
Stability Analysis of the SIRS Epidemic Model using  
the Fifth-order Runge Kutta Method 

Tulus1, T. J. Marpaung1, D. Destawandi1, J. L. Marpaung1 and Suriati2 
1Department of Mathematics, Universitas Sumatera Utara, Medan, Indonesia 
2Department of Informatics, Universitas Harapan Medan, Medan, Indonesia 

Keywords: Runge-Kutta Method, SIRS Epidemic Model. 

Abstract: Transmission of the disease occurs through interactions in the infection chain both directly and indirectly. 
There are several causes of a disease that can enter endemic conditions, namely the condition of a disease 
outbreak in an area for a long time. This condition can be modeled mathematically using certain assumptions 
that will then be solved by analytical and numerical solutions. In this study, an analysis of the stability of 
disease spread will be carried out by constructing a mathematical model of the SIRS epidemic in infectious 
diseases. The results obtained are based on numerical solutions obtained through the Runge-Kutta 5th Order 
Method. After that, analysis and simulation are done with the MATLAB program. In the simulation results, 
it can be seen that the greater the rate of disease transmission or the low recovery rate and natural death causes 
endemic conditions.

1 INTRODUCTION 

The epidemic model studies the dynamics of the 
spread or transmission of a disease in a population. 
The SIRS epidemic model is an outgrowth of the SIR 
epidemic model. The SIRS epidemic model differs 
from the previous model when individuals who have 
recovered can return to the susceptible class (Adda & 
Bichara, 2012). 

The numerical method is also called an alternative 
to the analytic method, which is a method of solving 
mathematical problems with standard or common 
algebraic formulas. So, called, because sometimes 
math problems are difficult to solve or even cannot be 
solved analytically so it can be said that the 
mathematical problem has no analytical solution. 
Alternatively, the mathematical problem is solved by 
numerical method, for which the Runge-Kutta 
method of order 5 is used with a high degree of 
accuracy (Xiaobin et al., 2018). 

2 RUNGE-KUTTA ORDER 5 

The fifth-order Runge-Kutta method is the most 
meticulous method in terms of second, third and 
fourth order (Sinuhaji, 2015). The fifth-order Runge-

Kutta order is derived and equates to the terms of the 
taylor series for the value of n = 5 (Tulus, 2012). 

The fifth-order Runge-Kutta can be done by 
following the steps below: 
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3 MODEL FORMULATION  

Let 𝑆ሺ𝑡ሻ, 𝐼ሺ𝑡ሻ dan 𝑅ሺ𝑡ሻ successive states 
subpopulation density of susceptible individuals is 
infected and recovered, with number at time 𝑡 
(Steven, 2017).  In this model it is assumed that the 
total population density at all times is constant, that is 
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𝑁 ൌ 𝑆ሺ𝑡ሻ ൅ 𝐼ሺ𝑡ሻ ൅ 𝑅ሺ𝑡ሻ.  SIRS models discussed in 
this paper compartment illustrated in the following 
diagram:  

 
Obtained system of ordinary differential 

equations with three dependent variables were 
respectively declared rate of change in density of 
susceptible, infected and recovered:  
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Since the total population rate is equal to the rate 

of death, then 𝛬 = 𝜇ଵ𝑆 ൅ ሺ𝜇ଶ ൅ 𝛿ሻ𝐼 ൅ 𝜇ଷ𝑅, and 𝑆 ൅
𝐼 ൅ 𝑅 ൌ 𝑁 so the system becomes 
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ே
, then system (3.2) with 

the first two equations can be simplified into: 
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Note that the first two equations in the system 

(3.3) do not contain the variable R (t) so that for the 
next reason enough to be discussed the system with 
two equations. If the value of 𝑆ሺ𝑡ሻ and  𝐼ሺ𝑡ሻ has been 
obtained, then the value of 𝑅ሺ𝑡ሻ will be obtained by 
using the relationship 𝑆 ൅ 𝐼 ൅ 𝑅 ൌ 𝑁. 

 
 

4 RESULT 

4.1 Disease Free Equilibrium Point 

The equilibrium point is reached when the variable 
that originally changes with time becomes constant. 

Thus, the equilibrium point is obtained when 
ௗௌ

ௗ௧
 and 

ௗூ
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 in equation (4) are zero. 
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Based on equation (6) two possibilities are obtained, 

namely 𝐼 ൌ 0 or 𝑆 ൌ
ఓమାఋାఈ

ఉ
. If 𝐼 ൌ 0 is substituted 

in equation (5) 
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  െሺ𝜇ଷ ൅ 𝛾ሻ𝑆 ൅ ሺ𝜇ଷ ൅ 𝛾ሻ ൌ 0 
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ൌ 1 

 
obtained 𝑆 ൌ 1, so that obtained the disease-free 
equilibrium point 𝐸଴ ൌ ሺ1,0ሻ.  

4.2 The Endemic Equilibrium Point 

The endemic equilibrium point is a point that 
indicates the possibility of spreading the disease in 

the population. In equation (6) if 𝑆 ൌ
ఓమାఋାఈ

ఉ
, 

obtained equilibrium point is a second, which is the 
point of equilibrium endemics 𝐸∗ ൌ ሺ𝑆∗, 𝐼∗ሻ, with 
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reproduction number. Note that the endemic 
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(3)

(4)

Stability Analysis of the SIRS Epidemic Model using the Fifth-order Runge Kutta Method

377



 

equilibrium point 𝐸∗ ൌ ሺ𝑆∗, 𝐼∗ሻ will exist when  𝑅଴ ൐
1. 

4.3 Analysis of Local Stability on 𝑬𝟎 

The nature of local stability at equilibrium point E_0 
is determined by linearizing the system of equation 
(4) around the equilibrium point. 

Suppose:  
 

𝑓ሺ𝑆, 𝐼ሻ ൌ െ𝛽𝑆𝐼 ൅ ሺ𝜇ଶ ൅ 𝛿 െ 𝜇ଷ െ 𝛾ሻ𝐼 
  െሺ𝜇ଷ ൅ 𝛾ሻ𝑆 ൅ ሺ𝜇ଷ ൅ 𝛾ሻ  

𝑔ሺ𝑆, 𝐼ሻ ൌ 𝛽𝑆𝐼 െ ሺ𝜇ଶ ൅ 𝛿 ൅ 𝛼ሻ𝐼 
 

Then each function is derived partially to the 
variable on the function, so that Jacobi matrix is 
obtained 

 
𝐽ሺ𝑆, 𝐼ሻ ൌ  

൬
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𝛽𝐼 𝛽𝑆 െ ሺ𝜇ଶ ൅ 𝛿 ൅ 𝛼ሻ ൰ 

 
The system linearization of equation (4) around 

the equilibrium point 𝐸଴ ൌ ሺ1,0ሻ gives the Jacobi 
matrix 
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0 𝛽 െ ሺ𝜇ଶ ൅ 𝛿 ൅ 𝛼ሻ ൰, 

 
which has an eigen value 𝜆ଵ ൌ െሺ𝜇ଷ ൅ 𝛾ሻ ൏ 0 and 
𝜆ଶ ൌ 𝛽 െ ሺ𝜇ଶ ൅ 𝛿 ൅ 𝛼ሻ or 𝜆ଶ ൌ ሺ𝑅଴ െ 1ሻሺ𝜇ଶ ൅ 𝛿 ൅
𝛼ሻ. If 𝑅଴ ൏ 1 then 𝜆ଶ ൏ 0 so the equilibrium point 𝐸଴ 
is stable. Conversely, if 𝑅଴ ൐ 1 then the equilibrium 
point  𝐸଴ is unstable. 

4.4 Analysis of Local Stability on 𝑬∗ 

To obtain local stability properties in 𝐸∗, the 
linearization around the endemic equilibrium point 
𝐸∗ ൌ ሺ𝑆∗, 𝐼∗ሻ resulted in Jacobi matrix 
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ሺ𝑅଴ െ 1ሻ 0

ቍ

. 
obtained a complex eigen value 𝜆ଵ,ଶ ൌ 𝑎 ൅ 𝑖𝑏, with 
𝑎 ൏ 0. Therefore, the equilibrium point 𝐸∗ is 
asymptotically stable. 
 
 

4.5 Model Solution with 5th Order 
Runge-Kutta Method 

Numerical analysis illustrates more clearly the model 
of disease spread by using certain predefined 
parameters and values. The system of equation (4) 
will be solved by simulating the Runge-Kutta method 
of order 5. The simulation of the SIRS epidemic 
model solved by the 5th order runge-kutta method is 
performed by giving the initial value of the 
susceptible (𝑆ሻ, infected (𝐼ሻ, recovered (𝑅ሻ individual 
size, and varying the parameters that influence the 
model interaction so that there will be 2 possibilities 
that is  𝑅଴ ൏ 1 and  𝑅଴ ൐ 1. The initial values given 
for the SIRS epidemic model for HSV disease are: 

Table 1: The initial value of each subpopulation. 

Subpopulation Initial value (million 
souls) 

𝑆 400 
𝐼 200 
𝑅 100 

4.5.1 Simulation 𝑹𝟎 ൏ 1 

For 𝑅଴ ൏ 1, given the parameter values to qualify 
𝑅଴ ൏ 1, earned value 𝑅଴ ൌ 0,6. The value of the 
given value as follows: 

Table 2: The parameter values R଴ ൏ 1. 

Parameter Value  
𝛼 0,013 
𝛽 0,014 
𝛾 0,007 
𝛿 0,009 
𝜇ଵ 0,001 
𝜇ଶ 0,0013 
𝜇ଷ 0,00115 

From the initial value and the given parameter 
values obtained simulation 𝑅଴ ൏ 1 shown in Figure 1 
& 2. Population 𝑆, 𝐼, 𝑅 experience changes with time, 
indicating that the behavior of the solution will be 
towards the point 𝐸଴ or it can be said that when 𝑅଴ ൏
1 the longer the epidemic disease will disappear from 
the population. 

Graphs do not reflect system behavior over time 
ℎ ൌ 0.09. So, it can be concluded at the time range 
ℎ ൌ 0.09 unstable system. The following is given a 
table that describes the stability of the system depends 
on the value of ℎ. 
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Figure 1: Simulation SIRS Model R଴ ൏ 1 with h ൌ 0.01. 

 

Figure 2: Simulation SIRS Model R଴ ൏ 1 with h ൌ 0.09. 

Table 3: The behavior of the system is based on the value 
of h on the disease-free SIRS model. 

Step time ሺℎሻ System behavior 
0,01 Stable 
0,02 Stable 
0,03 Stable 
0,05 Stable 
0,07 Stable 
0,08 Stable 
0,09 Unstable

The graph does not show stability in the 
population because ℎ is so large, the graph will be 
stable if the ℎ value is less than 0,09. 

4.5.2 Simulation 𝑹𝟎 ൐ 1 

For 𝑅଴ ൐ 1, given the parameter values to qualify 
𝑅଴ ൐ 1, from the values obtained value 𝑅଴ ൌ 1,34. 
The value of the given value as follows: 
 
 
 
 
 
 

Table 4: The parameter values simulation 1 R଴ ൐ 1. 

Parameter Value  
𝛼 0,012 
𝛽 0,026 
𝛾 0,008 
𝛿 0,006 
𝜇ଵ 0,002 
𝜇ଶ 0,0014 
𝜇ଷ 0,0017 

From the initial values and given parameter values 
𝑅଴ ൐ 1 simulation is shown in Figure 3 & 4. The 
change in each population S.I,R against time, 
population 𝑆 has decreased even close to zero. When 
𝑡 ൐ 5 years, population 𝑆 has increased while 
population 𝐼 and 𝑅 continue to decrease but not to 
zero. This indicates that the epidemic disease will 
become endemic. 

The graph does not reflect system behavior over 
time ℎ ൌ 0.07 as shown in Figure 4.6. So, it can be 
concluded that the system is not stable at the time 
range ℎ ൌ 0.07. The following is given a table that 
describes the stability of the system depends on the 
value of ℎ. 

Table 5: The behavior of the system is based on the value 
of h on the endemic SIRS model. 

Step time ሺℎሻ System behavior 
0,01 Stable 
0,02 Stable 
0,03 Stable 
0,04 Stable 
0,05 Stable 
0,06 Stable 
0,07 Unstable 

The graph does not show stability in the 
population because h is large, the graph will be stable 
if the ℎ value is less than 0,07.  

 

 

Figure 3: Simulation 1 SIRS Model R଴ ൐ 1 with h ൌ 0,01. 
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Figure 4: Simulation 1 SIRS Model R଴ ൐ 1 with h ൌ 0,07. 

Then given the values for simulation 𝑅଴ ൐ 1 with 
different parameter values, the values given are as 
follows: 

Table 6: The parameter values simulation 2 R଴ ൐ 1. 

Parameter Value  
𝛼 0,008 
𝛽 0,076 
𝛾 0,008 
𝛿 0,004 
𝜇ଵ 0,0016
𝜇ଶ 0,0012 
𝜇ଷ 0,0017 

From the initial value and the given parameter 
values obtained simulation 𝑅଴ ൐ 1 shown in Figure 5 
and 6. The population change of 𝑆 and 𝐼 is very 
significant, population 𝑆 is at critical point while 
population 𝐼 increases dramatically, population 𝑅 
also increase, but it does not affect population 𝑆 
because population 𝐼 increases very fast. When 𝑡 ൐
10 years population 𝐼 and 𝑅 decreased while 
population 𝑆 increased but did not exceed population 
𝐼 as in figure 5.  

The graph does not reflect the behavior of the 
system at a time range ℎ ൌ 0.08 as in figure 6. The 
following is given a table that describes the stability 
of the system depends on the value of ℎ. 

 

Figure 5: Simulation 2 SIRS Model R଴ ൐ 1 with h ൌ 0,01. 

 

Figure 6: Simulation 2 SIRS Model R଴ ൐ 1 with h ൌ 0,07. 

The graph does not show stability in the 
population because ℎ is so large, the graph will be 
stable if the ℎ value is less than 0.08. So, the 5th order 
Runge-Kutta numerical scheme satisfies the stability 
properties of the SIRS model with 𝑅଴ ൐ 1 when the 
time step sizeሺℎሻ is not greater than 0,07. 

SIRS epidemic model simulation using Runge-
Kutta method of order 5 is influenced by time step 
ሺℎሻ. The time step ሺℎሻ affects the time needed to 
approach the equilibrium point, the greater the time 
step ሺℎሻ is used the shorter the time needed to 
approach the equilibrium point. 

5 CONCLUSIONS 

1) At condition 𝑅଴ ൏ 1 indicates that the behavior of 
the solution will be longer to point 𝐸଴, which 
means the longer the disease will be lost from the 
population.  

2) Under condition 𝑅଴ ൐ 1 there will be an endemic 
condition, where the Infected population is still in 
the population, in other words the greater the rate 
of transmission of the disease (𝛽ሻ or the smaller 
the cure rate (𝛼ሻ and natural death ሺ𝜇ሻ cause 
endemic conditions. 

3) Time step ሺℎሻ  affects the time required to 
approach the equilibrium point in the SIRS 
epidemic model using the Runge-Kutta method of 
order 5, the greater the time step ሺℎሻ used the 
shorter the time it takes to approach the 
equilibrium point. 
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