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Abstract: Diabetes is a metabolic disorder that is caused by unregulated blood glucose and therefore requires regular 
and intensive monitoring. Currently, blood sugar monitoring is mostly done invasively by withdrawing 
blood through a needle or piercing of the fingertips. This method can cause trauma and an infection. 
However, there is the potential for using a non-invasive measurement of blood glucose levels with near-
infrared spectroscopy (NIRS) combined with partial least-square regression. As a pathway to actualize it, 
the spectrum of whole blood was measured with different glucose levels. A total of 72 NIR spectrum from 8 
whole blood samples with different types of glucose levels were measured. A principal component analysis 
(PCA) and partial least square regression (PLSR) were applied to the spectral data matrix. The results 
showed that PCA is successfully classified as spectral data based on the glucose content and PLSR model 
within the clinically accurate region of the Clarke error grid. These results indicate that NIRS has an 
immense potential to be applied in measuring blood glucose non-invasively. 

1 INTRODUCTION 

Diabetes is a disease caused by a deficiency of 
insulin in the body (American Diabetes Association 
(2004). This disease can increase or decrease blood 
glucose levels. Under normal conditions, blood 
sugar levels vary from 80-130 mg/dL. Insulin is 
created by the pancreas to mediate metabolic 
reactions with blood and maintain glucose levels in a 
normal range (Torpy et al. 2014; Center for Disease 
Control and Prevention, 2016. Uncontrolled diabetes 
may result in various medical conditions such as a 
stroke, kidney failure, heart disease, and blindness 
(Center for Disease Control and Prevention, 2016). 
Recently, the number of diabetics in the world 
continues to increase. This increase makes it 
necessary to be able to detect blood glucose levels. 
This detection is important not only for those with 
diabetes but also for non-diabetes people as a part of 
their routine clinical monitoring. This monitoring 
often requires fast, painless, non-invasive, and self-

measurement methods (Ferrante et al. 2008; 
Kurasawa et al. 2017)   

Various studies and developments of detection 
models have been done, such as a glucometer design 
to non-invasively check blood glucose by applying 
NIR at a single wavelength (Saleh et al. 2018). This 
is a promising method. Nevertheless, an assortment 
of other organic compounds present on the tissue 
can have an effect on the accuracy. Therefore, 
spectrum-based measurements are significant to 
boost the absorbance dynamics for a more thorough 
analysis. Yano et al. (2001) discussed the possibility 
of using NIR spectroscopy to simultaneously 
estimate glucose and citric acid in an aqueous 
solution of a blood anticoagulant. Zhang et al. 
(2014) utilized two-dimensional correlation 
spectroscopy (2DCS) to make the data analysis 
better. Essential investigations into the NIR 
spectrum of different organic samples have been 
carried out since the 1970s. The NIR glucose 
spectrum was also studied by Simeone et al. (2017) 
and Yano et al. (2001). In addition, a number of 
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measurement techniques have been devised like NIR 
Raman spectroscopy Zhang et al., 2013;  Lam et al., 
2010 , direct diagnostics that utilize an NIR detector 
chip implanted under the skin Saleh et al., 2018;  
Uwadaira et al, 2016) and wireless long-term 
constant observations (Dingari et al. 2011). The 
NIRS approach with an exploration into different 
spectral ranges and additional measurement methods 
has also been reviewed (Pandey et al. 2017) and 
studied using chemometrics. 

Near-infrared spectroscopy (NIRS) facilitates the 
workflow analysis and enables measurements of a 
large number of samples in a reasonably quick 
amount of time. It can gauge the concentration of 
several constituents. In numerous instances, a 
specific spectrum of a constituent can be connected 
to its fingerprint. Samples containing functional 
groups such as OH, CH, and NH are susceptible to 
NIR due to the overtones of their fundamental 
vibrations (R-H) in the IR region which match with 
the NIR absorptions. Even though the C=C and C-C 
bonds are not visible in the NIR region, their C-H 
vibrational frequencies can reveal the C=C and C-C 
bonds. The NIR absorption is commonly more 
comprehensive compared to the IR absorption 
because of the overlapping overtones and 
combination bands discussed above. Consequently, 
NIR analyses are complex and necessitate more 
detailed processes. Fortunately, the development of 
chemometrics enables NIR data to be utilized in 
appropriate processes.   

This research inspected the application of NIRS 
to decide the glucose content in whole blood from a 
healthy volunteer between a range of 80 and 130 
mg/dL. This study strove to elaborate on the 
previous measurements of glucose in an aqueous 
solution and examine the likelihood of using NIRS 
and PLSR as a substitute method to devise a non-
invasive blood glucose apparatus. 

2 METHODS 

2.1 Sample Preparations 

In this experiment, lifeblood samples were retrieved 
from a healthy volunteer with the intention of only 
focusing on the effects of glucose. All the blood 
drawings were completed within 120 minutes after 
the volunteer had finished eating and drinking 
sugary drinks. Blood drawings were taken in 15-
minute intervals using a lancet that punctured the 
individual’s fingertips. The drawing procedures 
followed standard measures using a portable 

glucometer. The amount of blood drawn each time 
was about one drop. A small amount of blood was 
used to measure the blood sugar levels with a 
glucometer while the rest was used for scanning by 
NIRS. There was a total of 8 blood drawings with 
the glucose levels indicated by a glucometer at 84, 
86, 98, 100, 111, 116, 119, and 121 mg/dL. Within 2 
hours, the blood sugar levels then returned to their 
initial levels. 

2.2 Data Acquisition 

Each blood sample was put on a metal reflector 
covered by optical glass. The space between the 
glass and metal reflector was 0.2 mm (thus a 0.4 mm 
path length with a double pass). A Fourier transform 
near-infrared spectrometer (Buchi NIRFLEX 500 
solid) with a spectral region of 4000-10000 cm-1 was 
applied in a reflectance mode using fiber optics to 
test each of the sample spectra. Each spectrum had 4 
cm-1 intervals (thus, each spectrum consisted of 1250 
data points) and averaged over 32 measurements. 
The sample temperatures were sustained at 26°C 
during the spectral acquisitions. A total of 73 spectra 
was collected with 9, 8, 9, 9, 11, 9, 8, and 10 spectra 
for the blood samples with 84, 86, 98, 100, 111, 116, 
119, and 121 mg/dL of glucose, respectively.  

2.3 Data Analysis 

A PCA analysis was applied for the 73 spectra after 
the smoothing, normalizations, and derivatives. The 
smoothing procedure was implemented using the 
Savitzky-Golay method employing a third order 
polynomial at a frame size of 21. Spectral 
normalizations were applied to eliminate 
multiplicative scattering and baseline variations. The 
details for PLSR have been clarified elsewhere. A 
total of 73 spectra were divided into two groups, 37 
spectra for the calibration set, and 36 spectra for the 
validation set. The calibration spectra were utilized 
to devise a prediction model using the partial least 
square regression (PLSR) method. PLSR attempts to 
show the relationships between groups of observed 
variables and latent variables. Validation spectra 
were applied to cross-validate them by using the 
PLSR parameters to estimate the concentrations of 
the validation samples. Both PCA and PLSR 
procedures were coded using Matlab version 2017b.  
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3 RESULTS AND DISCUSSION 

Red blood cells (erythrocytes), white blood cells 
(leukocytes), platelets (thrombocytes), and plasma 
are the main constituents of whole blood  (Basu and 
Kulkami 2014). Nearly half of whole blood is 
plasma, and about 90% of it is actually water, while 
the remaining 10% is protein. Therefore, the NIR 
spectrum of whole blood resembles the NIR 
spectrum of water. Figure 1 shows the NIR spectra 

of 27 samples, the spectrum of glucose (red) and 
water (blue). Water and glucose spectra are 
presented to indicate their bands' positions and 
widths to the whole blood spectra. The whole blood 
spectra are characterized by the well-recognized two 
strong water absorptions that appear at around 5200 
cm-1 and 7000 cm-1.  The absorption of glucose is 
much weaker when compared to that of water. 
However, a small skirt at around 4800 cm-1 strongly 
suggests that glucose is present in the whole blood. 

 

Figure 1. Near-infrared diffuse-reflectance spectra of whole blood (black). For comparison, the diffuse-reflectance spectra 
of powder glucose (red) and pure water (blue) are also shown. In this figure, the intensity of diffuse-reflectance spectra for 
powder glucose and water are unscaled. 

Although the whole blood spectral patterns are 
similar to each other, the baseline and intensity are 
relatively different. They do not entirely overlap due 
to the baseline variations and multiplicative 
scattering. For PCA and PLSR analyses, each 
spectrum was normalized to avoid a multiplicative 
scattering effect and then the first derivative was 

taken to correct the baseline variations. Figure 2 
shows the first derivative spectra. The box with the 
broken line shown at 4200-5000 cm-1 indicates this 
study’s target region for analyses (vide infra). The 
inset at the top right corner of the figure enlarges the 
spectral structure around the target region. 

 

Figure 2. First derivative spectra of the whole blood. The target region for the analyses is indicated by a box with a broken 
line and enlarged in the inset for clarity. 
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A singular value decomposition (SVD) analysis of 
the data matrix was applied to determine the spectral 
region that effectively contributed to the PCA and 
PLSR models. It shows that the effective spectral 
region is 4200 - 500 cm-1. The details of the PCA 

and PLSR calculations used in this paper are 
published elsewhere (Abdi, 2010; Tharwat (2016). 
The PCA and PLSR models were then calculated 
using a 

target spectral region of 4200 - 5000 cm-1. The 
specified target region was chosen based on the 
minimum predicted residual error sum of square 
(PRESS) at the optimum number of latent variables 
in PLSR calculations. Figure 3 depicts the PCA plot 

of the 73 spectral data. Each of the eight groups has 
different glucose clustering at their unique pc1- pc2 
-pc3 space coordinates except one spectrum of 116 
mg/dL located at the 84mg/dL group coordinate.  

 

Figure 3. PCA results of seventy-three spectral data. The spectra are grouped into eight clusters based on their glucose 
content in whole blood. The value indicated in each group designates the glucose content in mg/dL. 

In the PLSR analysis, the 73 spectral data were 
divided into two parts; 37 spectra were used for the 
calibration data set, while the remaining 36 were 
used for the validation data set. It was ensured that 
in each set, the spectrum from samples containing 
glucose of 84, 86, 98, 100, 111, 116, 119, and 121 
mg/dL were represented in almost equal numbers. 
Initially, the regression parameters were calculated 
using a calibration data set. Finally, these parameters 
were employed to predict the glucose levels through 
the corresponding spectrum in the validation data 
set. The region for analysis remained the same as 
that used in the PCA analysis. The number of latent 
variables was N=8, by which the PRESS value 
reached a minimum. The latent variable obtained in 
this analysis was the same as that obtained for cases 
of glucose in an aqueous solution. Figure 4 shows 
the results of the NIR predictions compared to the 
ones measured by electrode strips (reference). The 
blue circles indicate the results of the NIR 
predictions of the glucose content for samples in the 
calibration data set, while the red ones represent NIR 
predictions for the validation data set. The 
coefficients of the determination (R2) were 0.97 and 
0.75 for the calibration and validation, respectively. 
For PRESS, the obtained values were 70.7 and 181.4 

for the calibration and validation, respectively. 
Normally, both the R2 and PRESS for the validation 
data will be smaller than that of the calibration data 
set, as in the present case. 
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Figure 4. Comparisons between the NIR predictions and the reference values of the glucose content in whole blood. The 
blue and red circles represent the calibration and validation sets, respectively. The broken blue line shows the linear fitting 
for the calibration data set, while the broken red line shows the linear fitting for the validation data set. The solid black line 
is displayed for guidance purposes.  

The results of the NIR prediction of glucose in the 
present study appear relatively scattered as though 
less precise when compared to the NIR predictions 
obtained in previous studies Rondonuwu et al., F 
(2019). In the previous studies, however, the glucose 
contents were systematically prepared at a certain 
level so that the reference values were highly 
accurate. In this study, the reference values solely 
relied on the strip electrode measurements using a 
glucometer that has relatively large random 
deviation values. To evaluate the NIR predictions of 
the validation set in terms of clinical accuracy, we 
applied the Clarke error grid analysis. All of the NIR 
prediction data points in the validation data set were 

then transferred into the Clarke diagram, as 
indicated in Figure 5. In the Clarke diagram, region 
A was estimated to be clinically accurate, while 
region B was considered clinically acceptable. In 
this model, all of the 36 NIR predictions fall into 
region A, which means they are clinically accurate. 
Note that the examination range in this study is 
limited within 80 to 130 mg/dL, which is the range 
of healthy subjects. A more extensive range is 
necessary but requires diabetic volunteers. In this 
study, diabetic volunteers were not employed since 
they need specialized medical attention, and it is 
relatively challenging to promote them with extra 
food and beverages with high calories.  

 

Figure 5. Clarke error grid diagram. The red circles indicate the NIR predictions of the validation data set. 
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In this study, we only employed a single volunteer 
for a short time, which means the only differential 
factor affecting the measurement is glucose. The rest 
of the constituents, including lipids, proteins, and the 
physical parameters such as viscosity and 
temperature, are practically unaltered. In a more 
realistic model, different volunteers having a variety 
of whole blood conditions must be included in a 
database of PLSR calculations to increase the 
validity and accuracy of the method.   

4 CONCLUSION 

The glucose content in whole blood can be 
determined by employing near-infrared spectroscopy 
followed by the partial least squares regression 
model in the 4200-5000 cm-1 spectral region. Based 
on the Clarke error grid, the NIR spectroscopy 
technique followed by a PLSR analysis from a 
single volunteer in the 80-130 mg/dL was 
successfully predicted to be clinically accurate. 
These results shed light on the NIRS technique 
followed by the PLSR calculation to provide an 
effective and non-invasive approach to measure 
blood glucose levels. 
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