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Abstract: The spectral property of the Laplace-Beltrami operator has become relevant in shape analysis. One of the 
numerous methods that employ the strength of Laplace-Beltrami operator eigen-properties in shape analysis 
is the spectral multidimensional scaling which maps the MDS problem into the eigenspace of its Laplace-
Beltrami operator. Using the biharmonic distance we show a further reduction in the complexities of the 
canonical form of shapes making similarities and dissimilarities of isometric shapes more efficiently 
computed. With the theoretical sound biharmonic distance we embed the intrinsic property of a given shape 
into a Euclidean metric space. Utilizing the farthest-point sampling strategy to select a subset of sampled 
points, we combine the potency of the spectral multidimensional scaling with global awareness of the 
biharmonic distance operator to propose an approach which embeds canonical forms images that shows 
further “resemblance” between isometric shapes. Experimental result shows an efficient and effective 
approximation with both distinctive local features and yet a robust global property of both the model and 
probe shapes. In comparison to a recent state-of-the-art work, the proposed approach can achieve 
comparable or even better results and have practical computational efficiency as well. 

1 INTRODUCTION 

The problem of shape matching has become an 
important research problem and a fundamental task 
in a wide range of geometric applications including 
but not limited to computer vision (Vankaick et al., 
2011), texture mapping (Sumner and Popovic, 2004), 
mesh deformation (Kreavoy et al., 2003), morphing 
(Alexa, 2002), and shape retrieval (Jain and Zhang, 
2006).This problem can be defined as finding the 
(dis)similarities between objects represented by 
point clouds or triangle meshes, say two different 
poses of the same object. Such a problem can be 
reduced to establishing a correspondence between 
two set of the mesh vertices, that is to say 
establishing a meaningful mapping between them. 
This mapping is either between coarse sets of feature 
points selected on the meshes, or a dense continuous 
one that involve all points on the two shapes. 

The basic question is finding an effective, yet 
accurate way to quantify the similarity between a 
given reference surface; “the model” and some other 
version (articulated) of the model; “the probe”. An 
extrinsic property characterizes how a particular 
surface is immersed into the ambient (Euclidean) 

space and thus changes as the surface undergoes 
transformations. Such a metric is not ideal to capture 
distinction between shapes as they are significant 
disparities between the extrinsic attributes of a shape 
and its articulated version. A deformation that 
preserves the intrinsic structure of the surface is 
called an “isometry” (Bronstein et al., 2006).Thus 
defining a computable deformation-invariant 
measure of intrinsic similarity between the surfaces 
becomes the task at hand. 

2 RELATED WORK 

Manifold learning refers to the process of non-linear 
dimensionality reduction of data. When target space 
of reduction (embedding) is Euclidean the procedure 
is also known as flattening and the output is called 
“canonical forms” (CF). Multi-Dimensional Scaling 
(MDS) is a class of computationally efficient 
methods used for embedding a canonical form.  

One of the earliest methods finds a uniform 
parameterization for convoluted surfaces that is 
usually a priori in a more general surface matching 
procedure (Schwartz et al. 1989). This result led to 
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emergence of many efficient flattening algorithms 
like in texture mapping (Zigelman et al., 2002), higher 
dimensional Euclidean space embedding (Elad and 
Kimmel, 2003) that captures the intrinsic geometric 
structure of isometric surfaces and a more 
generalized framework (Bronstein et al., 2006) that 
uses Gromov-Hausdroff distance (Gromov, 1981) to 
compute partial embedding distance for both full and 
partial surface matching. The key to using MDS 
algorithm for embedding is to obtain intrinsic 
representation of the underlying surface which is 
invariant to inelastic bending, and then interpolate 
this representation to embed the surface in a new 
ambient space such that the intrinsic geometry of the 
surface is translated into its extrinsic geometry in the 
new space. Conventionally, a set of inter-geodesic 
distance between pairs of all surface points is used 
as input. This approach though efficient, is 
computationally expensive as the complexity 
requirement in storing all pairwise distance is 
quadratic in the number of data points which is 
restrictive in shapes with substantial amount of 
vertices. 

In the last decade, a major breakthrough in the 
eigenspace of the mesh Laplacian (Wolter et al., 2006) 
has been exploited in variety of forms. Isospectral 
properties of the eigenvectors know from linear 
algebra provided theoretical foundations that have 
been extended to correspondence between 3D 
surfaces. Jain et al. (Jain et al., 2011) transformed 3D 
meshes into the spectral domain, based on geodesic 
affinities, and then matched the spectral embeddings 
of the eigenvectors with respect to uniform scaling 
and rigid-body transformation. Kim et al. (Kim et al., 
2011) approached the problem by blending a 
collection of weighted low dimensional conformal 
maps. The multi-scale geometry aware properties of 
the Laplace Beltrami operator (LBO) are utilized to 
infer and manipulate point-to-point maps between 
shapes (Ovsjanikov et al., 2012). Rustamov 
(Rustamov, 2007) introduced a deformation invariant 
representation of surfaces similar to canonical forms 
which is based on combining eigenvalues and 
eigenvectors of LBO instead of geodesic distance. A 
LBO decomposition method is exploited to construct 
diffusion maps (Coifman and Lafon, 2006). 
Descriptors like Heat kernel signature (Sun et al., 
2009), wave kernel signature (Aubry et al., 2011) are 
all based on eigenfunctions of the LBO.  

Similar to our approach, Aflalo et al. (Aflalo and 
Kimmel, 2013) extracted the spectral data from the 
LBO of pairwise geodesic distance of sampled 
points, and then embedded the data into a low-
dimensional Euclidean space. Computed a small 

fraction of the pairwise distances that was projected 
onto the leading eigenfunctions of the LBO, thus, 
efficiently reduced both the time and space 
complexities of the flattening procedure. It seems 
that they overcame a great amount of complexities, 
however, the question of its reliance on geodesic 
distance which has weak “global–awareness” and 
significantly large topological sensitivity is a major 
drawback to this approach. 

In this paper, we argue that biharmonic distance 
(Lipman et al., 2010) can serve as an efficient yet 
accurate distance operator. The measure of 
biharmonic distance on shapes are smooth functions, 
thus are well suited for compact spectral 
representation, and as such allow us to apply this 
theoretically sound distance operator in a spectral 
sense. Biharmonic distance is a metric structure that 
is related to diffusion distance and commute-time 
distance (Fouss et al., 2007; Yen et al., 2007) with a 
slight modification in the eigenvalue normalization. 
Our motivation to use this distance operator is based 
on the fact that it finds a good trade-off between 
local and global properties of the shape. Here, the 
eigenvalue normalization decays slow enough to 
get good local properties around source points and 
fast enough to be globally aware of shape in far 
areas. 

3 COMPUTING BIHARMONIC 
DISTANCE 

Biharmonic distance is a distance operator endowed 
with the fundamental properties required for shape 
analysis, such as isometric invariant, practically 
efficient, parameter-free, insensitive to noise and 
topology, etc.  

Let us consider a Riemannian manifold M 
equipped with a metric G. The metric G induces a 
Laplace-Beltrami operator (LBO) denoted by GΔ . 

The LBO is self-adjoint and defines a set of 
functions called eigenfunctions, denoted by iφ , such 

that i i iφ λφΔ = , where iλ is the eigenvalue 

associated with iφ  at vertex i. 

Biharmonic distance operator is similar to 
diffusion distance and the commute-time distance, 
however there is slight modification on the 
eigenvalue normalization. This normalization  
is based on a kernel, which is Green’s function of 
the biharmonic differential equation. In the 
continuous setting, the squared distance is defined 
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by using the eigenfunctions of the LBO (Lipman et 
al., 2010): 
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The quadratic normalization as shown in the Eq. 
(1) provides a good trade-off in the sense that it 
decays slow enough to get good local properties 
around the point and fast enough to be shape aware 
in distance areas. The trade-off is intimately related 
to the biharmonic equation. Expanding Eq. (1) we 
obtain: 
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Using the Green’s function of the biharmonic 
operator: 
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The above equation satisfies the relation 
2
( ) ( , ) ( ) ( )Δ =x Bg x y f y dy f x                    (4) 

for “smooth enough” ݂ (Coifman and Lafon, 2006). 
From Eq. (3), a discrete construction based on 

the discrete Green’s function ݃ௗ of the Bi-Laplacian 
is derived from the well-known cotangent formula 
discretization of the Laplace-Beltrami differential 
operator on shapes (Grinspun et al., 2006; Meyer et al., 
2003).  

( )( )
( )

1
cot cot

∈

Δ = + −
ei i

i ij ij i j
j Ni

u u
A

α β        (5) 

where Δi , denotes the discrete Laplacian evaluated 

at vertex i (for 1, 2, , ,= i N  N is the number of 

vertices), iA  is the Voronoi area at thi  shape vertex 

(Grinspun et al., 2006) and angles ijα , ijβ  are the two 

angles supporting the edge connecting vertices i and 
j  respectively.  

Having discretized the Laplacian, the Green’s 
function of the Bi-Laplacian, ×∈N N

dg  is defined 

by discretizing the relation in Eq. (4) to obtain: 
2 =d dL g Af f                             (6) 

where 1×∈Nf  is an arbitrary vector in the image 

of 2
dL . (See (Meyer et al., 2003) for prove). 

Finally, having obtained dg , the biharmonic 

distance on the shape is defined from Eq. (3): 

 ( ) ( ) ( ) ( )2
, , , -2 ,= +B i j d d dd v v g i i g j j g i j       (7) 

4 SPECTRAL 
MULTIDIMENSIONAL 
SCALING 

Let us consider the shape correspondence problem 
that involves searching for the best point to point 
matching of two given shapes, S and Q. The earliest 
method of using multidimensional scaling (MDS) to 
compute such an assignment was proposed by (Elad 
and Kimmel, 2003). There, the pairwise geodesic 
distances between all points on a 3D shape was 
mapped to a simpler 3D Euclidean distance.  

The spectral multidimensional scaling (Aflalo and 
Kimmel, 2013) uses the fact that point to point 
correspondence between two shapes induces a map 
between the natural eigenspaces of the shapes, thus, 
project the MDS problem into the data’s spectral 
domain extracted from its Laplace-Beltrami 
operator. In this framework, truncated 
eigenfunctions were used to faithfully approximate 
correspondence between the shapes. We will go 
forward to briefly explain this approach. 

Consider a manifold M, with n points { }iV , P is 

a subset of { }iV  such that = ≤sP p n , and a 

smooth function f is defined on { },= ∈P pV V p P . 

Computing a smooth interpolation function requires 
firstly constructing a continuous function h such that 

( ) ( ) ,= ∀ ∈
p pf V f V p P . Then a smooth function 

measure the smoothness of such a function, say up 
to L2 norm as 

( )
2

2
,= ∇ = Δ 

n n

smooth M M
E f f da f f da . 

The problem of smooth interpolation could be 
rewritten as 

( ) ( ) ( )
:
min s.t. ,

→
= = ∀ ∈

 smooth p p
h M

E h h V f V p P . Then 

we have 
2

2
,∇ = Δ 

n n

M M
f da h h da . Thus the 

interpolation problem could be written as: 

( ) ( )
:
min , s.t. ,

→
Δ = ∀ ∈

n

p pMh M
h h da h V f V p P   (8) 

In a discrete setting the problem in Eq. (8) above 
can be rewritten as  

Tmin s.t. =
x

x Wx Bx f                (9) 

There the matrix B, represents a projection on the 
basis vectors , ∀ ∈pe p P , W is the conformal 

discrete Laplacian without the area normalization 

and f is the sampled vector ( )pf V . Their novel 
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technique was to introduce 

f , the spectral 

projection of f (the eigenvectors of the LBO { }
1=

k

i i
φ ) 

as 
1

,
=

= = =
 k

i i
i

x f f φ φ Φα , where Δ =i iφ λφ . 

Note that Φ  represents the matrix of eigenfunctions 

whose thi column is iφ  such that ,=i ifα φ . Thus 

Eq. (9) is approximated as  
T Tmin s.t.

k
W B f

α
α Φ Φα Φα

∈
=


      (10) 

Since T= WΛ Φ Φ , where Λ  is the diagonal 
matrix whose elements iiλ  are the corresponding 

eigenvalues of linear transformation of the LBO Ld. 
Substituting Λ  and adding the constraint check in 
the target function the solution is rewritten as 

( ) 1T T T T2
−

= + + =B B B f Mfα μ Λ μΦ Φ Φ
 
  (11) 

The discretized smooth energy of the matrix D is 
given by  

( ) ( ) ( )T T= +smoothE D trace D WDA trace DWD A   (12) 

While the spectral projection of D onto Φ , is 
denoted in matrix form by  

T=D ΦαΦ                          (13) 

Substituting D into Eq. (12) we obtain the smooth 
spectral interpolation as 

( ) ( )
( ) ( )

( )

T T

2
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,
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−
k k

i jij
i j I F

trace trace
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α
α Λα αΛα

μ ΦαΦ
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where 
F

 is the Frobenius norm, k is the number 

of eigenfunctions.  
A less accurate but efficient way to obtain an 

approximation of the spectral interpolation matrix 
α is given as 

T= MFMα                        (15) 

 This is obtained by interpolating the column 
vectors f and iφ . Note in the above equation F is 

simply a matrix of the sample points Vi, Vj and M 
represents a matrix such that = Mfα  from Eq. (11). 

5 SPECTRAL MDS USING 
BIHARMONIC DISTANCE 

Following the method of spectral multidimensional 
scaling, we apply biharmonic distance to compute 

the canonical forms for non-rigid shapes. Given M, a 
metric space endowed with a metric 

:D M M× →  , and { }1 2, , , nV V V V=   a finite 

set of elements in M, the multidimensional scaling of 
V in k  involves finding a set of points 

{ }1 2, , , nX X X X=   in k  whose pairwise 

Euclidean distances ( ) 2
,i j i jd X X X X= −  are as 

close as possible to ( ),i jD V V  for all (i, j). 

For such an embedding, a family of MDS known 
as classical scaling can be realized by the following 

minimization program T 1
min

2X
F

X X JDJ− , where 

D represents a matrix defined by ( )2
,ij i jD D V V=  

and T1
1 1n n nJ I

n
= − , or 

1
ij ijJ

n
δ= − . 

Using Classical scaling in Eq. (13), we find the 
first k singular vectors and values of the matrix 

1

2
JDJ− . 

We utilize the farthest-point sampling strategy to 
select a subset of ps sampled points, with indices P 
of the data. Then we compute the biharmonic 
distance between every two points of the sampled 

data ( )2
,B i jd v v M M∈ × , ( ),i j I P P∈ = × . Since 

we have solved the LBO to compute the biharmonic 
distance as discussed in section 3, the LBO is not 
required to re-compute, we thus, use the same data 
to find k eigenfunctions in the eigenbasis Φ  of the 
LBO. Using the biharmonic distance we show a 
further reduction in the complexity of the canonical 
form of the shapes making comparison between 
similar and dissimilar shapes more efficiently 
computed. Using Eq. (14) and (15) we extract the 
spectral interpolation matrix α  from the computed 
biharmonic distance and the eigenbasis Φ . 

An outline of the steps to solve the canonical 
form using biharmonic distance is shown in the 
algorithm below: 

Step1: Compute P; a subset of ps points sampled 
from M. 

Step2: Compute the matrix D of squared 
biharmonic distances between every two points 

( ), , ,i jp p i P j P∈ ∈ . 

Step3: Compute the matrices Φ , Λ  containing 
the kth eigenvectors and corresponding eigenvalues 
of the Laplace-Beltrami operator of M. 

Step4: Compute the matrix α . 
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Step5: Compute the singular value decomposition 

of the nxk matrix JQ=SUVT, where T1
1 1n n nJ I

n
= − . 

Step6: Compute the eigendecomposition of the 
kxk matrix TUV VUα , such that 

T TUV VU W Wα ψ= . 

Step7: Compute the matrix 
1

2Q SWψ= , such 

that TQQ J JΦαΦ= . 

Step8: Return the first d columns of the matrix 
Q, where d is the embedding dimension. 

6 EXPERIMENTAL RESULTS 
AND DISCUSSION 

In our evaluations and experiments, we utilized the 
TOSCA (Bronstein et al., 2009) and SPACE 
(Anguelov et al., 2004) shape databases for our shape 
comparison experiments. TOSCA has 80 meshes 
representing different classes of shapes, while 
SCAPE has 72 meshes representing a human body 
in different poses. All the meshes are fitted to 
scanner data with a common template, and thus they 
share the same mesh topology. 

A qualitative evaluation of the canonical form is 
represented in the Figure 1 showing our embedding 
into canonical forms against that of spectral MDS 
(Aflalo and Kimmel, 2013) for wolf and gorilla shapes 
in various near-isometric positions. For both 
approaches we selected 100 eigenfunctions for the 
interpolation of the sampled points. The figure is 
represented row-wise original shape model, 
canonical forms of spectral MDS (Aflalo and Kimmel, 
2013), canonical forms for our approach 
respectively. Clearly our method shows a more 
simplified canonical form and thus will produce 
more efficient and accurate rigid alignment. 

Next, we evaluate the distortion of the 
embedding between two isometric shapes h: S→T 
with respect to a “ground truth” we used a method 
similar to (Kim et al., 2011). Here, we computed for 
every point, p, on S in the ground truth 
correspondence, the geodesic distance, 

( ) ( )( ),S trued h p h p  between the smoothness 

function, ( )h p  and its true correspondence, 

( )trueh p . The difference between the geodesic 

distance is added up in an error measure such that 

( ) ( ) ( )( ), ,true S true
p S

Err h h d h p h p
∈

=        (16) 

here ( ) ( )( ), trueh p h p  is normalized by the square 

root of the area of the manifold S. 
We generated a table to examine the distribution 

of errors. Table 1 shows percentage correspondence 
as a function of geodesic error. That is, the data of 
varying geodesic error threshold, τ , between the 

model and probe ( ) ( ), trueh p h p  against the average 

percentage of points correspondence for which 

( ) ( )( ),S trued h p h p τ≤ . Taking an instance from 

the “animal shapes” in Table 1, about 67% of 
sample points had geodesic error below 0.1 for S-
MDS approach while for our method above 98% of 
correspondences fell below the 0.1 geodesic error. 
Another example from the “all shapes” table shows 
100% of sample points had geodesic error below 
0.15 for our approach when compared against 95% 
for S-MDS. We also generated a graphical 
representation of the data, where x-axis depicts 
geodesic error threshold, τ , and y-axis is the 
average percentage of point correspondence that fall 
below the threshold τ . The top left, top right and 
bottom left graphs in Figure 2 are graphical 
representation of Table 1.  Clearly, we can see that 
the result of our method outperforms that of 
spectral-MDS. 

 Overall our algorithm produces better results 
when matching human shapes. Bottom right of 
Figure 2 is a representation of the percentage of 
correspondence measure of all six animal shapes of 
the TOSCA database. 

As the idea of multidimensional scaling is to find 
a rigid alignment of the embedded image of the 
shapes, in the next experiment, we used the Iterative 
Closest Point (ICP) algorithm to compute such 
alignment. Figure 3 is a picture of two near-
isometric wolf shapes before and after computing 
their ICP alignment. We also performed a 
comprehensive experiment on shapes from the 
SPACE database. In this experiment, we selected the 
first 50 eigenfunctions for our spectral interpolation. 
We randomly selected a model and matched with 
several probes. Having computed the canonical 
forms, we computed the rigid alignment between the 
canonical form images of the matching, and next we 
used a relative straight forward scheme to find the 
similarity measure between them. First, we 
transformed the matrix of the output of the canonical 
form S and T into a vector s and t. And then given a 
range of threshold, the dis(similarity) between them 

by function ( ) ( ) ( )s t norm s norm t⋅ ⋅ is computed, 

where “.” is the inner product between two vectors 
and norm( )	is the Euclidean norm of the vector. The 
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range of threshold is between 0 and 1 such that the 
closer the function is to 1 the more similar S and T 
are, conversely, the closer the function is to 0 the 
more dissimilar S and T are. The results from 10 
similarity measures were sampled from our 
experiment as shown in Table 2. Experimental 
results from the table show an improvement in our 
similarities measure when compared with that of the 
spectral multidimensional scaling. 

7 CONCLUSIONS 

In this paper we argued that approaching the novel 
method of spectral multidimensional scaling with a 

theoretical sound distance operator in biharmonic 
distance proves to further reduce the topological 
complexities of the embeddings. Taking advantage 
of the global shape awareness property of the 
biharmonic distance operator, we were able to get a 
minimal distorted canonical form thus making the 
computing of a rigid assignment of canonical forms 
more efficient and accurate. Experimental results 
show a comparable and even better result to a state-
of-the-art method. Future prospect of this study 
might include using other distance operators to 
compute the dimension reduction problem that 
might achieve a more favorable result.  
 

       
Figure 1: Embedding of wolf and gorilla shapes into canonical forms. From top to bottom depicts original shape, followed 
by canonical form obtained by Spectral MDS, Spectral MDS using biharmonic distance. 

Table 1: Shows the data of varying geodesic error threshold D, between the model and probe against the average percentage 
of point correspondence. 

 Animal Shapes Human Shapes All Shapes 

Geodesic 
error(D) 

S-MDS 
Pts.(%) 

SMDS-Biharmonic 
Pts. (%) 

S-MDS 
Pts. (%) 

SMDS-Biharmonic 
Pts. (%) 

S-MDS 
Pts. (%) 

SMDS-Biharmonic 
Pts. (%) 

0 1.1183 1.3707 1.2298 1.2207 1.2413 1.3524 
0.0125 4.4088 6.7875 4.452 7.3923 4.8266 7.1525 
0.025 12.1579 19.1776 14.7096 20.9908 14.596 19.9216 

0.0375 24.7667 40.4431 31.5826 46.061 30.4995 43.1803 
0.05 39.3009 63.3398 51.1159 66.3549 48.8439 65.2796 

0.0625 49.7646 81.8704 68.9267 81.5946 63.7864 82.0446 
0.075 57.1189 91.3908 83.3491 92.5794 75.1602 92.2939 

0.0875 62.7122 96.8784 90.7177 97.5841 81.9415 97.3656 
0.1 67.3756 98.8709 94.6324 99.2309 86.438 99.0808 

0.1125 71.5725 99.6609 98.0789 99.7937 90.1884 99.7827 
0.125 76.0111 99.9399 99.2249 99.8841 93.1298 99.9328 

0.1375 78.8878 99.9553 99.6353 99.9521 94.6593 99.9761 
0.15 81.1456 99.9702 99.7597 100 95.6654 100 

0.1625 83.5624 99.9702 99.881 100 96.7655 100 
0.175 85.7585 100 99.9575 100 97.6749 100 

0.1875 87.1764 100 99.9745 100 98.1592 100 
0.2 89.0674 100 99.9915 100 98.8559 100 
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Figure 2: Graphical representation evaluating the geodesic error of correspondence between different categories of shapes. 
All graphs show percentage of correspondence between the thresholds of a normalized geodesics error(0-0.2). Top left, top 
right and bottom left show comparison of the correspondence between regular S-MDS and S-MDS using biharmonic 
distance. Bottom right shows the percentage of correspondence between six different shapes using S-MDS using 
biharmonic distance. 

 
Figure 3: An alignment of canonical forms using Iterative Closest Point (ICP) algorithm. From left to right are images of 
pre-alignment and post-alignment of two wolf shapes. 

Table 2: Comparison of similarity measure function. A 
model is compared against ten probes with a threshold 
between 0 and 1. The closer the value to 1 the more 
similar the model and probe are. 

Shape Similarity Measure 
Spectral MDS Spectral MDS-Biharmonic 

0.9034 0.9117 
0.8761 0.8828 
0.8720 0.8813 

0.8398 0.8505 
0.8840 0.8928 
0.8565 0.8653 
0.7255 0.7282 
0.8746 0.8851 
0.8987 0.9045 
0.8741 0.8821 
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