Figure 3: Pair of Nanoseconds Pulses Produced by a Seven- 
Core Fiber Laser Cavity for PIV Application. 
The produced pulses energy and FWHM of the first 
pulse and the second pulse are respectively (1.71 mJ, 
13.6 ns) and (1.70 mJ, 10.2ns) (Fig. 3). The separation 
of the neighboring peaks is actually equal to the round 
trip time for our 25 m doped fiber and 40m for 
undoped fiber. This multicore fiber laser configuration 
is a good candidate to replace the classical Nd-Yag 
laser and the one core fiber laser cavities for this 
application.
 
4 CONCLUSION  
In this paper, we have presented the design of seven 
core fiber laser cavity that is able to emit a pair of 
nanoseconds pulses separated by more than 500 ns 
applied to PIV. The produced pulses energy and 
FWHM of the first pulse and the second pulse can be 
exceed the some millijoules and would satisfy PIV 
requirements. This seven-core fiber laser cavity is a 
very good candidate to replace the Nd-YAG laser used 
classically in term of compact, low cost, beam quality, 
and spatial alignment,  and the one core fiber laser 
cavity in term of emitted energy. 
REFERENCES 
Abedin, K., et al. 2012. ‘Cladding-pumped erbium-doped 
 multicore fiber amplifier’, Optics express, Vol. 
 20, No. 18, 20191-20200. 
Adachi S., Koyamada Y. 2002. ‘Analysis and design of q- 
 switched  erbium-doped  fiber  lasers  and  their        
application to otdr’, Journal of Lightwave Technology, 
Vol. 20, No. 8, 1506. 
Beyrau, F., Weikl, M.C., Seeger, T., Leipertz, A. 2004. 
‘Application of an optical pulse stretcher to coherent 
anti-Stokes Raman spectroscopy’, Optics letters, Vol. 
29, 2381-2383. 
Huo, Y., Brown, R. T., King, G. G., Cheo P. K. 2004.   
‘Kinetic modeling of q-switched high-power  
ytterbium-doped fiber lasers’, Applied optics, Vol. 43, 
No. 6, 1404-1411. 
Huo, Y., King, G. G., Cheo, P. K. 2004.‘Second-harmonic  
generation using a high-energy and tunable q-switched 
multicore fiber laser’, IEEE Photonics Technology 
Letters, Vol.16, No.10, 2224-2226. 
Huo, Y., Cheo, P. K. 2005. ‘Analysis of transverse mode 
competition and selection in multicore fiber lasers’, 
JOSA B, Vol.22, No. 11, 2345-2349. 
https://www.dantecdynamics.com/measurementprin  
       
ciples-f-piv
 , Accessed 10 October 2017. 
 
Jouvard, J. M., Soveja, A., Lavisse, L. 2007. ‘Traitement  
        de  surface  métallique  induit  par  faisceau  laser  Nd: 
YAG Q-switch de marquage: modélisation d'un 
impact laser’, 13èmes Journées Internationales de 
Thermique, Fr, 1-5. 
Kochanowicz, M., Dorosz, D., Zajac, A. 2011. ‘Phase- lo- 
cking of 19-core yb3+ doped optical fibre’, Bulletin of 
the Polish Academy of Sciences: Technical Sciences’, 
Vol.59, No.4, 371-379. 
Kremser, B., Ziolkowski E., Friedel S., Roehner M. Stolb- 
erg, K., Klaus, Freyhold, N., ‘Processing of 
Lightweight materials with high peak power ns-pulsed 
disk lasers’, 8th International Conference on Photonic 
Technologies LANE. 
Limpert, J., Roser, F., Klingebiel, S., Schreiber, T., Wirth, 
C., Peschel, T., et al. 2007. ‘The rising power of fiber 
lasers and amplifiers’. IEEE J Sel Top Quantum 
Electron, Vol.13, No.3, 537–539. 
Majumdar,  JD., Manna, I., 2013. ‘
Laser-assisted fabri-    
cation of materials
’,  Berlin Heidelberg: Springer-
Verlag.
 
Mgharaz, D., Brunel, M., Boulezhar, A. 2009. ‘Design of 
a Bi-Pulse Fiber Laser for Particle Image Velocimetry 
Applications’, Open Optics Journal, Vol. 3, 56-62. 
Mgharaz, D., Rouchdi, N., Boulezhar, A., Brunel, M. 2011 
‘Double-clad fiber laser design for particle image  vel- 
 ocimetry and material science applications’, Optics   
 and Lasers in Engineering, Vol. 49, No. 1, 1-7. 
Michaille, L., Bennett C. R., Taylor, D. M., Shepherd T. J.   
      2009. ‘Multicore photonic crystal fiber lasers for high   
      power/energy applications’, IEEE Journal of Selected  
     Topics in Quantum Electronics, Vol.15, No.2, 328-336. 
Nassiri, A., Idrissi-Saba, H., Boulezhar, A. 2017. ‘Numer- 
       ical Analysis of Q-switched Seven-core   Ytterbium    
      Doped Fiber Lasers: Application to Materials Process-  
      ing’, Nonlinear Optics, Quantum Optics: Concepts in  
     Modern Optics, Vol.48, 193-211. 
Pan, Z., Meng, L., Ye, Q., Cai, H., Fang, Z., Qu, R.  
     (2010). ‘Repetition rate stabilization of the sbs q-  
     switched fiber laser by external injection’, Opt Express,  
     Vol.17, No.5, 3124–3129. 
Shirakawa, A., Yamada, H., Matsumoto, M., Tokurakawa,    
     M., Ueda K.-i. 2011. ‘Q-switched multicore photonic    
     crystal fiber laser phase-locked by end-seal technique’,  
     Conference on Lasers and Electro-Optics/Pacific Rim,  
     Optical Society of America, C964. 
Wang, Y., Xu, C. Q. 2007. ‘Actively Q-switched fiber las- 
ers: switching dynamics and nonlinear processes’, 
Prog Quantum Electron, Vol. 31, No. 3, 131–186.