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Abstract: Nowadays, the analysis and the understanding of traffic scenes become a topic of great interest in several
computer vision applications. Despite the presence of robust detection methods for multi-categories of objects,
the performance of detectors will decrease when applied on a specific scene due to a number of constraints
such as the different categories of objects, the recording time of the scene (rush hour, ordinary time), the type
of traffic (simple, dense) and the type of transport infrastructure. In order to deal with this problematic, the
main idea of the proposed work is to develop a domain adaptation technique to automatically adapt detectors
based on deep convolutional neural network toward a specific scene and to calibrate the network parameters in
order to deploy it on an embedded platform. Results are presented for the proposed adapted detector in term
of global performance in mAP and execution time onto a NVIDIA Jetson TX2 board.

1 INTRODUCTION

Pedestrian detection presents an essential task in
many important applications of computer vision and
artificial intelligence including security, road traffic
control, behaviour analysis, driving assistance and
video surveillance. This task is still complicated
because of several factors such as crowded scenes,
occlusion of pedestrians and illumination variation.

Over the past decade, there has been a significant
effort dedicated to the development of effective
pedestrian detection systems which are intended to
support research in the development of safe intelligent
vehicle systems.

In the recent years, Deep Convolutional Neural
Networks (DCNNs) have been broadly adopted
for pedestrian detection and achieved a significant
progress on state-of-the-art performance; we cite
mainly: Faster R-CNN (Ren et al., 2015), Single
Shot Detector (SSD) (Liu et al., 2016) and YOLO
(Redmon and Farhadi, 2017). Indeed, most pedestrian
detectors are learned with a wide variety of labeled
data that are selected from multiple situations to fully
cover the appearance of pedestrians in the scenes to
be studied. But usually when someone conducts a
test on a specific scene, it can be noticed a drop
in detector performance and the main reason of
this performance degradation is the differences in
appearance of example between the samples used for

learning and those of the observed scene (variability
in classes, difficult to have enough examples that can
represent the scene). This problem can be solved by
using domain adaptation techniques. These latter help
to produce a scene-adapted detector that provides a
superior performance than a generic one.

This paper provides an unsupervised domain
adaptation approach to automatically adapt a DCNN
detector toward a target scene to improve the
detection performances. The proposed approach also
introduces a solution to adapt the deployment of the
proposed adapted DCNN detector on an embedded
platform in order to install it on an autonomous
vehicle.

A general synoptic of the proposed approach is
shown in Figure 1. Given a generic DCNN detector
trained by a generic labelled dataset and a target
video sequence as inputs. The proposed approach
allows to automatically adapt the parameters of the
deep detector toward a target scene. After that, the
generated DCNN detector is adapted to be deployed
on an embedded platform.

• Motivations and Contributions

We propose a new approach which starts from a
generic pedestrian detector to automatically generated
a scene-specific CNN detector which can be deployed
on an embedded platform. Our main motivations and
contributions are summarized below.

Hammami, N., Mhalla, A. and Landrault, A.
Domain Adaptation for Pedestrian DCNN Detector toward a Specific Scene and an Embedded Platform.
DOI: 10.5220/0007360003210327
In Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2019), pages 321-327
ISBN: 978-989-758-354-4
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

321



Figure 1: General synoptic of proposed approach. Given a generic DCNN detector and a target video sequence as inputs, the
proposed approach allows to adapt automatically the generic CNN detector to the target scene and to calibrate the parameters
of the generated model toward an embedded platform.

- A domain adaptation method to adapt generic
CNN pedestrian detector into a target video scene

- A correction function based on association
algorithm that used to correctly select the positive
samples and remove the negative ones from a specific
scene

- An calibration method to deploy the pedestrian
DCNN detector on an embedded platform for
intelligent vehicles

The rest of the paper is organized as follows:
the next section introduces some related works while
the section 3 explains the different stages of the
proposed approach. Experiments and results are given
in the section 4 before to conclude and give some
perspectives.

2 RELATED WORK

In this section, firstly, we describe the related works
in pedestrian detection, after that recent works in
domain adaptation and deep learning are outlined.

The problem of pedestrian detection and tracking
tends to be one of the keys to create the future of
intelligent vehicle. As a matter of facts, a lot of
research groups are working on theories and new
applications in this field.

Recently, several significant contributions have
been proposed to improve the performance of
pedestrian detection and tracking. Some of them have
been based on DCNN theories (Zhang et al., 2016)
(Li et al., 2018) (Mhalla et al., 2017b).

However, the performance of these above methods
are often limited and drops significantly when tested
to a specific scene due to the large variations between
the source training dataset and the samples from the

target scene. This problem can be resolved by domain
adaptation approaches. These latter help to adapt a
generic detector into a specific scene and provide a
superior performance than a generic one.

The domain adaptation approaches aim to address
the problem when the distribution of the learning data
is different from that of the target distribution.

Over the past decades, several approaches have
been suggested for domain adaptation in pedestrian
detection (Htike and Hogg, 2014)(Mhalla et al.,
2017a), which applied a generic detector on some
frames in a target scene, predict samples and then
collect most confident positive and negative samples
to the original dataset for retraining. Rosenberg et
al. (Rosenberg et al., 2005) used a semi-supervised
approach based on background subtraction to label
detection from a specific scene. The detection with
high scores were selected in a learning dataset from
one iteration to another. Contrarily, there was a
risk of introducing wrong samples in the training
dataset, which may degrade the performance of the
detector. In the same direction, Wang et al. (Wang
et al., 2014) used different visual information such
as pedestrian motion, location and size to select
positive and negative samples from the target scene
and to collect the last ones in the training dataset
for retraining. This method proved to be applied
only to a specific detector. Accordingly, Mao et al.
(Yunxiang Mao, 2015) presented an approach that
used target samples verified by a tracklet method to
adapt a generic detector toward a target scene.

Other solutions were proposed in (Maâmatou
et al., 2016)(Li et al., 2015)(Wang et al., 2012),
which collected new samples from the target scene
and the source dataset. Mhalla et al. (Mhalla et al.,
2017a) suggested an unsupervised domain adaptation
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approach based on the Monte Carlo filter steps to
iteratively build a new pedestrian detector. Our
proposed approach is inspired from this latter and is
proposed to reduce several problems observed in the
state-of-the-art adaptation frameworks.

Recently, addressing this problem with deep
neuronal networks has gained an increased
attention. In addition, deep learning has led to
great performance on a variety problems of computer
vision like multi-object detection (Redmon and
Farhadi, 2017), action recognition (Will Y. Zou,
2011) and image classification (Duan et al., 2009).

Differently from the existing works mentioned
above, our approach presents the first adapted
approach which apply to adapt deep detector for
mobile cameras contrarily to the state-of-the-art
adaptation ones were limited only for stationary
cameras (Mhalla et al., 2017a)(Maâmatou et al.,
2016).

In this paper, we propose a new approach based
on domain adaptation and deep learning techniques
to adapt the recent deep detectors to a specific scenes
and to optimize the DCNN parameters in order to
deploy it on intelligent vehicle.

In what follows, we first describe the adaptation of
the DCNN model, and then deal with the optimization
step.

3 PROPOSED APPROACH

This section aims to present our approach for
pedestrian detection and tracking to implement it
on a autonomous vehicle. The block diagram
of the proposed approach is shown in Figure
2. Our approach is divided into two parts, a
domain adaptation technique to automatically adapt
DCNN detectors to the scene to be analyzed and
a second technique to adapt the deployment of the
scene-specific detector on embedded platforms.

Our domain adaptation technique automatically
estimates the target distribution as a set of learning
samples. These are selected from the samples
from the target scene based on a selection strategy
that indicates that they belong to the estimated
target distribution. In the following subsections, we
will describe the different steps of our adaptation
technique.

The first part of our framework ”Adaptation of
the DCNN detector” follows three steps: sample
proposal, correction and adaptation.
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Figure 2: Block diagram of the proposed approach.

3.1 Sample Proposal Step

The sample proposal step consists in providing a list
of samples predicted by a detector based on DCNN
applied to a target scene (Equation 1):

{x(n)}N
n=1 = Θ({I(i)}I

i=1;DCN N ) (1)

with DCNN represent the DCNN detection model,
{I(i)}I

i=1 list of images and {x(n)}N
n=1 represents the

samples provided by the output layer of the DCNN
detector. Then, a selection of the samples is ensured
in the correction step which makes it possible to
collect the true positive samples and to eliminate the
false ones.

3.2 Correction Step

The correction step consists in removing the false
positive samples and keeps the true ones. This step
is based on a data association algorithm which makes
it possible to determine the trajectories of objects in
motion and through these trajectories it is possible to
predict the false positive samples (Equation 2).

D̃ = {x̃(n)}N
n=1 = fCorr({x(n)}N

n=1) (2)
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with D̃ the adapted dataset including true positive
samples {x̃(n)}N

n=1 selected by the correction function
fCorr.

During the correction step, the correction function
is applied to the samples of the list provided by
the sample proposal step. This proposed function is
based on a data association algorithm, which makes
it possible to calculate the trajectories of moving
objects by associating samples of the same objects
during a video sequence. And in order to determine
the object trajectories in the target scene, we use a
DeepSORT (Wojke and Bewley, 2018) association
algorithm which is a real-time multi-object tracker
based on an inter-image association of samples that
takes into account the coherence of the apparent
movement and the appearance of the tracked targets.
A CNN network extracts the characteristics of each
sample generated by the sample proposal step ; these
are then associated with the existing trajectories via
a Hungarian algorithm (Kuhn, 2005) taking into
account the position of the target and the feature
vector generated by the CNN network. Unassociated
trajectories are extended by sample proposals of a
Kalman filter and unassociated detection generate
new trajectories. DeepSORT is simple, very
inexpensive in computing time and has shown good
performance in the MOT Challenge 2017; for these
reasons, it seems adapted to our constraints.

3.3 Adaptation Step

The adaptation step serves to produce an adapted
CNN detector driven by the sample list generated by
the previous step (Equation 3).

{ ˜DCN N }= fFine({I(i)}I
i=1,D̃;DCN N ) (3)

with ˜DC N N is the detector generated after
fine-tuning with the list of samples D̃ = {x̃(n)}N

n=1
generated by the correction step and {I(i)}I

i=1
represents the list of images.

The adaptation step consists in fine-tuning the
DCNN detector with samples provided by the
correction step of our domain adaptation approach in
order to generate a new detector adapted to the target
scene with a significant performance compared to the
generic detector (input).

The second part of our approach is a solution to
adapt the deployment of our adapted DCNN detector
to an embedded platform in order to install it on a
autonomous vehicle. To do this, we proposed an
optimization step to accelerate and to compress the
DCNN model generated by our domain adaptation
technique. This part follows two steps: Optimization
and Implementation. In the following subsections, we
will describe these different steps.

3.4 Optimization Step

Given the trained DCNN model provided by our first
adaptation technique, the optimization step optimizes
the DCNN model parameters. To do this, we propose
to convert the weights and activations parameters
of the adapted model, which is stored on 32-bit
floating point, on 8-bit integer. This conversion
function (Equation 4) allows to reduce memory
usage, allowing deployment of larger networks and
transferring data takes less time.

{W̃(i)}K
i=1 = fConv({W(i)}K

i=1) (4)

where {W(i)}K
i=1 represents the DCNN model

parameters and {W̃(i)}K
i=1 is the set of the output

parameters converted on 8-bit integer. During this
step, we used the ”TensorRT” library.

3.5 Implementation step

The implementation step consists in deploying our
adapted and optimized detector on the embedded
platform based on GPU or strong CPU devices in
order to guarantee a real-time running of the detector.

4 EXPERIMENTS

The improvements in performance and speed brought
by the method of adapting the detector to a specific
scene and his adaptation on an embedded platform
are evaluated in this section. In fact, this approach
is generic and can be applied to any DCNN detector.
For the evaluation we mainly used the YOLO V3
(Redmon and Farhadi, 2018) deep detector.

4.1 Datasets

The MSCOCO dataset (Lin et al., 2014) was used to
learn the generic DCNN detector. In our experiments,
we used all annotated pedestrians to train the generic
DCNN detector.

The evaluation was achieved on a private dataset:

• PAVIN Dataset. It is a private dataset containing
a video sequence of 30 minutes, recording a
scene of road traffic by a mobile camera fixed
on an autonomous vehicle. We have uniformly
extracted as proposed in (Mhalla et al., 2017b)
452 images of this video were used for adaptation
and the last 100 images were used for the test.
Figure 3 illustrates image examples of the PAVIN
dataset.
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Figure 3: Image examples of PAVIN dataset.

Table 1: Comparison between adapted and generic
detectors on the PAVIN dataset.

Specification Performance (mAP)
Generic DCNN detector 64.6%
Adapted DCNN detector 76.37%

4.2 Implementation Details

The implementation details of the given approach
are described in this section. In our experiments,
YOLO detectors are used as input. These detectors
are used under Darknet (Redmon, 2016). The shared
part of these detectors is an architecture invented by
the creators and includes 19 layers of convolution
and pooling. YOLO detectors use two completely
connected layers. The particularity of this detector
intervenes in the learning phase. The network is fully
resized during learning while retaining the settings
between each size change. This strategy makes it
possible to learn the influence of a resizing on the
quality of the sample proposals. Indeed, there are
several versions of YOLO. In our experiments, we
used the Tiny YOLO V2 (Redmon and Farhadi, 2016)
which is composed of 9 convolutional layers and 6
max pooling ones. Also, the YOLO V3 version has
been used. This detector has undergone some changes
and improvements in the number of classification
layers to improve classification accuracy compared to
previous versions of YOLO V2.

4.3 Results and Analysis

Given the PAVIN dataset and its ground-truth,
a comparative summary table for pedestrian
detection (see Table 1) is provided.Where the
global performance in mAP of the adapted detector
compared to the generic one.

Table 1 shows that the adapted detector generated
by our domain adaptation approach significantly
exceeds the generic detector. The performance on
the test set of the PAVIN dataset has been improved
from 64.6% to 76.37%. In particular, it has an
improvement rate of 12%. The illustration in Figure 4

Figure 4: (a), (b): improvement of our proposed adaptation
technique (the left images shows the detection results for the
generic DCNN detector and the right for the adapted one)
on PAVIN dataset.

Table 2: Description of the correction step effect.

Specification Performance
Correction step based score 69.42%
Correction step based association 76.37%

clearly shows the improvement of the adapted DCNN
detector in detecting pedestrians and in removing the
false positive samples compared to the generic one.

To show the effectiveness of our correction step,
Table 2 shows the comparison between the use of
the correction step based on the confidence scores
predicted by the DCNN detector (selected samples
that have a confidence score higher than a score
threshold of 0.5) and between our correction step
based on association algorithm.

Line 2 of Table 2 presents our proposed approach
based on the association algorithm, while the values
in the first line indicate the use of the confidence score
provided by the output layer of the DCNN detector.
The results show that the proposed correction step
based on the use of the association strategy improves
the performance of our domain adaptation approach
(see Figure 5).

However, we can improve the correction step with
other complex visual cues, such as for example a
combination of the association algorithm with other
spatio-temporal information, to improve the selection
of true positive samples.

For the second part of our approach ”Adaptation
of the detector on an embedded platform”, we provide
a comparative table containing the DCNN detector
running speed in Frames Per Second (FPS) before and
after the optimization step (see Table 3).

The experiments showed promising results from

Table 3: DCNN detector optimization results on the Jetson
TX2.

Specification Running
Adapted detector before optimization 2.5 FPS
Adapted detector after optimization 9 FPS
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Figure 5: Efficiency of proposed correction step. The red
blobs in image (a) present the inputs of the correction step
and the color ones in image (b) are the outputs.

Table 4: Description of running optimized detectors on the
Jetson TX2 board.

Detector Running time
YOLO V3 (Baseline) 2.5 FPS
Optimized YOLO V3 9 FPS
Tiny YOLO V2 (Baseline) 17 FPS
Optimized Tiny YOLO V2 23 FPS

the application of our optimization step. The first
column of Table 3 represents the DCNN detector
specifications before and after the optimization step.
The second column shows the DCNN detector
running speed in FPS. The results show that the
optimization step based on calibrating the parameters
of DCNN models significantly improves the running
speed of the DCNN detector.

For the hardware components, we used the Jetson
Tegra TX2 embedded platform. The latter is a
recent technology developed by NVIDIA. This device
delivers the performance of the NVIDIA Maxwell
architecture with 256 CUDA cores delivering more
than 1 Tera FLOP performance, 64-bit processors and
a 5 mega pixel camera. To run our adapted DCNN
detector on the NVIDIA Jetson TX2 device, we use
the Darknet deep learning framework with the C ++
programming language.

In Table 4, we summarize the running speed of
our adapted and optimized detectors on the NVIDIA
Jetson TX2. According to Table 4, we test various
adapted and optimized DCNN detector compared to
the baseline ones on our embedded system with the
NVIDIA Jetson TX2, we chose the optimized adapted
Tiny YOLO V2 detector to obtain an embedded
system which can be run in real-time.

Our approach of detector adaptation towards a
specific scene and an embedded platform, allow to
provide an embedded system with a good detection
performance and which can work in real time for an
autonomous vehicle.

5 CONCLUSION

This article introduces an approach for pedestrian
detection that consists first of all in proposing a new
domain adaptation technique from a DCNN detector
to a specific scene by adapting a generic detector to
an urban traffic scene without labeling. The method
gave good results on real world-scenarios compared
to the generic DCNN detector in term of mAP and
running time. Furthermore, the proposed approach
presents the first domain adaptation approach which
apply to adapt deep detector for mobile cameras.
The experiment results obtained on an Jetson TX2
embedded platform have shown that adapted detector
presents very interesting performance in term of
real-time running time and the future works include
the extension to other types of detectors as the
proposed approach is generic and flexible.
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