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Abstract: The definition of standards is an efficient way to ensure a consensus on concepts and usages for a given 

domain. Unified modeling language (UML) and System modeling language (SysML) are standards: UML 

provides a large set of concepts enabling the specification of software-oriented systems meanwhile SysML 

specializes UML for system engineering. Both languages have an accurate semantics, this is especially true 

for UML which has a subset of objects (classes, composite structures, activities and state machines) that can 

be executed. Executable UML is driven by the following standards: Foundational subset for executable UML 

(fUML), precise semantics of UML composite structure (PSCS) and precise semantics of UML state machines 

(PSSM). From the UML based standard contributor standpoint, there is a great temptation to conclude that 

system architects can use these standards easily to model complex systems, and run simulations. 

Unfortunately, in practice, this assumption hardly ever holds. Indeed, these standards are built to be generic 

enough to apply for the largest possible set of systems. This implies that their scopes are wider than what is 

required by a user to work in its domain. This problem is solved by using and specializing (if required) a 

subset of these generic languages to match the needs. This paper shows how to reuse the power of UML, 

SysML, fUML, PSCS and PSSM efficiently, with a customized version of Papyrus dedicated to system 

architecture design.

1 INTRODUCTION 

SysML (OMG, 2017a) provides many concepts that 

can be reused to specify complex systems. To get the 

benefits of this language (e.g., SysML), our company 

has defined its profile on top of it. This profile is 

implemented in a specialized version of Papyrus as a 

pilot, to support the model-based systems engineering 

(MBSE) (Cameron and Adsit, 2018) methodology 

adopted by the group SAFRAN. Then it’s easier for a 

system architect to use the profile and the methods 

implemented in the tool, to model the architecture of 

a system. However, while the language is well suited 

to specify complex systems, it doesn’t provide the 

capability to use models defined with this language 

for simulation. This problem is mainly related to the 

fact that SysML and its specialization have no formal 

definition for their semantics. This assertion is true 

for both SysML and its specialization at SAFRAN 

since their semantics are defined in natural language. 

Nevertheless, now, it became essential for SAFRAN 

to validate the system designed based on its modeling 

framework using simulation. To reach that goal, 

models formalizing the system to be simulated must 

be executable ones. Making models executables can 

be performed in two ways: by formalizing the 

execution semantics of the language used to specify 

the model or by mapping the model to a language that 

can be executed. At SAFRAN, the choice is to map 

the models of a system into an equivalent model 

conforming to an executable UML subset. The 

rationale behind this choice is the following. First, 

SAFRAN profile is based on the UML (OMG, 2017b) 

and SysML (OMG, 2017a) standards, hence, if 

semantics are defined for the models then they shall 

be captured based on the standard semantics defined 

for UML. Second, SAFRAN strongly advocates for 

keeping the system specification models separated 

from the model used to simulate. Indeed, at 

SAFRAN, the system architect and the simulation 

engineer are two contributors involved, to design the 

system models. But only the simulation engineers 

design the simulation model. 
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The contribution reported in this paper is the 

definition of the transformation rules to map a SysML 

model to an executable model compliant with the 

executable subset of UML. Beyond the 

transformational aspects that remain classical, this 

article shows how standards from the OMG, 

specifying the semantics of subsets of UML could be 

used to execute models. 

The paper is organized as follows: 

Section 2 presents the MBSE architecture framework 

used in Safran, with a focus on the functional 

architecture design. Section 3 presents an overview of 

the intended semantics for functional models 

specified within the architecture framework. Lastly, 

section 4, presents how to generate a model used to 

simulate from a functional specification. We used the 

model of a toy quadcopter to illustrate our works. 

2 OVERVIEWS OF THE MBSE 

ARCHITECTURE 

FRAMEWORK 

The MBSE system architecture framework used in 

Safran (Theobald et al., 2018) is made of  three main 

views: 

 Operational 

 Functional 

 Physical 

A system architecture is designed and organized 

according to these views.  

The operational view defines the system as a black 

box. Its main purpose is to capture how the system 

interacts with its environment, collect and consolidate 

the requirements specified by the stakeholders. 

The physical view describes how the system 

functions are implemented. It shows the interactions 

between the system components, the subset of 

components that are active according to the system 

functional mode and the physical scenarios. 

2.1 The Functional View 

The functional point of view describes what the 

system should do to provide the services required by 

the stakeholders. Here the focus is on the 

transformation process of functional flows inside the 

system. These flows can be from many types: data, 

mechanical, fluids, thermal, electrical, or 

electromagnetic. During this transformation process, 

the functional mode of the system is changing 

depending on events; the system or its environment 

generate these events. For functional mode, a set of 

functions is enabled.  

Four types of diagrams describe the functional 

aspects: 

 The Functional mode diagram displays 

the system functional state. 

 The Functional decomposition diagram 

represents the system’s functional 

breakdown structure. Here, the highest-

level functions are more abstract than the 

lower-level functions.  

 The Functional flow diagram shows how 

the flows are transformed within the 

system.  

 The Functional scenario diagram 

describes the temporal relationships 

between the executions of the functions. 

Figure 1 shows these diagrams. 

 

Figure 1: The set of diagrams used to model the functional 

view. 

In this document the focus is on simulations from 

the functional architecture view. Section 3 presents 

the supported semantics. 

3 THE FUNCTIONAL 

INTERACTIONS SEMANTICS 

The functional interaction diagram shows the 

relationships between the function’s inputs and 

outputs. It describes how the flows are consumed or 

transformed within the system. However, it doesn’t 

show the sequence of execution: parallel, alternate 

path, sequence. 

Functions are run in the following way: 

 A function can start its execution when flows 

are ready on a subset of its inputs; data don’t 

need to be ready for all inputs at the same time. 
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Note: In section 4 we consider a pure dataflow 

case where all inputs are required to start the 

execution. 

 The order in which the flows are ready for the 

inputs of a function is not relevant. 

 

Let’s consider Figure 2, and Figure 3. 

 

Figure 2: Abstract of functional flow diagram from the 

quadcopter model. 

 

Figure 3: The functional mode diagram of the quadcopter. 

For each mode in Figure 3, a subset of functions from 

Figure 2 is enabled. 

For example, when the system is in Charge 

mode, the function Program the firmware is 

enabled, and can be executed. The other functions are 

disabled, except the functions that manage the energy 

of the drone. The reason is that functions Store 

electrical energy and Distribute 

electrical energy are transverse, and must be 

active, as far as the system is powered on. 

Table 1 shows the allocation of the functions to the 

system functional modes. 

Modeling an executable behavior with UML, 

requires a deep knowledge of this language.  

The proposed tooling avoids the simulation engineer 

the need of such knowledge. The functions designed 

by the system architect are translated automatically 

into executable functions. This translation is 

described in section 4. 

Table 1: Functions allocated to functional model. 
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PowerOn 

Self Tests 
    X         X   

Flight 

planning 
  X X     X X X   

Cruise X X X   X X   X X 

Charge     X X       X   

Stand by     X         X   

Takeoff/ 

Landing 
X X X   X X   X X 

Emergency   X X   X     X   

4 GENERATION OF THE 

EXECUTABLE MODEL FOR 

SIMULATION 

4.1 Rationale 

fUML (OMG, 2017c), PSCS (OMG, 2018), and 

PSSM (OMG, 2017d) identify a subset of UML 

defined with a precise semantics. Models built using 

this subset are by construction executable. While 

these standards offer the means to specify simulation 

models, they require a high skill in UML to be used 

efficiently. One of the challenges is to abstract some 

aspect of the language from the domain simulation 

engineer (i.e., a domain expert responsible for 

specifying/completing the simulation model). Indeed, 

it’s useless for a simulation engineer to know that 

sending an integer through a port requires to: (1) read 

the execution context, (2) encapsulate the integer into 

signals (3) and finally send out the parameterized 

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

250



signal through a port. These different actions are 

UML internal/technical mechanism. To be efficient, 

a simulation engineer should omit this from its 

activities.  

Based on this analysis, we propose an approach to 

generate the full skeleton of an executable UML 

model from the definition of functions at the system 

level. After the transformation process, the resulting 

model is completed to get the expected behavior.  

Let’s call the functions designed by a system 

architect, the abstract functional specification. 

Sections 4.2 and 4.3. describe this approach with an 

example. Section 4.5 presents how relationships are 

performed between the abstract function definition 

and the executable model. Section 4.6 introduces the 

implementation and the testing of the model 

transformation. 

4.2 Simulation Model Structure 

4.2.1 Packages 

The model produced from the abstract functional 

specification is organized into packages:  

 Functions: this package contains the 

executable version of the functions designed by 

the system architect. 

 Communications: this package contains 

signals used to communicate between 

functions. It also contains interfaces that 

transformed functions require or provide to 

send or receive signals. 

 Derivations: this package contains the links 

used to make the relationships between the 

abstract functional specification and the 

executable model. The sterotype for these links 

is Derive. 

 Dependencies: this package contains a set of 

Dependency links. They represent the 

relationship between a port, and a property 

within the model generated. 

 

Figure 4: The organization of the model generated. 

4.2.2 Functions 

An abstract functional specification is an UML 

composite structure. The graph formalized within this 

structure is a network of communicating functions 

(see Figure 2). The first step of the transformation is 

to replicate this network in the Communications 

package. While the result looks very close to the 

original model, the transformation makes some 

changes to make the model executable. 

Let’s consider the mapping of function 

CaptureLandscapeVideo in Figure 5. The class 

ExecutableCaptureLandscapeVideo in 

Figure 6 is the translated version of 

CapturelandscapeVideo.  

 

Figure 5: Function Capture landscape video. 

 

Figure 6: Executable version of function Capture landscape 

video. 

The differences between the original and the 

transformed classes are 

 Class status: the executable class has the UML 

active flag set. This implies that when 

instantiated, the class can run on its thread of 

execution and to communicate asynchronously 

with other instances. 

 Ports: the executable class has the same 

number of ports than the original one. 

However, these ports are typed with interfaces.   

For example, the interface I(ambient 

light) provides the capability to receive the 

signal S[ambient light] (see Figure 6). 

This interface types the port port(env) 
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which makes any instance of 
ExecutableCaptureLandscapeVideo 

able to receive signals encapsulating the data 

ambient light. The generation of these 

elements (signals and interfaces) is rationalized 

by the need to move from a model not 

compliant with PSCS to a conformable one. 

The compliance to PSCS ensures the functional 

specification to become executable. 

 Properties: the executable class has as many 

properties as the number of input ports owned 

by the class it is mapped from. This modeling 

choice is rationalized by the need for the 

executable class instances to store values 

embedded into signals received through its 

input ports. Indeed, these signals may not be 

received simultaneously and a function 

instance is required to wait for the reception of 

all initial inputs before computing its outputs. 

Based on this semantics, 
ExecutableCapturelandscapeVideo 

integrates two properties: env and video 

control (see Figure 6) which respectively 

plays the role of a buffer for values received 

through port(env) and port(video 

control). 

4.3 Simulation Model Behaviour 

4.3.1 Function Dataflow Semantics 

In the abstract functional specification (i.e., the model 

from which the executable functional specification is 

generated), there are no behaviors (i.e., functions only 

have a structural definition). However, in the 

executable functional specification, functions are 

expected to be executed according to a dataflow 

semantics (i.e., all inputs need to be received before 

computing outputs). This model of computations is 

not the one supported by executable UML for active 

classes. Indeed, fUML states that when a signal is 

received by an active class then, it is placed into the 

event pool. If when dispatched the signal is accepted 

by the classifier behavior then it triggers a run-to-

completion step. Along this step, a signal might be 

sent from the active class to its environment. In other 

words, fUML and PSCS do not put any constraints 

regarding the reception inputs and the productions of 

outputs. 

We introduced a constraint: all inputs must be 

received before computing outputs. Then the 

classifier behaviors attached to the various functions 

defined in our model needs a form allowing the 

expected semantics to be respected, while keeping the 

model compliant with executable UML. There is no 

added value to get the simulation engineer 

implementing this aspect. This, constraint is managed 

during the transformation:  a classifier behavior 

forces all inputs to be received, before computing 

outputs.  Figure 6 shows such classifier behavior for 

ExecutableCaptureLandscapeVideo. 

 

The rules to generate the classifier behavior are the 

following: 

 If the mapped class has input ports then the 

init state is a composite and contains as 

many regions as the number of input ports. In 

this situation, each region specifies the waiting 

of an input on a specific port. For instance, in 

the init state left region, a waiting for the 

signal S[ambient light] is specified. 

Also, an activity is added on the transition 

leaving state Init[port[env]]. The role 

of this activity is to enable the update of the 

buffer env with the value embedded in the 

signal triggering the transition. Note: if the 

mapped class has no input ports then the init 

state is simple rather than composite. 

 The state machine init state always has a 

transition to a compute state. If the function 

does not need to wait for data then this 

transition has a trigger for a Start signal. It is 

used to force all functions with no data 

dependencies to wait until the other functions 

finish their initial run-to-completion step. 

Conversely (i.e., for functions with data 

dependencies), it remains a completion 

transition. The compute state is always added 

to the generated state machine. It has an entry 

behavior responsible for calling the compute 

operation that is generated for the executable 

class (see Figure 7). 

 Notice that the compute state has as many 

self-transitions as the number of input ports 

specified in the mapped class. This enables the 

classifier behavior to trigger the execution of 

the compute operation if one of the input 

changes. 

The executable class state machine in Figure 7 is 

intended to run as follows. The initial run-to-

completion state brings the state machine into a wait 

point where initial inputs for ports env and video 

control are expected. When both inputs are 

received, then completion transition between init 

and compute can be traversed. When entering 

compute, the operation compute is called.  

This implies the execution of the business logic of the 
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Figure 7: ExecutableCaptureLandscapeVideo classifier behavior. 

 

Figure 8: Implementation of the activity compute. 

function according to the received data. At this point, 

the state machine enters a new wait point. It will be 

allowed to exit, only if the one of the expected input 

changes. 

 

 

 

 

4.3.2 Function Business Logic 

All compute operations generated for executable 

classes are implemented as activities. The simulation 

engineer uses these activities to specify the business 

logic of the simulated functions. In each activity, the 

behavior model is isolated in a structured activity 

node (see section 16.14.55 in (fUML, 2018)). This 

structured activity node may have input and output 

pins. Input pins provide access to input data received 

by the function while the output pins enable to 

propagate values produced by the function to its 

environment. Parts of the activity dedicated to read 

the inputs and compute the outputs are generated 

automatically. Subsequently, the simulation engineer 

updates only the structured activity node. Figure 8 

shows the activity implementing the compute 

operation after the transformation of the function 

Capture landscape video. 

4.4 Simulation Instantiation 

The initialization of the simulation model is 

performed by the generation of an activity called 

Run. This activity is the entry point of the simulation 

model. It instantiates the function network, and 

triggers the execution of all functions that don’t need 

to wait for data. This triggering relies on the sending 

of a Start signal to these functions. In a situation 

where the model has bidirectional dependencies 

between functions, the simulation engineer should 

define how to solve the dependencies and put default 

data on functions’ inputs identified as weak 

dependencies. 
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4.5 Traceability  

The transformed model maintains a strong 

relationship with the abstract functional specification 

designed by the system architect. The traceability 

links are formalized as UML abstraction (see 

section 7.8.1 in (OMG, 2017b) relationships with the 

Derive stereotype applied. These relationships are 

used during the simulation by the animation engine, 

and the debugger to analyze the data flowing between 

functions at the abstract functional specification level 

(i.e., the one the system architect is working on). 

By this way, the system architect can analyze his 

model, as if it is an executable one. But behind the 

scene a transformed model is running. 

4.6 Implementation 

The work described above is fully implemented with 

the operational query view transformation language 

(QVTo). It is included in the Papyrus customization 

developed by Safran. With that language, the 

implementation was easy, because of the tight 

integration with the Papyrus application 

programming interfaces (API). No performance 

issues were noticed during our tests. 

4.7 Related Works 

There were many proposals to produce simulation 

models from SysML models. Works achieved in (G. 

Kapos et al., 2014) and (Bocciarelli et al., 2012) 

highlight some of them. The first proposal is to 

transform SysML models to DEVS models while the 

second proposal is to transform SysML models to 

HLA models. While the target languages are 

different, the underlying objective is the same: make 

sure that output models conform to language with 

precise semantics. This ensures that these models can 

be used in a simulation since they can be 

unambiguously interpreted. The approach presented 

in this paper follows the same objective. However, it 

differs from existing approaches in two aspects. First, 

it keeps the simulation model in the same 

environment as the one it is derived from. This has 

the advantage to let the simulation engineer to work 

in the same environment as the system architect. In 

addition, it maintains a strong relationship between 

both models. Second, the simulation model is 

compliant with the executable UML subset identified 

in fUML, PSCS and PSSM. Debugging can be 

performed at the transformed model level or from the 

original model. 

5 CONCLUSIONS 

The design of executable UML models requires a 

deep knowledge of UML and the fUML standard. 

This can be a problem, because unlike software 

engineers, systems architects for example are not 

familiar with these languages. Then executable UML 

languages is not widely used in the industry to model 

systems architecture. 

We explored a way to reduce this barrier by 

generating executable UML model from a higher 

abstraction model like a system architecture model. 

Then the system architect is not disturbed by the 

details and the rigor of fUML. He stays focused on 

his work, and use a DSML to model the system at the 

right level of abstraction. On the other side, the 

simulation engineer requires a formal language to 

design an executable model. Then the translation of 

the architecture model to an executable UML model 

satisfy his requirements. 

With this method, we keep the consistency between 

the system architect activity and the simulation 

engineer activity. Like that, the simulation engineer 

doesn’t need to recapture the system architecture 

mode model during the handover. 

In our work, we used only the graphical notation of 

UML to design the executable model. We can 

improve the process by using scripting languages 

with the UML notations. For example, it is faster to 

define an addition or a subtraction with Python or 

Javascript than using the UML notation.  

So, the next step is dedicated experiments the support 

of scripting language, but also to extend the 

translation to other executable languages like 

Simulink™ or Modelica®. In that case the scope shall 

include the physical level. The objective here is to 

keep the interfaces defined at the architecture level 

consistent between the modeling languages, all along 

the MBSE process using a model interface 

coordination (Bailey et al., 2018). 
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