Effect of Variation HCl Concentration on Natural Zeolite Dealumination to The Content of Liquid Smoke Compounds by Hydrodeoxygenation Process

Saharman Gea^{1*}, Andriayani¹, Agus Haryono³, Abdul Malik¹, Reka Mustika Sari¹, Junifa Layla

Sihombing^{1,2}, Ahmad Nasir Pulungan^{1,2}, Rachmad Fauzi¹ and Boy Attaurrazaq¹

¹Department of Chemistry, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan, Indonesia ²Department of Chemistry, Universitas Negeri Medan, Jl. Willem Iskandar Psr. V Medan, Indonesia

³Research Centre for Chemistry, Indonesian Institute of Sciences, Banten, Indonesia

Keywords: Dealumination, Hydrodeoxygenation Process, Liquid Smoke, Sarulla Natural Zeolite.

Abstract: Recently, for its direct use as a renewable energy resource of pyrolysis biomass, liquid smoke has received increased attention. Unfornatunately, the composition of liquid smoke is very complex that cause to obvious changes in chemical properties of the liquid smoke. Therefore, the hydrodeoxygenation method required to handle this issue. The Objective of this research was the hydrodeoxygenation of liquid smoke to remove oxygenated compounds with decreased concentration of ketones and increased phenol concentration using sarulla natural zeolite dialuminated with 3M, 5M and 7M HCl concentrations at 90°C in the H₂ atmosphere. Characterization of hydrodeoxygenation product was analyzed content by gas chromatography-mass spectrometry (GC-MS). The results showed a decrease in phenol content and a rise in carbonyl at 7 M HCl dealumination while 5 M HCl dealumination increased phenol content and reduced carbonyl compounds. Treatment with concentration of 5 M HCl results in a better content of liquid smoke.

SCIENCE AND TECHNOLOGY PUBLICATIONS

1 INTRODUCTION

Liquid smoke, a by-product of the charcoal industry, is high economic in aspects of its discharge into the atmosphere. Liquid smoke is derived from dew condensation due to the decay of organic compounds during pyrolysis. The quantity of liquid pyrolysis smoke is 90.75% phenol compound, 3.71 % carbonyl and 1.81% alcohol, an antimicrobial as a meat preservative (Hadanu & Apituley, 2016).

Liquid smoke produced from pyrolysis has a higher water and oxygen content and a lower heating value than fossil fuels, which can be achieved by upgrading, i.e. hydrodeoxygenation (HDO) (Bulushev & Ross, 2011). HDO method can reduce the water and oxygen content and increase the heating value of biomass (S. P. Zhang et al., 2003).

A catalyst is necessary in the HDO process to reduce the oxygenate compound content in liquid smoke. Several studies have used catalysts Pd/C, Ru/C and Pt/C (300°C, 3 MPa H₂, 60 minutes) (Oh et al., 2016) stored (23°C, 20% RH) for 12 weeks) almost no change in color and physicochemical properties. The water content changed from 1.3% to 3.4% is still in the dry category (<6%), the acidity was reduced from 70.2 to 71 mg-KOH/g and HHV from 762 Da to 867 Da. Likewise for bio oil after HDO with Pt/Al₂O₃, Ni/HY, Pd/C catalyst (260°C, 70 Bar, 2 hours), after 140 hours there was no change in content except 0.8% to 2.9% aldehyde and 30% phenol to 27% (Alvarez-Galvan et al., 2019; Liu et al., 2019; Mortensen et al., 2011).

In the other hand, with high temperatures (above 300° C) and high H₂ pressure (2-10 MPa), the catalyst often becomes inactive due mainly to coke and water-induced structural changes (Mortensen et al., 2011). In terms of costs as well as unnecessary protection. Lercher and Jones show that cyclohexane-forming phenol hydrodeoxygenation can be performed at relatively low temperatures using bi-functional metallic acid catalysts (Mäki-Arvela & Murzin, 2017; Mo et al., 2018). Therefore research has carried out the HDO process with ethanol solvents which act as hydrogen donors and

Gea, S., Andriayani, ., Haryono, A., Malik, A., Mustika Sari, R., Layla Sihombing, J., Nasir Pulungan, A., Fauzi, R. and Attaurrazaq, B. Effect of Variation HCI Concentration on Natural Zeolite Dealumination to the Content of Liquid Smoke Compounds by Hydrodeoxygenation Process.

Effect of Variation HCI Concentration on Natural Zeoli DOI: 10.5220/0010152300002775

In Proceedings of the 1st International MIPAnet Conference on Science and Mathematics (IMC-SciMath 2019), pages 287-291 ISBN: 978-989-758-556-2

Copyright © 2022 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved

the catalyst used was natural zeolite. This study was to determine the composition of compounds from liquid smoke using natural zeolite as a catalyst without the addition of metals.

2 RESEARCH METHODS

2.1 Materials

In this research using commercial liquid smoke, natural zeolite purchased at bratachem. Ethanol (p.a), hydrogen gas and nitrogen gas.

2.2 Activation Natural Zeolite

Zeolite was sieved with the size in 100 mesh and then washed with distilled water for 24 hours then filtered and dried at 110°C. The zeolite activation was carried out by varying the HCl concentrations of 3M, 5M and 7M for 60 minutes at 90°C. After that, filtered and washed to neutral pH and then dried. Activated zeolite was calcined at 500°C for 1 hour while running nitrogen gas 10 mL/min (Sihombing et al., 2018).

2.3 Pretreatment of Liquid Smoke

Conventional liquid smoke was distilled to separate water content. Distillation was carried out at 90°C. After the liquid smoke was water-free, it was prepared to be used for the cycle of hydrodeoxygenation.

2.4 Hydrodeoxygenation of Liquid Smoke

The hydrodeoxygenation process was carried out by adding natural zeolite to liquid smoke at a ratio of 1% (w / w), then 96% ethanol was added, and refluxed at 90°C while flowing 10 mL/min hydrogen gas for 5 hours. After that, GC-MS measured the components of the compounds.

3 RESULTS AND DISCUSSION

3.1 Identification of Components of Liquid Smoke Compounds

GC-MS characterization was carried out to determine the content of compounds in bio-oil. In accordance with the main purpose of the research was to vary the catalyst with different concentrations can affect component compounds in liquid smoke, i.e increase the content of phenols and reduce the content of oxygenate compounds. GC-MS results can be seen in Fig. 1-3.

Figure 1: GC-MS chromatogram analysis of liquid smoke in 3M HCl Zeolite.

Figure 2: GC-MS chromatogram analysis of liquid smoke in 5M HCl Zeolite.

Figure 3: GC-MS chromatogram analysis of liquid smoke in 7M HCl Zeolite.

There was more than 30 types of compound components in liquid smoke which are shown in the Table 1-3.

	0/0			
No	/0 Area	Compounds		
1	0.28	1 2-Ethanediol		
2	0.17	Furan tetrahydro-2-methyl		
3	5 50	Furanone dihydro		
4	0.53	Furanone 5-methyl		
5	35 71	Phenol		
6	0.81	Phenyl alcohol		
7	0.29	2-piperidinone		
8	3.28	1 2-cyclopentanedion		
9	2.23	Pentanoic acid		
10	1.97	Ethyl.4-hydroxybutanoate		
11	0.63	Pentanoic acid.4-oxo.ethyl ester		
12	6.05	2-furanmethanol.tetrahydro		
13	2.74	Phenol.4-methyl		
14	2.64	Tetrahydrofurfurylaceate		
15	0.85	Phenol.2-methoxy		
16	0.39	3.hydroxy-2-methyl		
17	079	2-cvclopenten-1-one-3-ethvl		
18	0.44	3-methylmorpholine		
19	0.62	Dihydro-citronella		
20	1.13	2-furanone 5-methyl		
21	0.38	Methyl ester		
22	1.08	2.2-dimethy.1-one-2-silacyclo		
23	0.45	Ethyl 5-oxobexanone		
24	0.71	5-ethyldehydro		
25	13.66	1 2-benzenediol		
26	1.46	Cyclopropanecarboxamide		
27	0.36	Phenol-d6		
28	0.27	Tertramethylguanid		
29	0.45	2-methyl-3-isothiazolone		
30	0.28	2-penten.3-ethyl-2-methyl		
31	0.32	Phenol.3.4-dimethoxy		
32	2.13	3-methyl-1-hexene		
33	0.24	3-isobuthyldihydropyrazin		
34	0.67	7,7-dimethylbicyclo		
35	0.39	2-n-propylthiacyclohexane		
36	0.42	Cyclohexane.ethvl		
37	3.95	Phenol,2,6-dimethoxy		
38	0.48	1-methoxy-2,6.6-trymethyl		
39	0.32	3-buten-2-ol.2-methyl		
40	1.00	Benzaldehide,3-hydroxy		
41	0.26	Phosphonic acid		
42	0.73	Benzoic acid,4-hydroxy		
43	0.42	Methylparaben		
44	0.51	Ethanone		
45	0.47	7,8-dimethylbenzocycloocetene		
46	0.57	2,4-dihydroxy,3-methoxy		
47	0.39	Benzaldehyde,4-hydroxy		
48	0.24	Ethanone		
49	0.24	Aspidinol		

Table 1: Characterization GC-MS of liquid smoke in 3M HCl Zeolite.

No	%	Compunds		
	Area			
l	0.27	Propanoic acid		
2	0.63	2-butanone		
3	5.37	Furanone-dihydro		
4	0.52	Furanone,5-methyl		
5	40.02	Phenol		
6	0.80	Furanone,3-methyl		
7	0.35	2-piperidinone		
8	3.45	1,2-cyclopentenedione		
9	2.26	Pentanoic acid,4-oxo		
10	2.08	Ethyl,4-hydroxybutanoate		
11	0.55	Pentanoic acid,4-oxo ethyl ester		
12	6.09	2-furanmethanol,tetrahydro		
13	2.92	Phenol,4-methyl		
14	2.31	2-furanmethanol,tetrahidro-acet		
15	0.93	Phenol,2-methoxy		
16	0.31	3-hydroxy,2=methyl		
17	076	2-cyclopentene,1-one-3-ethyl		
18	0.51	2-propenyl,2-ethylbutanone		
19	0.83	2-furanone-5-methyl		
20	0.50	Ethane,1,1-diethoxy		
21	0.69	2,2-dimethyl-1-oxa		
22	0.52	2-furanone,dihydro-5-pentyl		
23	12.87	1,2-benzenediol		
24	1.12	2-propanoic acid,2-methyl-ethy		
25	0.13	3-cis-methoxy-5-cus-methyl		
26	2.23	Butanoid acid, butyl ester		
27	0.67	2,3-dihydroxy-acetophenone		
28	0.39	Cyclohexane ethyl		
29	4.64	Phenol,2,6-dimethoxy		
30	0.54	2,6-dimethyl-4-oxa		
31	0.23	1-hydroxy,2-pentanone		
32	1.02	Benzaldehide,3-hydroxy		
33	0.25	Cyclopentaneacetic acid		
34	0.76	Benzoic acid,4-hydroxy		
35	0.51	Ethanone		
36	0.62	2,3,5-trimethoxytoluene		
37	0.48	Ethanone		
38	0.44	Benzaldehide,4-hydroxy		
39	0.42	Aspinidiol		

Table 2: Characterization GC-MS of liquid smoke in 5M HCl Zeolite.

Table 3: Characterization	GC-MS	of	liquid	smoke	in	7M
HCl Zeolite.						

	NT	%	C 1					
	NO	Area	Compounds					
	1	0.28	Propanoic acid					
	2	0.47	2-etyhlbutanal					
	3	5.31	2-furanone,dihydro					
	4	0.56	Furanone,5-methyl					
	5	36.57	Phenol					
	6	0.83	Phenol					
	7	0.39	2-piperidinone					
	8	3.38	1,2-cyclopentanedione					
9 2.29		2.29	Pentanoic acid					
	10	1.96	Ethyl,4-hydroxybutanoate					
	11	0.52	Pentanoic acid,4-oxo,ethyl					
	12	5.98	Tetrahydrofurfurilalkohol					
	13	2.66	Phenol,4-methyl					
	14	2.14	2-furanmethanol					
	15	0.94	Phenol,2-methoxy					
	16	0.41	Maltol					
	17	0.85	2-cyclopenten,1-one					
	18	0.75	4-acetylbutric acid					
1	19	1.11	Furanone,5-methyl					
	20	0.65	Methylester of,4,4-dimethoxy					
	21	0.99	Methyl-2,3,4-triomethyl					
	22	0.73	Gamma,hexalactone					
J	23	13.15	1,2-benzenediol					
	24	1.40	2-propanoic acid					
	25	0.52	N-methylthiazolone					
	26	0.39	Methyltriacelatone					
	27	2.22	Butanoic acid					
	28	0.65	1,4-benzenediol					
1	29	1.25	7,7-dimethylbicyclo					
	30	0.48	3,6-dihydro-6,6-dimethyl					
	31	4.55	Phenol,2,6-dimethoxy					
	32	0.51	Naphtalenone,octahydro					
	33	0.20	1-hydroxy-2-pentanone					
	34	0.94	Vanilin					
	35	0.28	Cyclopentaneacetic acid					
	36	0.75	Benzoic acid,4-hydroxy					
	37	0.40	Methylparaben					
	38	0.41	Ethanone					
	39	0.54	2,3,5-trimethoxytoulene					
Į	40	0.51	Benzamide, diethyl, 4-hydroxy					
41 0.45 42 0.28		0.45	Benzaldehyde,4-hydroxy					
		0.28	Ethanone					
	43	0.34	Ethylisovanillymandelate					

The high peak indicates a compound most contained in bio-oil, namely phenol compounds in the form of syringol and guaiacol. It can be seen from the three tables above that phenol compounds and oxygenate compounds are the main components of bio-oil. Relative to other products, the syringol compound has the highest and most important appearance for all bio-oils. There is also a significant percentage of guaiacol after syringol relative to other compounds. Both of these compounds originate from lignin cracking, while furan, acetate, and aromatic compounds are derived from degradation of cellulose and hemicellulose (C. Zhang et al., 2016).

It appears that phenol compounds, both syringol and guaiacol, have increased concentrations in this case characterized by the percentage of the area on the GC-MS chromatogram. It can be concluded that the HDO reaction in bio-oil takes place which is characterized by a decrease in the concentration of oxygenate compounds such as ketones and an increase in alcohol concentration in this case represented by phenols.

But there was a decline in phenol levels at 7 M zeolite concentration. The possibility of zeolite with a concentration of 7M has not been able to be a good catalyst in the HDO process.

4 CONCLUSIONS

Generally, the results showed a decrease in phenol content and a rise in carbonyl at 7 M HCl dealumination while 5 M HCl dealumination increased phenol content and reduced carbonyl compounds. Treatment with concentration of 5 M HCl results in a better content of liquid smoke.

ACKNOWLEDGEMENTS

The authors would like to thanks to Universitas Sumatera utara by TALENTA 2019 scheme.

REFERENCES

- Alvarez-Galvan, M. C., Campos-Martin, J. M., & Fierro, J. L. G. (2019). Transition metal phosphides for the catalytic hydrodeoxygenation of waste oils into green diesel. In *Catalysts*. https://doi.org/10.3390/catal9030293
- Bulushev, D. A., & Ross, J. R. H. (2011). Catalysis for conversion of biomass to fuels via pyrolysis and gasification: A review. *Catalysis Today*. https://doi.org/10.1016/j.cattod.2011.02.005
- Hadanu, R., & Apituley, D. A. N. (2016). Volatile Compounds Detected in Coconut Shell Liquid Smoke through Pyrolysis at a Fractioning Temperature of 350-420 □C. Makara Journal of Science. https://doi.org/10.7454/mss.v20i3.6239
- Liu, M., Yi, Y., Wang, L., Guo, H., & Bogaerts, A. (2019). Hydrogenation of carbon dioxide to valueadded chemicals by heterogeneous catalysis and

plasma catalysis. *Catalysts.* https://doi.org/10.3390/catal9030275

- Mäki-Arvela, P., & Murzin, D. Y. (2017). Hydrodeoxygenation of lignin-derived phenols: From fundamental studies towards industrial applications. In *Catalysts*. https://doi.org/10.3390/catal7090265
- Mo, L., Yu, W., Cai, H., Lou, H., & Zheng, X. (2018). Hydrodeoxygenation of bio-derived phenol to cyclohexane fuel catalyzed by bifunctional mesoporous organic-inorganic hybrids. *Frontiers in Chemistry*. https://doi.org/10.3389/fchem.2018.00216
- Mortensen, P. M., Grunwaldt, J. D., Jensen, P. A., Knudsen, K. G., & Jensen, A. D. (2011). A review of catalytic upgrading of bio-oil to engine fuels. In *Applied Catalysis A: General.* https://doi.org/10.1016/j.apcata.2011.08.046
- Sihombing, J. L., Gea, S., Pulungan, A. N., Agusnar, H., Wirjosentono, B., & Hutapea, Y. A. (2018). The characterization of Sarulla natural zeolite crystal and its morphological structure. *AIP Conference Proceedings*.
- Zhang, C., Qi, J., Xing, J., Tang, S. F., Song, L., Sun, Y., Zhang, C., Xin, H., & Li, X. (2016). An investigation on the aqueous-phase hydrodeoxygenation of various methoxy-substituted lignin monomers on Pd/C and HZSM-5 catalysts. *RSC Advances*. https://doi.org/10.1039/c6ra22492j
- Zhang, S. P., Yan, Y. J., Ren, Z., & Li, T. (2003). Study of hydrodeoxygenation of bio-oil from the fast pyrolysis of biomass. *Energy Sources*. https://doi.org/10.1080/00908310303427