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Abstract: Our theory has revealed the possibility that the vesicle, which is self-assembled by the diamagnetic amphiphilic
block-copolymers, can be manipulated into division by external magnetic field. For the case of the constraint
of constant surface area, the passive division can successively take place for 10 times in the situation of
∆p=−15 mV; and only 4.5% solution that is contained by the original vesicle with a radius of 4µm can been
retained by 512 vesicles that each contains about 2.31×107 nm3. Thus, if the water channels are embedded in
the membrane of vesicle, this method can not only concentrate the solution, but also produce a large number
of nanoreactors, which is beneficial to yield an ensemble conclusion of chemical reaction in a very short
times. Another case of the constraint of constant volume canalso be easy realized by enough supply of the
diamagnetic amphiphilic block-copolymers in the progressof division. The latter case is also important for
reaction statistics because the original solution can be inequal volume divided into hundreds nanoreactors.
This nanoreactor can be used to mimic the reaction of some organelles in vitro. We hope experimenters will
try them in future experiments.

1 INTRODUCTION

In recent years, chemists and biologist have worked
to understand how fundamental chemical princi-
ples change when systems are confined to spaces
with nanoscale dimensions or sub-microliter vol-
umes. Nanoreactors offer a means of creating unique
nanoscale chemical environments partitioned from
the surrounding bulk space to explore chemistry in
a variety of different types of nanoreactors such as
nanopores and nanoholes, hollow nanoparticles and
porous architectures, and tubular nanostructures, as
well as those that are native to biological structures,
such as protein pores, channels and organelles. Such
systems enable the number of molecules under study
to be controlled in ways not possible with bulk sys-
tems. The different behaves of the same molecules
between nanoreactors and bulk systems are possible
to be revealed. Thus, nanoreactors can be exploited
to gain new fundamental understanding of a chemi-
cal system or process or to develop an analytical tool
based upon this insight(Petrosko et al., 2016). How-
ever, the lack of material with large spontaneous cur-
vature has been blocking the development of nanore-
actors.

The diamagnetic amphiphilic block-copolymers

plays more and more important role in self-assembly
of vesicle due to its highly anisotropic magnetic sus-
ceptibility. It has been used to assemble an infolded
bowl-shaped vesicle(van Rhee et al., 2014; Hickey
et al., 2011), which is called a stomatocyte, so that
the mouth of the polymeric self-assembly can be re-
versibly opened and closed by varying an external ho-
mogeneous magnetic field. Thus, the artificial mouth
functions as a magneto-valve, and the whole artificial
stomatocyte has a great potential for the application
of targeted release of drug.

The spontaneous curvature model of the equilib-
rium shapes and deformations of lipid bilayer vesi-
cles(Helfrich, 1973), which was proposed by Hel-
frich for more than four decades, has been engaged
by us to reveal the mechanism of reversible opening
and closing of mouth and give out the relation be-
tween the size of mouth and the external magnetic
field(Deng et al., 2018). In this paper, we try to pro-
pose the model of magneto-division of vesicle which
is assembled by the diamagnetic amphiphilic block-
copolymers with a highly anisotropic magnetic sus-
ceptibility. We hope this model will inspire experi-
menter to realize it and meet the needs of nanoreac-
tors.
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2 THE DEFORMATION THEORY
OF A SPHERICAL VESICLE

Here, we consider an infinitesimal deformation of
a spherical vesicle of radiusr in a spatially uni-
form magnetic field intensityH (= B/µ, whereB
is magnetic induction andµ is magnetic permeabil-
ity.) by minimizing the sum of bending energy (cur-
vature elastic energy:Fc =

1
2kc

∮
(c1 + c2 − c0)

2dA)
and the free energies contributed by osmotic pressure
(∆p

∫
dV), the tension of membrane (λ

∮
dA) and the

interaction between the magnetic field and the con-
stituent molecules (FB = − 1

2∆χtµ
∮
(H · n)2dA), that

is(Iwamoto and Ou-Yang, 2013; Ou-Yang and Hel-
frich, 1987; Chandrasekhar, 1992),

F =
κc

2

∮
(2H+ c0)

2dA+∆p
∫

dV +λ
∮

dA

−1
2

∆χtµ
∮

(H ·n)2 dA, (1)

whereκc is the bend modulus,c1 andc2 are the prin-
cipal curvatures, whileH =−(c1+c2)/2 is the mean
curvature, c0 is the spontaneous curvature,∆p ≡
pout− pin is the difference pressure of the transmem-
brane,λ is the Lagrange multiplier of the membrane
tension to ensure a constant area,t is the thickness
of membrane,n is the outward unit normal and∆χ ≡
χ‖−χ⊥, in whichχ is the diamagnetic susceptibility,
while χ‖ andχ⊥ are diamagnetic susceptibility paral-
lel and perpendicular ton respectively.

To obtain a description of the deformation of a
sphere of radiusr, we have to solve the variational
equation:

δF = δF1+ δFB = 0, (2)

whereF1 ≡ Fc+∆p
∫

dV + λ
∮

dA. The equilibrium
vesicle surface is specified by the position vector
r(u,v) whereu andv are surface parameters. We as-
sume that the radius of sphere isr0 atH = 0 and will
be slightly distorted into

r ≡ r0+ψ(u,v)n (3)

due to anyH perturbation, whereψ(u,v) is a smooth
infinitesimal function.

At first, we only consider the case ofH = 0, then,

δ(1)F1 =
κc

2

∮
[

(2H + c0)
2δ(1)(dA)

+4(2H+ c0)δ(1)HdA
]

+∆p
∫

δ(1)(dV)+λ
∮

δ(1)dA

=

∮
[

∆p−κc(2H + c0)(2H2− c0H −2K)

+2κc∇2H −2λH
]

ψ
√

gdudv

= 0,

which leads to(Ou-Yang and Helfrich, 1987):
∆p−κc(2H + c0)(2H2− c0H −2K)

+2κc∇2H −2λH = 0, (4)
where K ≡ c1c2 is a Gaussian curvature, the
Laplace-Beltrami operator∇2 is defined as∇2 ≡
(1/

√
g)∂i(gi j√g∂ j) (i, j = u,v), in which gi j ≡ ∂ir ·

∂ jr, gi j ≡ (gi j )
−1 andg≡ det(gi j ) are the coefficients

of the first fundamental form of the surface.
For a convex surface, such as the outside spher-

ical vesicle as shown in Fig.2 a, the curvatureH =
−1/r. Its radiusr0 (atH = 0) then can be determined
by(Ou-Yang and Helfrich, 1987)

∆pr3
0+2λr2

0−κcr0c0(2− c0r0) = 0. (5)
If H 6= 0 (H is along withz in a spherical coordi-

nate system ), Eq.(2) will become

δF = δ(1)∗F1+ δ(1)FB = 0
whereδ(1)∗F1 is different fromδ(1)F1 by considering
λ → λ+ δλ due toH 6= 0. Then,

δ(1)∗F1 =
∮
[κc(2δH)(2H2

0 − c0H0−2K0)

+ κc(2H0+ c0)(4HδH − c0δH −2δK)

+ 2κc(δ∇2)H0+2κc∇2
0δHλH

−2δλH0−2λδH]ψdA

=
∮ {

2
r0

δλ+∑ κc

r4
0

[

4c0r0−
2λr2

0

κc
− c2

0r2
0

− 2l(l +1)]

[

1− l(l +1)
2

]

al Y l

}

ψdA, (6)

whereH0 = −1/r0 and H = −1/r(Ou-Yang et al.,
1999).

On the other hand,

δ(1)FB = −1
2

∆χtµ

[∮
(n ·H )2δ(1)(dA)

+2
∮
(n ·H )H ·δ(1)ndA

]

= ∆χtµ
∮

[

(H ·n)2Hψ+(H ·n)H ·∇ψ
]

dA

= ∆χtµ
∮

{

H(H ·n)2+∇ · [H (H ·n)]
}

ψdA

=

∮ [

t∆χ
µ

(

B2cos2 θ
r0

− B2sin2 θ
r0

)]

ψdA

≡ −
∮
(g0Y0+g2Y2)ψdA, (7)

whereg0 = t∆χB2
√

4π/(3r0µ), g2 = 4g0/
√

5. In the
derivation of Eq.(7), we have engaged the formulas:∮

(H ·n)H ·∇ψdA =

∮
{

∇ · [ψ(H ·n)H ]

− ψ∇ · [H (H ·n)]
}

dA,∮
∇ · [ψ(H ·n)H ]dA =

∮
[

−2(H ·n)2Hψ
]

dA,
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δdA = −2HψdA andδn = −∇ψ = −gi j ri∂ jψ (ri =
∂ir)(Weatherburn, 1927; Ou-Yang et al., 1999).

In a spherical coordinate system,u = θ, v = φ,
r0 = r0(cosφsinθ,sinφsinθ,cosθ) and n = r0/r0.
Thus, the weak deformation of the radius at(θ,φ) is
r = r0+ψ(θ,φ) with

ψ(θ,φ) = ∑
l ,m

al ,mY l ,m(θ,φ)

=
∞

∑
l=0

al Y l (8)

where Yl is a spherical harmonic function.
Now, we consider the constraint of the constant

surface area of the vesicle during deformation,

δA =

∮
−2Hψr2

0 sinθdθdφ

=

∮
−2r0ψ(a0Y0+a2Y2)sinθdθdφ

= 4
√

πr0a0

= 0, (9)

which leads toa0 = 0. Combining Eqs.(6), (7) with
(9), we get:

δλ =
t∆χB2

6µ
,

a2 =

√

4π
5

− 4
3t∆χB2r3

0

2κcµ
(

2λ
κc

r2
0 + c2

0r
2
0 −4c0r0+12

) .

Then,

ψ =
∞

∑
l=0

alY l

= a2Y2

= −
4
3t∆χB2r3

0P2(cosθ)

2κcµ
(

2λ
κc

r2
0 + c2

0r2
0−4c0r0+12

) ,(10)

where P2 is a Legendre function.
The deformation equation of a spherical vesicle

determined by Eq.(2) in the case ofH 6= 0 can be
described by

rB(θ) = r0

[

1−
2t∆χ
3κcµB2r2

0P2(cosθ)
2λ
κc

r2
0 + c2

0r2
0−4c0r0+12

]

≡ r0

[

1+
qB2r2

0(3cos2 θ−1)

ξr2
0 −4c0r0+12

]

(11)

whereq≡−t∆χ/(3κcµ), ξ ≡ 2λ/κc+ c2
0.

3 RESULTS

Eq.(11) implies that the “division” of the vesicle oc-
curs most likely atθ = π/2. The magnitude of the

● : ∆p=-15 mv

★ : ∆p=15 mv

B
d,

i (
T

)

a

r 0,
i (

nm
)

i (the number of division)

b

Figure 1: a. The relation between the magnitude of the
manipulated magnetic field andith division according to
Eq.(14), where red dot indicates the situation of∆p= −15
mV, while blue star does the one of∆p= 15 mV. There is
a minimum manipulated magnetic field nearr = 2000 nm
for the situation of∆p = −15 mV. b. The radius varies
for each division according to Eq.(15).c0 = −10−3 nm−1

with r0,1 = 4×103 nm, t = 26 nm(van Rhee et al., 2014),
κc = 2.6×10−21 J(Manyuhina et al., 2007),∆χ ≈ −2.0×
10−7(van Rhee et al., 2014; Sutter and Flygare, 1969), and
µwater≈ 1.26×10−6 N·A−2.

manipulated magnetic field has to satisfy:

B2
d =

1
q

(

ξ− 4c0

r0
+

12

r2
0

)

. (12)

Combining with Eq.(5), we get the magnitude of the
external magnetic field for the first “division”

B2
d,1 =

1
q

[

12

r2
0,1

− 2c0

r0,1
− ∆p

κc
r0,1

]

, (13)

so that for theith passive division

B2
d,i =

1
q

[

12

r2
0,i

− 2c0

r0,i
− ∆p

κc
r0,i

]

, (14)

r0,i =
r0,1

2(i−1)/2
, (15)
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because of the constraint of constant surface area.
The results of Eqs.(14) and (15) have been indicated
in Fig.1 a and b respectively. For the situation of
∆p = −15 mV, Bd,i rises no longer monotonically
with decreasing of radius of the vesicle. It may be
related with the combination of parameters such as
c0, r0, ∆p, κc, t, ∆χ andλ. Thus, there is a optimal
combination of magnetic manipulated division near
r0 ≈ 2000 nm, at whichBd,i achieves minimum value.

The deformation of vesical due to magnetic ma-
nipulation beforeith division can be described as:

rB,i(θ) = r0,i

[

1+

(

B
Bd,i

)2

(3cos2 θ−1)

]

. (16)

Fig.2 shows three different states during deformation
due to the varying of the manipulated magnetic field.
a andd (blue line) correspond the state ofB= 0, then,
the vesicle is spherical.c corresponds the critical state
of division atBdi , the vesicle displays a pair of pearls
which stick each other.b is the middle state between
B = 0 andB = Bdi, and looks like a dumb-bell. The
sum of the surface area in the progress of each divi-
sion is constant, however, the volume of solution that
is contained by the vesicles will lost4

3πr3
i (1−1/

√
2)

for each division.

4 CONCLUSIONS AND
DISCUSSION

Nanoreactor has a great potential for the application
of medical, such as targeted transporting of drug via
blood capillary, and digital PCR etc.. However, the
manufacture of nanovesicles with uniform volume is
still a challenge due to the lack of material with large
spontaneous curvature. Our model has revealed the
possibility that the vesicle, which is self-assembled by
the diamagnetic amphiphilic block-copolymers, can
be manipulated into division by external magnetic
field. The passive division can successively take place
for 10 times in the situation of∆p = −15 mV. The
vesicle with radius of 4000 nm (about 2.68×10−7 µL
solution contained) will be divided into 512 vesicles
with radius of 177 nm (about 2.31× 10−11 µL so-
lution contained). Because of the constraint of con-
stant surface area, the total volume of solution that
is contained by the original vesicle will lost about
2.56×10−7 µL, that is, only 1.2×10−8 µL solution
(about 4.5%) has been retained by 512 vesicles that
each contains about 2.31×107 nm3. Thus, if the wa-
ter channels are embedded in the membrane of vesi-
cle, this method can not only concentrate the solu-
tion, but also produce a large number of nanoreactors,

i i

Bd,i0.5Bd,i

i+1

i+1

B=0 B=0

a b c d

Figure 2: Schematic division of vesicle. The polymer-
some is assembled from diamagnetic amphiphilic block-
copolymers with a highly anisotropic magnetic susceptibil-
ity (χ < 0). Its deformation can be manipulated by vary-
ing a external homogeneous magnetic field (B) according
to Eq.(16). a: A spherical vesicle with a radius ofr i
at ith division. b: The middle state of the deformation
(0< B < Bd,i). c: The passive division takes place atBd,i
(see fig.1 a). d: Two spherical vesicles with a radius of
r i+1 = r i/

√
2 have been produced. The sum of the surface

area is constant through the whole progress. However, the
volume of solution that is contained by the vesicles will lost
4
3πr3

i (1−1/
√

2) for each division.

which is beneficial to yield an ensemble conclusion in
a short times. This nanoreactor can be used to mimic
the reaction of some organelles in vitro.

We must point that Eq.(11) is precise just for the
situation of small deformation such asB < 0.5Bd,i,
so that the quantitatively prediction of Eq.(14) is no
longer precise. However, the possibility of passive
division does exist as long as the manipulated mag-
netic field is high enough. Here, we have just dis-
cussed the case of the constraint of constant surface
area. Another case of the constraint of constant vol-
ume should be worth trying, in which experimenter
can easily realize it by enough supply of the diamag-
netic amphiphilic block-copolymers in the progress of
division. The latter case is also important for the re-
action statistics because the original solution can be
in equal volume divided into hundreds nanoreactors.
We hope experimenters will try them in future exper-
iments.
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