. That is, L2 contains all types of objects 
specific to the Petri Net considered. 

Referring to Petri Net example to create the 
instances of the model L2, it is sufficient to limit 
ourselves to the elements in the subsketch which 
contain all the necessary information to use the model 
and which are: P,T, PT and TP. The other objects and 
arcs of the sketch are useful for imposing the syntactic 
constraints on the model. 

If in the above model we have:  
T={T1,T2,T3,T4} is a set of classes of type 

transitions; 
P={P1,P2,P3,P4} is a set of classes of type places; 
PT={1, 3, 5, 8} is a set of classes of type 

relation from P to T. 
TP={2, 4, 6, 7, 9 } is a set of classes of type 

relation from T to P. 
 

 

Figure 5: Petri-Net model example. 

TP : TPT, associates to each relation from TP 
the source node from T: TP(2)= T1; TP(4)= T2; 
TP(6)= T3; TP(7)= T2; TP(9)= T4; 

TP : TPP, associates to each relation from TP 
the source node from P: TP(2)= P2; TP(4)= P3; 
TP(6)= P2; TP(7)= P4; TP(9)= P1; 

PT : PTP, associates to each relation from PT 
the source node from P:  PT(1)= P1;  PT(3)= P2;  

PT(5)= P3; PT(8)= P4 ; 
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PT : PTT, associates to each relation from PT 
the source node from T: PT(1)= T1; PT(3)= T2; 
PT(5)= T3; PT(8)= T4 ; 

then the PN model is like in Figure 5. 
We consider an instance functor  defined on such 

a model with values in the Set category: 
 : LଶSets 
Which associates to each set of classes in L2 a set 

of instances, i.e. each class will be replaced by one 
instance of it. 

In our case, the instances differ from one another 
by the number and positioning of tokens on the Petri 
Net instance arcs, i.e. by the state corresponding to 
each instance. 

If we have two models ,:LଶSets then we can 
define a natural transformation :.  

The set of all models together with all the natural 
transformations between them form a category that 
we call the category of instances and natural 
transformations of the L2 model and we denote it with 
CIT. 

We observe that in this case natural 
transformations become functors, i.e. it transforms 
objects into objects and arcs in arcs while retaining 
the structure. 

The state of the Petri Net is characterized by the 
distribution of tokens on the nets places. The dynamic 
behavior of a system is represented by state changes 
that are subject to transaction triggering rules. As 
detailed below, there are rules for triggering different 
transactions for different classes of Petri Nets 
(Weske, 2012). 

The marking (or state) of a Petri Net is defined by 
a function M:P → N which associates places of a Petri 
Net with natural numbers representing the number of 
tokens found in each place of the net. Generally, a 
marking (a subset of conditions) formalizes a global 
state notion by specifying the conditions that are met 
at one time. 

If the arcs are ordered entirely by their identifier 
(such as in p1, p2, p3, p4) the state can be expressed by 
a vector. In our case through the vector M=[1, 0, 0, 0] 
for example. 

The state of each place pi will be given by an 
attribute with integer values of the corresponding 
class that we denote as pi.State. This means that the 
state of an instance of the chosen Petri Net model is 
represented by the vector M=[ p1.State, p2.State,…, 
pn.State]  where n is the total number of places of the 
Petri Net model. We will also denote the state of a 
place p.State with M(p). 

Therefore, an instantiation functor :LଶSets will 
create an instance of the model L2 that will have a 

certain state represented by a marking  M=[ p1.State, 
p2.State,…, pn.State] with the meaning from above. 

In this context, a set of Petri Net classes have been 
introduced, which differ from each other by their 
triggering behavior and the structure of their tokens. 
We will address only two of them: Condition Event 
Nets and Place Transition Nets (Weske, 2012). 

Condition Event Nets (Weske, 2012) make up the 
fundamental class of Petri Nets. A Petri Net is a 
Condition Event Net if p.State≤1 for all places p∈P 
and for all states M. 

Place Transition Nets are an extension of the 
Condition Event Nets, so there may be an arbitrary 
number of tokens in any Petri Net place. Additionally, 
multiple tokens can be consumed from an input place, 
and multiple tokens can be produced at the output 
places when triggering a transition, based on the 
weight associated with the arcs connected to the 
transition. This extension can be represented 
graphically by multiple arcs from a particular entry 
place to a transition or with arcs labeled with natural 
numbers to mark their weight. 

A Petri Network is a Place Transition Nets 
(Weske, 2012), if it has a function w:→N that 
associates each arc with a weight (capacity).  

The dynamic behavior of a Place Transition Net is 
defined as follows: A transition t is triggered if and 
only if each input place p of the transition t contains 
at least the number of tokens defined by the weight of 
the link arc, i.e. if M(p) ≥ w(p , t). 

When a transition t is triggered, the number of 
chips withdrawn from its input places and the number 
of tokens added to its outputs are determined by the 
weights of the arcs. 

For the transition t, from each input place p, w(p,t) 
tokens are withdrawn, and to each output place q are 
added w(t,q) tokens. 

The triggering of a transition t in a state 
transforms the state M into a state M’, as follows: 
(∀p ∈ -1t) M’(p) = M (p) - w (p, t) ∧ (∀p ∈ 1t ) M’(p) 
= M (p) + w (t, p). 

If we consider that each instance has a global state 
specified by the vector Mk, then a process execution 
modeled by a Petri Net is a path in the CIT category, 
i.e. a sequence of natural transformations of the form: 

ণ0 
బ
→  ণ1 

భ
→	 … ণk 

ೖ
→  …  

where for every step ণk 
ೖ
→ ণk+1, where ণk has the 

global state Mk and ণk has the global state Mk+1, there 
is a non empty set of transitions ek such that: 

For any transition t ek, Mk has the property:  
(∀p ∈-1t)Mk(p) w(p, t). 
and  
For any transition t ek, Mk+1 has the property: 
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(∀p∈-1t) Mk+1(p)=Mk(p)-ω(p, t) ∧ (∀p ∈ 1t ) 
Mk+1(p) = Mk (p) + w(t, p) 

Mk+1(p)=Mk(p) for all p with the property  p -

1ek  1ek. 
The Petri Net metamodel was implemented in 

MM-DSL then translated and executed in ADOxx 
(Karagiannis and Mayr and Mylopoulos, 2016). In 
Figure 6. we can see a screen capture from the Petri 
Net modeling tool in which we built the graphic 
model in example 1 (Figure 5) that we executed and 
it works. 

 

 
Figure 6: Screen capture from the PN modeling tool. 

6 CONCLUSIONS 

The sketch L0 represents the meta-metamodel, i.e. it 
is the basic sketch of the meta-metamodel. 

Any functor H1:L0Set represents the basic 
sketch of a metamodel, i.e. the basic sketch of a 
Modeling Method that we have denoted with L1. The 
set of models H୩

ଵ, k0 together with the natural 
transformations between models form a category that 
we call the Modeling Method Category. Each object 
in this category is a Modeling Method.   

Each functor H2:L1Set is a model that can be 
specified within this Modeling Method.  

The set of models H୩
ଶ, k0 together with the 

natural transformations between models form a 
category that we call the category of specifiable 
models in a Modeling Method. Each object in this 
category is a specifiable model in a Modeling 
Method, represented by the sketch L1. 

In the category theory, models are functors that 
map the sketches into the Set category that leads to a 
lot of important features on simulation, analysis, and 
process improvement. 

Universal constructs in category theory are the 
basis for implementing a package of mechanisms and 
algorithms in a modeling method. In fact, the 
categories theory constructs, provide us with a 
package of universally valid results that could be 
implemented in modeling method and which would 

be valid in any model built according to category 
theory. 

Based on these functors, important issues such as 
model migration and model equivalence can be 
solved. The difficult problem of Database Migration 
can also be solved. 

The paths from the CIT category represent, in fact, 
the admissible execution rules on which real-time 
deviations can be reported to be corrected. 

The CIT category arrows that represent natural 
transformations are objects that can have attributes 
that dynamically sustain a series of data such as the 
trace of the process, the frequency of execution of the 
activities, the estimated time, the estimated cost, the 
probability that an activity will be executed by a 
certain resource, etc. 

Also, on the basis of some information from the 
CIT category, it is possible to give indications to the 
activities to be executed and make recommendations 
on the most favorable route based on criteria such as 
minimizing the cost, minimizing the time until the 
case completion, etc. 
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