The Effectiveness of Kirinyuh Leaves (*Eupatorium odoratum* L.) and *Allium chinense* Extract against *Staphylococcus aureus* and *Escherichia coli*

Saipul Sihotang¹, Muhammad Usman² and Sartini²

¹Faculty of Medicine, Universitas Prima Indonesia, Medan, Indonesia
²Faculty of Science and Technology, Universitas Medan Area, Medan, Indonesia

Keywords: *Ki rinyuh* Leaves, Phytochemicals, Secondary Metabolites.

Abstract: This study aims to determine secondary metabolite compounds of kirinyuh leaf extract (*Eupatorium odoratum* L) and hobo (*Allium chinense*) and their antibacterial properties against *Staphylococcus aureus* and *Escherichia coli*. The research consisted of three steps, the first was plant extraction and maceration using methanol as a solvent. The second, phytochemical screening to confirm secondary metabolites (alkaloids, flavonoids, terpenoids and steroids). The third, antibacterial test against *Staphylococcus aureus* and *Escherichia coli* at concentrations 0, 1, 5, 10, 15, 20 and 25 %, clyndamicin used as positive control. Data were analyzed using SPSS Version 23 software and continued statistically by Duncan Multiple Range Test. Results showed that secondary metabolites such as alkaloids, flavonoids, steroids and saponins were detected in kirinyuh. Whereas, secondary metabolites of hobo contain flavonoids, steroids and saponins. Extract concentration 25% was the most effective for kirinyuh in inhibiting *S. aureus* and *Echerichia coli* with the highest inhibition 15.00 to 19.03 mm, whereas, the inhibition of hobo extract effective in inhibiting *S. aureus* 12.40 mm to 15.20 mm.

1 INTRODUCTION

The use of plants as traditional medicines becomes increasingly widespread. One of the benefits of medicinal plants as an antimicrobe is no side effect and potential to reduce infection caused by bacteria, fungi, and parasites. The used of antibiotic to reduce diseases caused by pathogenic bacteria can cause bacterial resistance (Awoyinka et al. 2007). Therefore, the used medicinal plants as an alternative to reduce bacterial infection. Medicinal plants that can be used to treat infectious diseases are kirinyuh (*Eupatorium odoratum* L.) and hobo (*Allium chinense*).

In Thailand, kirinyuh was used as a wound medicine, coagulant, and as an antiseptic (Irobi, 1997), in Nigeria used as a therapy for malaria (Runngapa, 2003), while in Indonesia the plant used as a medicine for new wounds, fever, cough, and to stop the disease. bleeding (Purwati, 2003). Even so, this plant is still very rarely used by the people of Indonesia because it is considered a nuisance plant that is difficult to eradicate.

Inya-agha et al. (1987) reported that *E. odoratum* leaf extract contains tannins, phenols, saponins, and its essential oil contains α-pinene, cadinene, camphore, limonene, β-caryophyllene, cadinol isomers. Thakong (1999) reported that chloroform extract from *E. odoratum* leaves showed high activity against chloroquin-resistant *Plasmodium falciparum* (K1). The compound isolated from the chloroform extract fraction of *E. odoratum* leaves was isosacuranetin, which was inactive against *P. falciparum* at a maximum concentration of 5 μg / ml. The ethanol extract from the leaves of *E. odoratum* showed antibacterial activity against *Pseudomonas sp.*, *Escherichia coli*, *B. thuringensis*, *Klebsiella* sp. and *Streptoccocus faecalis* (Irobi, 1997).

*Allium chinense* is the onion class commonly used for seasoning and flavoring dishes. Batak chives or onions contain nutrients that can prevent cancer and hypertension. This plant contain compounds as antioxidants, antibiotics, anti-cancer, and antibacterial agents (Rudi, 2012). The aims of the present study was to determine composition secondary metabolites crude extract of kirinyuh.
leaves and Allium chinense as anti-microbial against Staphylococcus aureus and Escherichia coli.

2 MATERIALS AND METHOD

2.1 Sample Collection

The materials used in this study were E. odoratum and Allium chinense which were obtained from Tanah Karo area (Brastagi), North Sumatera. Staphylococcus aureus, and Escherichia coli were obtained from Biology Laboratory, Department of Biology, Medan Area University.

2.2 Extraction

The procedure used in this study consisted of three steps, the first was the extraction of kirinyuh (Eupatorium odoratum L) and hobo (Allium chinense) by maceration using methanol as solvent. The second was phytochemical screening by identifying secondary metabolites (alkaloids, flavonoids, terpenoids and steroids). The third, bioactivity test against Staphylococcus aureus and Escherichia coli using extract concentrations 0, 1, 5, 10, 15, 20 and 25%. Extraction was started by maceration using n-hexane and methanol as solvents for 3 × 24 hours each with a solvent every 24 hours. The extract was then concentrated using rotavapor.

2.3 Phytochemical Test

Phytochemical screening for alkaloids, flavonoids, saponins, phenolics, triterpenoids and steroids was detected using reagents that specific for each compound. Screening for alkaloids using reagents such as Meyer, Bouchardat, Wagner and Drangendorff. Screening for flavonoid was conducted according to Harbone (1996). The reagents used consisted of NaOH solution, sulfuric acid (H₂SO₄), aqueous Mg-HCl solution, the reaction will form a blue violet color, with concentrated (H₂SO₄) will form a yellowish orange color, and with a dilute Mg-HCl solution with pink color. The presence of color by the addition of the reagents indicate the presence of flavonoid. Screening of triterpenoids and steroids was carried out by the Lieberman-Burchard adhesion (Harbone, 1996). The presence of triterpenoids was indicated by the presence of a red color change, while blue or purple indicates the presence of steroids. Phenolic compounds were screened using 1% FeCl₃ reagent (Harbone, 1996). The appearance of blue or purple blue indicates positive for phenolic.

3 RESULTS AND DISCUSSION

3.1 Phytochemical Screening

Secondary metabolites of kirinyuh leaf can be seen in Table 1. The metabolites found were flavonoids, alkaloids, and saponins. Whereas, secondary metabolites of Allium chinense was shown in Table 2.
Table 1: Phytochemical test of methanol extract of kirinyuh leaves.

<table>
<thead>
<tr>
<th>No</th>
<th>Compound identification</th>
<th>Reactor</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flavonoid</td>
<td>FeCl₃ 1%</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mg-HCl</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NaOH 10%</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H₂SO₄</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dragendorf</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>Alkaloid</td>
<td>Bouchardat</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meyer</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wagner</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Steroid/Terpenoid</td>
<td>Salkowsky</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Saponin</td>
<td>Sample + H₂O + HCl 2N</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 2: Phytochemical test of methanol extract of Allium chinense.

<table>
<thead>
<tr>
<th>No</th>
<th>Compound identification</th>
<th>Reactor</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flavonoid</td>
<td>FeCl₃ 1%</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mg-HCl</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NaOH 10%</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H₂SO₄</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dragendorf</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>Alkaloid</td>
<td>Meyer</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wagner</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Steroid/Terpenoid</td>
<td>Salkowsky</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Saponin</td>
<td>Sample + H₂O + HCl 2N</td>
<td>+</td>
</tr>
</tbody>
</table>

3.2 Antibacterial Test

Anti-bacterial tests were carried out to determine the ability of methanolic extract of kirinyuh and hobo in inhibiting growth of Staphylococcus aureus and Escherichia coli. The effectiveness both of the extracts was indicated by the presence of a clear zone around the discs that contain plant extract (Table 3).
According to Andriani et al., (2016) Secondary metabolite compounds such as flavonoids, alkaloids and saponins have potential as antimicrobial agents. This was confirmed by Heinrich (2009) who stated that flavonoid compounds.

Kumonealoin compounds can cause bacterial proteins to become inactive and lose their function, while saponins can dissolve lipids in bacterial cell membranes, as a result it can reduce lipid tension, change cell permeability, abnormal cell function and eventually lysis and cause death (Ismiyati, 2014).

S. aureus and E. coli are pathogenic bacterial isolates with thick cell walls because they contain a lot of peptidoglycan and are quite thick (20 -80 nm) and also contain teichoic acid and lipoteichoic acid (Heinrich et al. 2009). This bacterial cell wall arrangement contains only one layer of plasma membrane, this is what causes its osmotic pressure to drop dramatically when given the anthracurnonealoin complex contained in aloe vera extract. So that the bacterial cell will have difficulty controlling the respiration process and ion transport from outside the cell. Based on the results of data analysis from the One-Way Anova test, the significance results were smaller than 0.05, which means that there were significant differences in the inhibitory power of various concentrations of kirinyuh leaf extract and hobo raw on the growth of S. aureus and E. coli isolates in compared to control (-) and (+), meaning that the three concentrations of kirinyuh leaf extract and hobo have antibacterial effects against S. aureus and E. coli but not as strong as the control (+).

4 CONCLUSION

Secondary metabolites of kirinyuh and hobo is a group of flavonoids, alkaloids, steroids and saponins that potential as antibacterial to inhibit S. aureus and E. coli.

REFERENCES


Rungnana, O, 2003, Phytochemistry and Antimalarial Activity of Eupatorium odoratum L., Thesis, Pharmaceutical Chemistry and Phytochemistry, Faculty of Graduate Studies, Mahidol University, Bangkok

(Pharmaceutical Chemistry and Phytochemistry)
Faculty of Graduate Studies, Mahidol University,
Bangkok

Jakarta: Penebar Swadaya

Puspitasari, I. 2008. Uji aktivitas antibakteri bawang putih
(Allium sativum Linn) terhadap bakteri Staphylococcus
aureus in Vitro. Fakultas Kedokteran Universitas
Diponegoro Semarang.

Utami, A. 2006. Uji banding efektivitas perrasan umbi
bawang putih (Allium sativum Linn) 25 % dengan
ketokonazol 2 % secara Invitro terhadap pertumbuhan
Candida albicans pada kandidiasis vaginalis. Artikel
Karya Tulis Ilmiah. Fakultas Kedokteran Universitas
Diponegoro, Semarang.