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Abstract: Deep learning using Convolutional Neural Networks (CNN) has been demonstrated unprecedentedly 

powerful for image classification. Subsequently, computer-aided diagnosis (CAD) for pathology image has 

been largely facilitated due to the deep learning related approaches. However, because of extremely high 

cost of pathologist's professional work, the lack of well annotated pathological image data to train deep 

neural networks is currently a big problem. Aiming at further improving the performance of deep neural 

networks and alleviating the lack of annotated pathology data, we propose a full-automatic knowledge 

transferring based stepwise fine-tuning scheme to make deep neural networks follow pathologist’s 

perception manner and understand pathology step by step. To realize this conception, we also introduce a 

new type of target correlation intermediate dataset which can be yielded by using fully automated 

processing. By extracting rough but stain-robust pathology-related information from unannotated pathology 

images with handcrafted features, and making use of these materials to intermediately train deep neural 

networks, deep neural networks are expected to acquire fundamental pathological knowledge in advance so 

that boosted in the final task. In experiments, we validate the new scheme on several well-known deep 

neural networks. Correspondingly, the results present solid evidence for the effectiveness and suggest 

feasibility for other tasks. 

1 INTRODUCTION 

Cancer is one of the most terrible threats to human 

health. According to the data (Ferlay J. et al., 2013), 

there were approximately 14.1 million new cancer 

cases and 8.2 million deaths worldwide in 2012. 

Moreover, same report estimates that the number of 

new cancer cases may increase to 24 million by 

2035. Nowadays, we have many advanced cancer 

diagnosis modalities such as Computed Tomography 

(CT), Magnetic Resonance Imaging (MRI), and 

Positron Emission Tomography (PET). Meanwhile, 

pathology image diagnosis is still playing a key role 

to assess cancer’s presence or absence. However, the 

shortage of pathologists has become a conspicuous 

problem in many countries. In japan, the number of 

pathologists per 100,000 people is 1.95, which is 

around only 1/3 of that in the United States (M. 

Fukayama et al. 2015). In China, this number is even 

as low as 1.35 (Cornish, 2014). The severe shortage 

directly results high workload of pathologists and 

increasing misjudgement in diagnosis. Although 

digital pathology has widely popularized since more 

than a decade ago, confirmation of a mass of large-

scale images remains heavy load to pathologists. 

With respect to this issue, efforts on automatic 

diagnosis of pathology images based on pattern 

recognition technology are regarded as one the most 

promising solution. 

2 RELATED WORKS 

In early periods, researchers used to adopt 

conventional image classification approaches based 

on pathological morphology indexes (e.g. nuclei-

cytoplasmic ratio and density) and generalized 

texture descriptors to map the images to feature 

spaces for further modelling. Compared to the 

former approaches, the latter ones have shown more 
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robustness to the ever-changing cancerous 

appearance. Esgiar et al. (Esgiar et al., 1998) 

employed GLCM to calculate the contrast, entropy, 

angular second moment, dissimilarity and 

correlation from colon’s pathology images, and used 

linear discriminate analysis (LDA) and k-nearest 

neighbour algorithm (KNN) to distinguish normal 

and cancerous images. J. Diamond et al. (J. 

Diamond et al., 2004) employed an evolved version 

of GLCM, called Haralick features to classify 

prostate pathology images. In Masood’s study (K. 

Masood and N. Rajpoot, 2009), local binary pattern 

(LBP) and support vector machines (SVM) are 

utilized and demonstrated effectiveness for colon 

pathology images. Besides, lower-order and higher-

order histogram features, Gabor filters and 

Perception-like features are involved in pathology 

image classification as well. However, when using 

the generalized texture features, researches have 

faced a common problem: it is very hard to control 

the adaptability and select the serviceable one or part 

(Shen et al., 2017). Meanwhile, the non-uniform 

staining quality among data resources and other 

changing factors makes the classification more 

challenging (R. Marée, 2017, Chen et al., 2016, B. 

Bejnordi et al., 2016).  

In recent years, deep learning using 

convolutional neural networks (CNN) (A. 

Krizhevsky et al., 2012) has shown its 

unprecedented capacity to defuse these problems.  

Due to more domain agnostic approach combining 

both feature discovery and implementation to 

maximally discriminate between the classes of 

interest (Janowczyk and Madabhushi, 2016), high 

hope has been placed on deep learning to accelerate 

classification  of pathology image (Xu et al., 2017, 

Hou et al., 2016, Xu et al., 2016). When one adopts 

deep learning based approaches, large datasets are 

always indispensable to train more capable deep 

neural networks and raise the performance. 

However, unlike natural image datasets which can 

be acquired based on internet and automated 

categorizing techniques, building up high quality 

pathology image datasets, anyhow, requires 

professional observation and annotation by 

pathologists. Because of the necessity of this 

procedure, well-annotated data usually cost vast 

financial resources and manpower. In this situation, 

drawing out the maximum power of deep neural 

networks with limited datasets has become a very 

important practical issue.  

 

3 STEPWISE FINE-TUNING FOR 

DEEP NEURAL NETWORKS 

When holding a certain amount of data, fine-tuning 

the deep neural networks is one of the evidenced 

techniques able to boost the performance in some 

degree. Rather than training from scratch, fine-

tuning a general neural network which has been pre-

trained with large-scale image datasets (e.g. 

ImageNet) to obtain a more specialized network 

corresponding to target tasks can usually yield more 

advantageous results (Chen et al., 2015, Shin et al., 

2016, Yosinski et al., 2014). Training a CNN 

strongly depend on its initial status, thus it is 

significant to obtain appropriate initialization as 

much as possible in order to avoid over-fitted 

learning or local minimum traps. Generally, the 

forepart layers of a CNN are considered analogous 

to the conventional texture features and applicable to 

many of related tasks, while the later layers capture 

more abstract image content by combining low-layer 

features involving more specific information 

corresponding to the target task (Brachmann et al., 

2017). Based on this fact, if the tasks of pre-training 

and final classification are sufficiently correlated 

(for instance, both of them are for color image 

classification), one may only fine-tune part or all of 

the pre-trained model to reach more desired results.  

Actually, it is quite hard for us to understand the 

correlation between these tasks. In some other 

situations if target tasks possess much different 

distribution compared with the pre-training datasets, 

effectiveness of initialization and fine-tuning may be 

largely restricted. This issue is exactly arising in 

pathology image classification domain. On one 

hand, in light of common human’s perception, 

pathology images usually have more complicated 

appearances than natural images because it is 

difficult to figure out the intuitionistic difference 

between benign and malignant images at a glance 

due to their color uniformity of H&E (Hematoxylin 

and eosin) stain and componential similarity of 

tissues. On the other hand, owing to professional 

knowledge, pathologists are able to distinguish 

various pathological components and structures 

within the image. Based on this knowledge, they can 

easily tell where abnormality has occurred. 

Nevertheless, natural image datasets for pre-training 

rarely contain relevant information. From this 

perspective, we believe that it is crucial to build a 

bridge which can reasonably transfer the neural 

networks from the task of pre-training classification 

to the final benign/malignant judgment of the well-

annotated pathological images. 
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Figure 1: The proposed knowledge transferring based stepwise fine-tuning scheme. Apart from “low-level” pre-training 

datasets and “high-level” well-annotated datasets, “medium-level” data are generated automatically and involved in the 1st 

fine-tuning process. In CNN models corresponding to training steps along the knowledge transferring direction, darker 

nodes in CNN models denote more specialized (deeper) representation which is expected for the pathology image 

classification task.  

3.1 Making CNNs Learn Pathology 
Step by Step 

In this paper, we propose a conception taking 

advantage of stepwise fine-tuning to make deep 

neural networks learn to understand pathology 

images gradually following pathologist’s cognitive 

way. Before learn to understand the differences 

between benign or malignant pathology images, one 

should first understand the fundamental pathological 

knowledges beforehand. Such knowledges may 

include but not be limited to distribution status and 

density of cells, degree of nucleus distortion, nucleus 

size and nuclear-cytoplasmic ratio.  In the previous 

section, it has been declared that specific measures 

of these indexes for benign/malignant judgement 

may be not reliable due to various changing factors. 

Nevertheless, these morphological characteristics 

can still be exploited to provide rough but task-

relative initialization to the deep neural networks 

like training an unskilled pathologist. 

To make deep neural networks able to pathology 

in a rational way, we build up a stepwise scheme 

(Suzuki et al., 2017) in which fine-tuning is adopted 

to transfer several different levels of knowledge 

toward the final task step by step. The scheme 

consists of three main steps: pre-training, 1st fine-

tuning and 2nd fine-tuning. As shown in Figure 1, at 

the beginning of the training progress, we have a 

pre-trained network as initialization. The following 

step of 1st fine-tuning involves a type of target-

correlative “medium-level” dataset, which is 

regarded as the carrier of the fundamental 

pathological knowledges. According to our 

conception, rather than directly driving the deep 

neural networks to learn about benign and 

malignant, making it gain fundamental pathological 

knowledge from the “medium-level” datasets 

probably contribute to the task of higher difficulty 

(Qu et al., 2018). Therefore, 1st fine-tuning with the 

“medium-level” datasets is placed in the middle of 

the stepwise scheme. By this step, deep neural 

networks are considered more pathology-

specialized. Finally, well-annotated 

benign/malignant images are used for the second 

time fine-tuning. In the lower part of the figure, 

corresponding to all training steps along the 

knowledge transferring direction, darker nodes in 

CNN models denote more specialized (deeper) rep- 

resentation which is expected for the pathology 

image classification task When the number of output 
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Figure 2: Procedure of generating “medium-level” dataset with color index local auto-correlation (CILAC). 

classes changes, the network architecture needs to be 

adjusted accordingly. As to the earlier layers, we 

recommend to set all of them learnable in both of the 

two fine-tuning steps in order to achieve practical 

improvement.  

3.2 Build “Medium-level” Dataset 
using Color Index Local  
Auto-Correlation 

In the light of out aforesaid conception that 

fundamental pathology knowledges are expected to 

be involved to bridge the pre-trained model and 

transfer these knowledge to the final-task-targeting 

model, we consider to adopt a reliable way to 

provide with rough and robust, but weakly 

pathology-related information to fulfil this demand. 

Meanwhile, in respect of the mission of our work, it 

is a prerequisite requirement that the “medium-level” 

dataset must be achievable at much lower cost than 

the well-annotated datasets made by pathologists. In 

order to satisfy this requirement, a full-automatic 

dataset generation approach is preferentially needed. 

According to our earlier study (Qu et al., 2014), 

color index local auto-correlation (CILAC, 

Kobayashi and Otsu, 2009) has been evidenced as an 

independently competent hand-crafted feature in 

pathology image classification. Notice that feature 

extraction with CILAC is right the choice to 

summarily evaluate the status and relation of 

background, nuclei and cytoplasm based on the 

three-level color indexed image. These three 

components are deemed to contain most of the 

crucial information for morphological analysis. 

Meanwhile, because the color indexing process is 

equivalent to normalizing the color space in an 

extremely rough way, the color indexed images are 

regarded more robust to uneven staining intensity. In 

this paper, we take advantage of CILAC based 

feature extraction on color-indexed images and 

expect to collect sufficient anatomical pathology 

information with less noise.  

Specifically, CILAC feature was developed on 

the basis of Higher Local Auto-Correlation. As 

shown in Figure 2, CILAC consists of a set of local 

patterns which are able to calculate both the local 

auto-correlations of different color levels and their 

statistical distribution. CILAC in order N (N = 0, 1, 

2) is defined as below:  

𝑆0(𝑖) =  ∑ 𝑓𝑖𝑟 (𝑟)                   (1) 

 

𝑆1(𝑖, 𝑗, 𝑎) =  ∑ 𝑓𝑖𝑟 (𝑟)𝑓𝑗(𝑟 + 𝑎)           (2) 

 

𝑆1(𝑖, 𝑗, 𝑘, 𝑎, 𝑏) =  ∑ 𝑓𝑖𝑟 (𝑟)𝑓𝑗(𝑟 + 𝑎)𝑓𝑘(𝑟 + 𝑏)      (3) 

Where 𝑆𝑁  denotes N-order correlation. 𝑓 =
{ 𝑒1, 𝑒2, 𝑒3 … , 𝑒𝐷} is a D-dimensional vector standing 

for D color indexes of an color indexed image. 𝑟 

indicates the reference (central) pixel. a, b are 

different displacements of the surrounding inspected 

pixels, respectively. 𝑓𝑖 , 𝑓𝑗 and 𝑓𝑘 denote the pixels 

taken into account corresponding to all 

displacements. In this paper, D is set to 3 according 

to three color indexes of the 3-level image. In that 

case, the 0th order CILAC (N = 0) draw out different 

color indexes themselves, and the 1st and 2nd order 

CILAC (N = 1 and N = 2) represent the local co- 
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Table 1: Datasets used in experiments. 

Data Type Category Training Validation Test 

Medium-level Data 
Cluster 1 5,016 558 - 

Cluster 2 3,949 439 - 

High-level 

(Well-annotated) 
Data 

Benign 5,400  1,620  2,700  

Malignant 5,400 1,620 2,700 

 

occurrences of different color indexes. Pathological 

components including nuclei, cytoplasm and 

background are expected synthetically vectorized by 

the CILAC patterns. 

Practically, we implement a string of automatic 

image pre-processing techniques including 3-level 

quantization to obtain the background-nuclei-

cytoplasm images. Afterwards, CILAC feature are 

extracted from these 3-level images and principal 

component analysis (PCA) is also used to reduce the 

dimensionality of feature vector space. Next, we 

employ unsupervised K-means clustering to separate 

images into several clusters within the feature vector 

space. Practically, in order to obtain clusters with 

large distance as possible, we set the number of 

cluster k=3, and select the farthest two clusters in 

line with the visualized status within the coordinate 

space of finite principal components. Finally, we 

pick up the most distant two clusters and assign +1 

and -1 to them. Pass through the above series of 

operations, the two clusters are available to be 

automatically generated and employed as “medium-

level” training data for the 1st step fine-tuning. 

4 EXPERIMENTS 

4.1 Experimental Procedures 

In order to evaluate the effectiveness of our proposed 

transfer learning scheme using stepwise fine-tuning 

and the automatically produced low-cost “medium-

level” datasets based on CILAC, we make use of 

several well-known deep neural networks including 

VGG-16 (Simonyan and Zisserman, 2015), AlexNet 

and GoogLeNet (hereafter InceptionV3, Szegedy et 

al., 2016). With each of the deep neural networks, 

we conduct two separate procedures: (1) adopting 

fine-tuning only once with high-level well-annotated 

pathology images directly upon the model which has 

been pre-trained by low-level large-scale datasets 

(ImageNet). (2) adopting the 1st fine-tuning and 2nd 

fine-tuning in sequence with the “medium-level” 

data and high-level well-annotated pathology image 

data, respectively. Competitions are carried out 

between the two procedures based on the three deep 

neural networks stated above.  

4.2 Datasets 

This paper employs three types of data including 

“low-level”, “medium-level” and “high-level” data, 

respectively used for the initialization (pre-training), 

the 1st stage fine-tuning and the 2nd stage fine-

tuning. In practice, ImageNet data containing 

approximately 1.2 million images in 1,000 separate 

categories are customary utilized to initialize the 

CNN models. As to the “medium-level” data and 

high-level well-annotated pathology image data, we 

make use of the gastric pathology datasets collected 

by two experienced pathologists. All of the data are 

illustrated in Table 1. By adopting unsupervised 

clustering upon more than 10,000 patches 

(256×256), we succeeded to obtain cluster 1 

including 5,574 patches and 4,388 patches belong to 

cluster 2. In the 1st-step fine-tuning, 90% of patches 

in each cluster are used for training, remaining 10% 

are used for validation. Validation data are 

completely separated from training data so that well-

generalized model can be selected accordingly. As to 

the well-annotated “high-level” datasets, in order to 

evaluate the efficacy of the proposed two-stage 

scheme, we have prepared well-annotated datasets 

including 5,400 benign and 5,400 malignant patches. 

All of these patches are cut off from whole 

pathology images without augmentation. Except 

from the former datasets, we additionally use a 

validation dataset including 1,620 benign and 1,620 

malignant patches to select the best model 

configuration, and a test dataset of 2,700 benign and 

2,700 malignant patches to finally evaluate the 

performance in each optional case. It is noteworthy

BIOIMAGING 2019 - 6th International Conference on Bioimaging

96



 

Table 2: Performances of the proposed two-stage fine-tuning using “Medium-level” data. 

Scheme 

CNN Architecture 

VGG-16 AlexNet 
GoogLeNet 

(Inception V3) 

AUC ACC 
Preci-

sion 
Recall AUC ACC 

Preci-

sion 
Recall AUC ACC 

Preci-

sion 
Recall 

One-step 0.936 0.836 0.96 0.70 0.867 0.794 0.80 0.79 0.881 0.779 0.79 0.78 

Two-step 

(Proposed) 
0.957 0.873 0.87 0.87 0.923 0.845 0.85 0.84 0.939 0.865 0.87 0.86 

 

Figure 3: Performances of the proposed two-stage fine-tuning presented by ROC.

that there is no overlap between the “medium-level” 

datasets and the “high-level” datasets, and 

meanwhile no overlap among the training, validation 

and test datasets.  

4.3 Results and Discussion 

Next, we will present results and discuss about the 

rival performances of the regular one-step fine-

tuning and our proposed stepwise fine-tuning 

scheme. To be impersonal, we concurrently take 

AUC (Area under the curve, which is calculated on 

the class-probability output), ACC (accuracy), 

Precision and Recall as the evaluation criteria 

(Sokolova and Lapalme, 2009).  

As denoted in Table 2, notably, in all of the 

couples of competitory schemes, our proposed two-

step fine-tuning using “medium-level” dataset has 

yield reasonable improvement. Specifically, AUC 

value is raised by 0.021, 0.056 and 0.058, when we 

adopt CNN architectures VGG-16, AlexNet and 

Inception V3, respectively. Meanwhile, if we focus 

on ACC values, we are aware of the fact that the 

greatest improvement happens when our proposed 

scheme using Inception V3 is adopted. The accuracy 

has remarkably increased from 0.779 to 0.865. 

Besides, precision and recall, which are commonly 

used for medical image classification, are presenting 

similar trend to AUC and ACC. As more intuitively 

illustrated in Figure 3, three CNN architectures have 

produced three separate ROC Figures. The red curve 

denotes the two-stage scheme using “medium-level” 

dataset, while the green curve denotes the 

conventional one-stage scheme. It is clear at a 

glance, in each figure, our proposed scheme 

possesses overwhelming area all along both the false 

positive rate axis and true positive rate axis. These 

results have illustrated that our proposed scheme is 

capable and rarely dependent on the deep neural 

network’s architecture and the amount of well-

annotated data. To sum up, the proposed stepwise 

fine-tuning scheme employing “medium-level” 

dataset automatically produced based on Color-

Index Local Auto-Correlation (CILAC) has 

successfully boosted the performance of the pre-

trained neural networks for gastric pathology image 

classification in various situations.  

5 CONCLUSION 

In this paper, aiming to maximize the classification 

capacity of deep neural networks and alleviate the 

lack of annotated pathology data, we proposed a 

stepwise fine-tuning scheme. By extracting 

pathology-correlative information from unannotated 

pathology images with handcrafted features, and 
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making use of these materials as “medium-level” 

data to intermediately fine-tune deep neural 

networks, we managed to make the deep neutral 

networks acquire pathological knowledge step by 

step following the way of pathologist’s perception. 

By this mean, the initial task and the final target task 

are expected to be bridged in a reasonable way. In 

the experiments, our proposed scheme exerted 

adequate efficacy for boosting the classification 

performance and revealed high applicability for 

different CNN architectures. Taking the proposed 

scheme as seed, it is promising to promote such kind 

of stepwise training scheme to more medical image 

recognition tasks. 
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