
Using fUML Combined with a DSML: An Implementation using

Papyrus UML/SysML Modeler

Maurice Theobald1 and Jérémie Tatibouet2
1SAFRAN/SAFRAN Tech, Magny-Les-Hameaux, France

2CEA, LIST, Laboratory of Model Driven Engineering for Embedded Systems, P.C. 174, Gif-sur-Yvette, 91191, France

Keywords: fUML, UML, SysML, Systems Architecture, DSML, Papyrus.

Abstract: The definition of standards is an efficient way to ensure a consensus on concepts and usages for a given

domain. Unified modeling language (UML) and System modeling language (SysML) are standards: UML

provides a large set of concepts enabling the specification of software-oriented systems meanwhile SysML

specializes UML for system engineering. Both languages have an accurate semantics, this is especially true

for UML which has a subset of objects (classes, composite structures, activities and state machines) that can

be executed. Executable UML is driven by the following standards: Foundational subset for executable UML

(fUML), precise semantics of UML composite structure (PSCS) and precise semantics of UML state machines

(PSSM). From the UML based standard contributor standpoint, there is a great temptation to conclude that

system architects can use these standards easily to model complex systems, and run simulations.

Unfortunately, in practice, this assumption hardly ever holds. Indeed, these standards are built to be generic

enough to apply for the largest possible set of systems. This implies that their scopes are wider than what is

required by a user to work in its domain. This problem is solved by using and specializing (if required) a

subset of these generic languages to match the needs. This paper shows how to reuse the power of UML,

SysML, fUML, PSCS and PSSM efficiently, with a customized version of Papyrus dedicated to system

architecture design.

1 INTRODUCTION

SysML (OMG, 2017a) provides many concepts that

can be reused to specify complex systems. To get the

benefits of this language (e.g., SysML), our company

has defined its profile on top of it. This profile is

implemented in a specialized version of Papyrus as a

pilot, to support the model-based systems engineering

(MBSE) (Cameron and Adsit, 2018) methodology

adopted by the group SAFRAN. Then it’s easier for a

system architect to use the profile and the methods

implemented in the tool, to model the architecture of

a system. However, while the language is well suited

to specify complex systems, it doesn’t provide the

capability to use models defined with this language

for simulation. This problem is mainly related to the

fact that SysML and its specialization have no formal

definition for their semantics. This assertion is true

for both SysML and its specialization at SAFRAN

since their semantics are defined in natural language.

Nevertheless, now, it became essential for SAFRAN

to validate the system designed based on its modeling

framework using simulation. To reach that goal,

models formalizing the system to be simulated must

be executable ones. Making models executables can

be performed in two ways: by formalizing the

execution semantics of the language used to specify

the model or by mapping the model to a language that

can be executed. At SAFRAN, the choice is to map

the models of a system into an equivalent model

conforming to an executable UML subset. The

rationale behind this choice is the following. First,

SAFRAN profile is based on the UML (OMG, 2017b)

and SysML (OMG, 2017a) standards, hence, if

semantics are defined for the models then they shall

be captured based on the standard semantics defined

for UML. Second, SAFRAN strongly advocates for

keeping the system specification models separated

from the model used to simulate. Indeed, at

SAFRAN, the system architect and the simulation

engineer are two contributors involved, to design the

system models. But only the simulation engineers

design the simulation model.

248
Theobald, M. and Tatibouet, J.
Using fUML Combined with a DSML: An Implementation using Papyrus UML/SysML Modeler.
DOI: 10.5220/0007310702480255
In Proceedings of the 7th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2019), pages 248-255
ISBN: 978-989-758-358-2
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

The contribution reported in this paper is the

definition of the transformation rules to map a SysML

model to an executable model compliant with the

executable subset of UML. Beyond the

transformational aspects that remain classical, this

article shows how standards from the OMG,

specifying the semantics of subsets of UML could be

used to execute models.

The paper is organized as follows:

Section 2 presents the MBSE architecture framework

used in Safran, with a focus on the functional

architecture design. Section 3 presents an overview of

the intended semantics for functional models

specified within the architecture framework. Lastly,

section 4, presents how to generate a model used to

simulate from a functional specification. We used the

model of a toy quadcopter to illustrate our works.

2 OVERVIEWS OF THE MBSE

ARCHITECTURE

FRAMEWORK

The MBSE system architecture framework used in

Safran (Theobald et al., 2018) is made of three main

views:

 Operational

 Functional

 Physical

A system architecture is designed and organized

according to these views.

The operational view defines the system as a black

box. Its main purpose is to capture how the system

interacts with its environment, collect and consolidate

the requirements specified by the stakeholders.

The physical view describes how the system

functions are implemented. It shows the interactions

between the system components, the subset of

components that are active according to the system

functional mode and the physical scenarios.

2.1 The Functional View

The functional point of view describes what the

system should do to provide the services required by

the stakeholders. Here the focus is on the

transformation process of functional flows inside the

system. These flows can be from many types: data,

mechanical, fluids, thermal, electrical, or

electromagnetic. During this transformation process,

the functional mode of the system is changing

depending on events; the system or its environment

generate these events. For functional mode, a set of

functions is enabled.

Four types of diagrams describe the functional

aspects:

 The Functional mode diagram displays

the system functional state.

 The Functional decomposition diagram

represents the system’s functional

breakdown structure. Here, the highest-

level functions are more abstract than the

lower-level functions.

 The Functional flow diagram shows how

the flows are transformed within the

system.

 The Functional scenario diagram

describes the temporal relationships

between the executions of the functions.

Figure 1 shows these diagrams.

Figure 1: The set of diagrams used to model the functional

view.

In this document the focus is on simulations from

the functional architecture view. Section 3 presents

the supported semantics.

3 THE FUNCTIONAL

INTERACTIONS SEMANTICS

The functional interaction diagram shows the

relationships between the function’s inputs and

outputs. It describes how the flows are consumed or

transformed within the system. However, it doesn’t

show the sequence of execution: parallel, alternate

path, sequence.

Functions are run in the following way:

 A function can start its execution when flows

are ready on a subset of its inputs; data don’t

need to be ready for all inputs at the same time.

Using fUML Combined with a DSML: An Implementation using Papyrus UML/SysML Modeler

249

Note: In section 4 we consider a pure dataflow

case where all inputs are required to start the

execution.

 The order in which the flows are ready for the

inputs of a function is not relevant.

Let’s consider Figure 2, and Figure 3.

Figure 2: Abstract of functional flow diagram from the

quadcopter model.

Figure 3: The functional mode diagram of the quadcopter.

For each mode in Figure 3, a subset of functions from

Figure 2 is enabled.

For example, when the system is in Charge

mode, the function Program the firmware is

enabled, and can be executed. The other functions are

disabled, except the functions that manage the energy

of the drone. The reason is that functions Store

electrical energy and Distribute

electrical energy are transverse, and must be

active, as far as the system is powered on.

Table 1 shows the allocation of the functions to the

system functional modes.

Modeling an executable behavior with UML,

requires a deep knowledge of this language.

The proposed tooling avoids the simulation engineer

the need of such knowledge. The functions designed

by the system architect are translated automatically

into executable functions. This translation is

described in section 4.

Table 1: Functions allocated to functional model.

N
av

ig
at

e
in

 s
p

ac
e

C
o

m
m

u
n

ic
at

e
w

it
h

 t
h

e
g
ro

u
n

d
 s

ta
ti

o
n

S
to

re
 e

le
ct

ri
ca

l
en

er
g

y

P
ro

g
ra

m
 t

h
e

fi
rm

w
ar

e

m
o

v
e

in
 s

p
ac

e

m
an

ag
e

th
e

fl
ig

h
t

p
la

n

S
to

re
 f

li
g

h
t

p
ar

am
et

er
s

D
is

tr
ib

u
te

 e
le

ct
ri

ca
l

en
er

g
y

C
ap

tu
re

 l
an

d
sc

ap
e

v
id

eo

PowerOn

Self Tests
 X X

Flight

planning
 X X X X X

Cruise X X X X X X X

Charge X X X

Stand by X X

Takeoff/

Landing
X X X X X X X

Emergency X X X X

4 GENERATION OF THE

EXECUTABLE MODEL FOR

SIMULATION

4.1 Rationale

fUML (OMG, 2017c), PSCS (OMG, 2018), and

PSSM (OMG, 2017d) identify a subset of UML

defined with a precise semantics. Models built using

this subset are by construction executable. While

these standards offer the means to specify simulation

models, they require a high skill in UML to be used

efficiently. One of the challenges is to abstract some

aspect of the language from the domain simulation

engineer (i.e., a domain expert responsible for

specifying/completing the simulation model). Indeed,

it’s useless for a simulation engineer to know that

sending an integer through a port requires to: (1) read

the execution context, (2) encapsulate the integer into

signals (3) and finally send out the parameterized

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

250

signal through a port. These different actions are

UML internal/technical mechanism. To be efficient,

a simulation engineer should omit this from its

activities.

Based on this analysis, we propose an approach to

generate the full skeleton of an executable UML

model from the definition of functions at the system

level. After the transformation process, the resulting

model is completed to get the expected behavior.

Let’s call the functions designed by a system

architect, the abstract functional specification.

Sections 4.2 and 4.3. describe this approach with an

example. Section 4.5 presents how relationships are

performed between the abstract function definition

and the executable model. Section 4.6 introduces the

implementation and the testing of the model

transformation.

4.2 Simulation Model Structure

4.2.1 Packages

The model produced from the abstract functional

specification is organized into packages:

 Functions: this package contains the

executable version of the functions designed by

the system architect.

 Communications: this package contains

signals used to communicate between

functions. It also contains interfaces that

transformed functions require or provide to

send or receive signals.

 Derivations: this package contains the links

used to make the relationships between the

abstract functional specification and the

executable model. The sterotype for these links

is Derive.

 Dependencies: this package contains a set of

Dependency links. They represent the

relationship between a port, and a property

within the model generated.

Figure 4: The organization of the model generated.

4.2.2 Functions

An abstract functional specification is an UML

composite structure. The graph formalized within this

structure is a network of communicating functions

(see Figure 2). The first step of the transformation is

to replicate this network in the Communications

package. While the result looks very close to the

original model, the transformation makes some

changes to make the model executable.

Let’s consider the mapping of function

CaptureLandscapeVideo in Figure 5. The class

ExecutableCaptureLandscapeVideo in

Figure 6 is the translated version of

CapturelandscapeVideo.

Figure 5: Function Capture landscape video.

Figure 6: Executable version of function Capture landscape

video.

The differences between the original and the

transformed classes are

 Class status: the executable class has the UML

active flag set. This implies that when

instantiated, the class can run on its thread of

execution and to communicate asynchronously

with other instances.

 Ports: the executable class has the same

number of ports than the original one.

However, these ports are typed with interfaces.

For example, the interface I(ambient

light) provides the capability to receive the

signal S[ambient light] (see Figure 6).

This interface types the port port(env)

Using fUML Combined with a DSML: An Implementation using Papyrus UML/SysML Modeler

251

which makes any instance of
ExecutableCaptureLandscapeVideo

able to receive signals encapsulating the data

ambient light. The generation of these

elements (signals and interfaces) is rationalized

by the need to move from a model not

compliant with PSCS to a conformable one.

The compliance to PSCS ensures the functional

specification to become executable.

 Properties: the executable class has as many

properties as the number of input ports owned

by the class it is mapped from. This modeling

choice is rationalized by the need for the

executable class instances to store values

embedded into signals received through its

input ports. Indeed, these signals may not be

received simultaneously and a function

instance is required to wait for the reception of

all initial inputs before computing its outputs.

Based on this semantics,
ExecutableCapturelandscapeVideo

integrates two properties: env and video

control (see Figure 6) which respectively

plays the role of a buffer for values received

through port(env) and port(video

control).

4.3 Simulation Model Behaviour

4.3.1 Function Dataflow Semantics

In the abstract functional specification (i.e., the model

from which the executable functional specification is

generated), there are no behaviors (i.e., functions only

have a structural definition). However, in the

executable functional specification, functions are

expected to be executed according to a dataflow

semantics (i.e., all inputs need to be received before

computing outputs). This model of computations is

not the one supported by executable UML for active

classes. Indeed, fUML states that when a signal is

received by an active class then, it is placed into the

event pool. If when dispatched the signal is accepted

by the classifier behavior then it triggers a run-to-

completion step. Along this step, a signal might be

sent from the active class to its environment. In other

words, fUML and PSCS do not put any constraints

regarding the reception inputs and the productions of

outputs.

We introduced a constraint: all inputs must be

received before computing outputs. Then the

classifier behaviors attached to the various functions

defined in our model needs a form allowing the

expected semantics to be respected, while keeping the

model compliant with executable UML. There is no

added value to get the simulation engineer

implementing this aspect. This, constraint is managed

during the transformation: a classifier behavior

forces all inputs to be received, before computing

outputs. Figure 6 shows such classifier behavior for

ExecutableCaptureLandscapeVideo.

The rules to generate the classifier behavior are the

following:

 If the mapped class has input ports then the

init state is a composite and contains as

many regions as the number of input ports. In

this situation, each region specifies the waiting

of an input on a specific port. For instance, in

the init state left region, a waiting for the

signal S[ambient light] is specified.

Also, an activity is added on the transition

leaving state Init[port[env]]. The role

of this activity is to enable the update of the

buffer env with the value embedded in the

signal triggering the transition. Note: if the

mapped class has no input ports then the init

state is simple rather than composite.

 The state machine init state always has a

transition to a compute state. If the function

does not need to wait for data then this

transition has a trigger for a Start signal. It is

used to force all functions with no data

dependencies to wait until the other functions

finish their initial run-to-completion step.

Conversely (i.e., for functions with data

dependencies), it remains a completion

transition. The compute state is always added

to the generated state machine. It has an entry

behavior responsible for calling the compute

operation that is generated for the executable

class (see Figure 7).

 Notice that the compute state has as many

self-transitions as the number of input ports

specified in the mapped class. This enables the

classifier behavior to trigger the execution of

the compute operation if one of the input

changes.

The executable class state machine in Figure 7 is

intended to run as follows. The initial run-to-

completion state brings the state machine into a wait

point where initial inputs for ports env and video

control are expected. When both inputs are

received, then completion transition between init

and compute can be traversed. When entering

compute, the operation compute is called.

This implies the execution of the business logic of the

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

252

Figure 7: ExecutableCaptureLandscapeVideo classifier behavior.

Figure 8: Implementation of the activity compute.

function according to the received data. At this point,

the state machine enters a new wait point. It will be

allowed to exit, only if the one of the expected input

changes.

4.3.2 Function Business Logic

All compute operations generated for executable

classes are implemented as activities. The simulation

engineer uses these activities to specify the business

logic of the simulated functions. In each activity, the

behavior model is isolated in a structured activity

node (see section 16.14.55 in (fUML, 2018)). This

structured activity node may have input and output

pins. Input pins provide access to input data received

by the function while the output pins enable to

propagate values produced by the function to its

environment. Parts of the activity dedicated to read

the inputs and compute the outputs are generated

automatically. Subsequently, the simulation engineer

updates only the structured activity node. Figure 8

shows the activity implementing the compute

operation after the transformation of the function

Capture landscape video.

4.4 Simulation Instantiation

The initialization of the simulation model is

performed by the generation of an activity called

Run. This activity is the entry point of the simulation

model. It instantiates the function network, and

triggers the execution of all functions that don’t need

to wait for data. This triggering relies on the sending

of a Start signal to these functions. In a situation

where the model has bidirectional dependencies

between functions, the simulation engineer should

define how to solve the dependencies and put default

data on functions’ inputs identified as weak

dependencies.

Using fUML Combined with a DSML: An Implementation using Papyrus UML/SysML Modeler

253

4.5 Traceability

The transformed model maintains a strong

relationship with the abstract functional specification

designed by the system architect. The traceability

links are formalized as UML abstraction (see

section 7.8.1 in (OMG, 2017b) relationships with the

Derive stereotype applied. These relationships are

used during the simulation by the animation engine,

and the debugger to analyze the data flowing between

functions at the abstract functional specification level

(i.e., the one the system architect is working on).

By this way, the system architect can analyze his

model, as if it is an executable one. But behind the

scene a transformed model is running.

4.6 Implementation

The work described above is fully implemented with

the operational query view transformation language

(QVTo). It is included in the Papyrus customization

developed by Safran. With that language, the

implementation was easy, because of the tight

integration with the Papyrus application

programming interfaces (API). No performance

issues were noticed during our tests.

4.7 Related Works

There were many proposals to produce simulation

models from SysML models. Works achieved in (G.

Kapos et al., 2014) and (Bocciarelli et al., 2012)

highlight some of them. The first proposal is to

transform SysML models to DEVS models while the

second proposal is to transform SysML models to

HLA models. While the target languages are

different, the underlying objective is the same: make

sure that output models conform to language with

precise semantics. This ensures that these models can

be used in a simulation since they can be

unambiguously interpreted. The approach presented

in this paper follows the same objective. However, it

differs from existing approaches in two aspects. First,

it keeps the simulation model in the same

environment as the one it is derived from. This has

the advantage to let the simulation engineer to work

in the same environment as the system architect. In

addition, it maintains a strong relationship between

both models. Second, the simulation model is

compliant with the executable UML subset identified

in fUML, PSCS and PSSM. Debugging can be

performed at the transformed model level or from the

original model.

5 CONCLUSIONS

The design of executable UML models requires a

deep knowledge of UML and the fUML standard.

This can be a problem, because unlike software

engineers, systems architects for example are not

familiar with these languages. Then executable UML

languages is not widely used in the industry to model

systems architecture.

We explored a way to reduce this barrier by

generating executable UML model from a higher

abstraction model like a system architecture model.

Then the system architect is not disturbed by the

details and the rigor of fUML. He stays focused on

his work, and use a DSML to model the system at the

right level of abstraction. On the other side, the

simulation engineer requires a formal language to

design an executable model. Then the translation of

the architecture model to an executable UML model

satisfy his requirements.

With this method, we keep the consistency between

the system architect activity and the simulation

engineer activity. Like that, the simulation engineer

doesn’t need to recapture the system architecture

mode model during the handover.

In our work, we used only the graphical notation of

UML to design the executable model. We can

improve the process by using scripting languages

with the UML notations. For example, it is faster to

define an addition or a subtraction with Python or

Javascript than using the UML notation.

So, the next step is dedicated experiments the support

of scripting language, but also to extend the

translation to other executable languages like

Simulink™ or Modelica®. In that case the scope shall

include the physical level. The objective here is to

keep the interfaces defined at the architecture level

consistent between the modeling languages, all along

the MBSE process using a model interface

coordination (Bailey et al., 2018).

REFERENCES

Bailey, W.C., Che, J., Tsou, P., Jennings, M., 2018. A

framework for automated model interface coordination

using SysML. J. Comput. Inf. Sci. Eng. 18.

https://doi.org/10.1115/1.4039474.

Bocciarelli, P., D’Ambrogio, A., Fabiani, G., 2012. A

model-driven approach to build HLA-based distributed

simulations from SysML models.

Cameron, B., Adsit, D.M., 2018. Model-Based Systems

Engineering Uptake in Engineering Practice.

https://doi.org/10.1109/TEM.2018.2863041.

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

254

G. Kapos, V. Dalakas, A. Tsadimas, M. Nikolaidou, D.

Anagnostopoulos, 2014. Model-based system

engineering using SysML: Deriving executable

simulation models with QVT, in: 2014 IEEE

International Systems Conference Proceedings.

Presented at the 2014 IEEE International Systems

Conference Proceedings, pp. 531–538.

https://doi.org/10.1109/SysCon.2014.6819307.

OMG, 2018. Precise Semantics of UML Composite

Structures version 1.1 [WWW Document]. URL

https://www.omg.org/spec/PSCS/1.1/PDF (accessed

9.26.18).

OMG, 2017a. The OMG System Modeling Language

Specification Version 1.5 [WWW Document]. URL

https://www.omg.org/spec/SysML/1.5/ (accessed

9.26.18).

OMG, 2017b. The Unified Modeling Language

Specification Version 2.5.1 [WWW Document]. URL

https://www.omg.org/spec/UML/2.5.1/ (accessed

9.26.18).

OMG, 2017c. The Semantics of a Foundational Subset for

Executable UML Models Specification Version 1.3

[WWW Document]. URL

https://www.omg.org/spec/FUML/1.3 (accessed

9.26.18).

OMG, 2017d. Precise Semantics of UML State Machines

[WWW Document]. URL

https://www.omg.org/spec/PSSM/1.0/Beta1/PDF

(accessed 9.26.18).

Theobald, M., Palladino, L., Virelizier, P., 2018. About

DSML design based on standard and open-source -

REX from SAFRAN tech work using Papyrus-SysML.

Int. J. Electr. Electron. Eng. Telecommun. 7, 70–75.

https://doi.org/10.18178/ijeetc.7.2.70-75.

Using fUML Combined with a DSML: An Implementation using Papyrus UML/SysML Modeler

255

