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Abstract: This paper examines the influence of convective instability on the reaction front propagation in porous media.
The model includes heat and concentration equations and motion equations under Boussinesq approximation.
The non-stationary Darcy equation is adopted and the fluid is supposed to be incompressible. Numerical
results are performed via the dispersion relation. The simulations show that the propogating reaction front
loses stability as Vadasz number increase, it shows also more stability is gained when Zeldovich number
increased.

1 INTRODUCTION

The reaction front propagation in porous media
presents much important interest in many techno-
logical and scientifical fields like biology, ecology,
groundwater, hydrology, oil recovery to name just
a few (see for instance (Murphy, 2000; Linninger,
2008; Stevens, 2009; Nield, 2006; Gaikwad, 2015;
Faradonbeh, 2015); and references therein). In or-
der to describe the flow dynamics in porous media,
one can use the quasi-stationary or the non-stationary
Darcy equation combined to reaction-diffusion equa-
tions. In porous media, the reaction front propaga-
tion under convective effect has been studied by (Al-
lali et al., 2007; Allali, 2014); the authors have used
the reaction-diffusion equations coupled with a quasi-
stationary Darcy equation. In an other work, the au-
thors in (Khalfi. O, 2016) use non-sationary Darcy
equation and they study the influence of the reaction
front by depicting the evolution of Zeldovich num-
ber versus wave number and versus Vadasz number
highlight the influence of Vasdasz number on convec-
tive instability. In this work, an extension of this last
study will be done to the same model wich describ the
reaction front propagation with non-stationary Darcy
equation; that model will be considered and deliv-
red to linear stability analysis. For this objectif, the
porous media is considerd to be filled by an incom-
pressible fluid, morover the reaction front propagates
in opposite sense of gravity. To perform the linear
stability analysis, the Zeldovich-Frank-Kamenetskii

method is used. The interface problem is obtained
and the stability boundary is found from the derived
dispersion relation.

This paper is organized as follows. The next sec-
tion will be devoted to the governing equations, fol-
lowed in Section 3 by the linear stability analysis. Nu-
merical simulations are performed in Section 4. last
section concludes the work.

2 GOVERNING EQUATIONS

The propagating reaction front in porous media
can be modelled as follows:

∂T
∂t

+ v.∇T = κ∆T +qK(T )φ(α), (1)

∂α

∂t
+ v.∇α = d∆α+K(T )φ(α), (2)

∂v
∂t

+
µ
K

v+∇p = gβρ(T −T0)γ, (3)

∇.v = 0, (4)

under the following boundary conditions:

T = Ti, α = 1 and v = 0 when y→+∞, (5)

T = Tb, α = 0 and v = 0 when y→−∞, (6)
here β denotes the coefficient of thermal expan-

sion, µ the viscosity, Kp the permeability of the porous
media, γ the upward unit vector in the vertical direc-
tion, T the temperature, α the depth of conversion, v
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the velocity, p the pressure, κ the coefficient of ther-
mal diffusivity, d the diffusion coefficient, q the adi-
abatic heat release, g the gravity acceleration, ρ the
density. Finally, ∇ and ∆ denote the standard differ-
ential operators,

in addition T0 is the mean value of the tempera-
ture, Ti is an initial temperature while Tb is the tem-
perature of the reacted mixture given by Tb = Ti + q.
The function K(T )φ(α) is the reaction rate where the
temperature dependence is given by the Arrhenius ex-
ponential:

K(T ) = k0 exp
(
− E

R0T

)
, (7)

E means the activation energy, R0 the universal
gas constant and k0 the pre-exponential factor.

2.1 The Dimensionless Model

For the dimensionless model, we introduce the spa-
tial variables y′ = yc

κ
, x′ = xc

κ
, time t ′ = tc2

κ
, velocity

v = v
c and the pressure p′ = pµκ

K are introduced. De-
noting θ = T−Tb

q and omitting the primes of the new
variables, the model becomes:

∂θ

∂t
+v.∇θ = ∆θ+W (θ)φ(α), (8)

∂α

∂t
+v.∇α = Λ∆α+W (θ)φ(α), (9)

1
Va

∂v
∂t

+v+∇p = Rp(θ+θ0)γ, (10)

∇.v = 0, (11)

which is supllemented by the following conditions
in infinity:

θ =−1, α = 1 and v = 0 when y→+∞, (12)

θ = 0, α = 0 and v = 0 when y→−∞. (13)

Here W (θ) = Z exp
(

θ

Z−1 +δθ

)
, where Z =

qE
R0T 2

b
is

the Zeldovich number, δ =
R0Tb

E
,

θ0 =
Tb−T0

q
, Λ =

d
κ

is the inverse of Lewis num-

ber, Rp =
Kpc2P2

r R
µ2 where R is the Rayleigh number

defined by R =
gβqκ2

µc3 , Pr is the Prandtl number de-

fined by Pr =
µ
κ

, Va =
κµ

Kpc2 is the Vadasz number(
called also Darcy-Prandtl number; Va wich is given

by Va =
Da

Pr
, where Da is the Darcy number defined by

Da =
c2Kp

κ2

)
. In what follows, Λ = 0 will be consid-

ered, wich corresponds to liquid mixture.

3 LINEAR STABILITY ANALYSIS

3.1 Approximation of Infinitely Narrow
Reaction Zone

By using an analytical study which reduces the prob-
lem (8)-(13) to a singular perturbation one, where
the reaction zone is assumed to be narrow (which is
named the reaction front), the linear stability analysis
is performed. The reaction source term is neglected
ahead of the reaction front (because the temperature
is not sufficiently high) and behind the reaction front
(since in this region there are no fresh reactant left).
This approach, called Zeldovich-Frank-Kamenetskii
approximation, leads to an interface problem by ap-
plying a formal asymptotic analysis for large Zel-
dovich number. In other words, for this asymptotic

analysis treatment, let considers ε =
1
Z

as a small pa-

rameter. And let assum by ζ(t,x) the location of the
reaction zone, and consider the new independent vari-
able is

y1 = y−ζ(t,x). (14)

Taking into account those new statements, the new
functions θ1, α1, v1, p1 can be written as:

θ(t,x,y) = θ1(t,x,y1), α(t,x,y) = α1(t,x,y1),

v(t,x,y) = v1(t,x,y1), p(t,x,y) = p1(t,x,y1).
(15)

By the way, the equations will be re-written in the fol-
lowing form (the index 1 for the dependent variables
is omitted):

∂θ

∂t
− ∂θ

∂y1

∂ζ

∂t
+v · ∇̃θ = ∆̃θ+W (θ)φ(α), (16)

∂α

∂t
− ∂α

∂y1

∂ζ

∂t
+v · ∇̃α =W (θ)φ(α), (17)

1
Va

(
∂v
∂t
− ∂v

∂y1

∂ζ

∂t
)+v+ ∇̃p = Rp(θ+θ0)γ, (18)

∂vx

∂x
− ∂vx

∂y1

∂ζ

∂x
+

∂vy

∂y1
= 0, (19)

where

∆̃ =
∂2

∂x2 +
∂2

∂y2
1
−2

∂ζ

∂x
∂2

∂x∂y1
+
(

∂ζ

∂x

)2 ∂2

∂y2
1
− ∂2ζ

∂x2
∂

∂y1
,

(20)
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∇̃ =
(

∂

∂x
− ∂ζ

∂x
∂

∂y1
,

∂

∂y1

)
. (21)

To find the jump conditions approximation and so-
lution of the interface problem, the matched asymp-
totic expansions method is used. To this aim, the outer
solution of the problem is sought in the form:

θ = θ
0̆ + εθ

1̆ + ..., α = α
0̆ + εα

1̆ + ...,

v = v0̆ + εv1̆ + ..., p = p0̆ + εp1̆ + ....
(22)

For the inner solution, the stretching coordinate
η= y1/ε is introduced and the inner solution is sought
in the following form:

θ = εθ̃
1̆ + ..., α = α̃

0̆ + εα̃
1̆ + ...,

v = ṽ0̆ + εṽ1̆ + ..., p = p̃0̆ + ε p̃1̆ + ...,

ζ = ζ̃
0̆ + εζ̃

1̆ + ....

(23)

Substituting these expansions into (16)-(19),
it follows:

order ε−1

(
1+
(

∂ζ̃0̆

∂x

)2)∂2θ̃1̆

∂η2 +exp
(

θ̃1̆

1+δθ̃1̆

)
φ(α̃0̆) = 0,

(24)

− ∂α̃0̆

∂η

∂ζ̃0̆

∂t
− ∂α̃0̆

∂η

(
ṽ0̆

x
∂ζ̃0̆

∂x
− ṽ0̆

y

)
= exp

(
θ̃1̆

1+δθ̃1̆

)
φ(α̃0̆), (25)

− 1
Va

∂ṽ0̆
x

∂η

∂ζ̃0̆

∂t
− ∂ p̃0̆

∂η

∂ζ̃0̆

∂x
= 0, (26)

− 1
Va

∂ṽ0̆
y

∂η

∂ζ̃0̆

∂t
− ∂ p̃0̆

∂η
= 0, (27)

−∂ṽ0̆
x

∂η

∂ζ̃0̆

∂x
+

∂ṽ0̆
y

∂η
= 0, (28)

order ε0

1
Va

(
∂v0̆

x

∂t
− ∂v1̆

x

∂η

∂ζ0̆

∂t
− ∂ζ1̆

∂t
∂v0̆

x

∂η

)
+

∂p0̆

∂x

− ∂p0̆

∂η

∂ζ1̆

∂x
− ∂p1̆

∂η

∂ζ0̆

∂x
+ v0̆

x = Rpθ0, (29)

1
Va

(
∂v0̆

y

∂t
−

∂v1̆
y

∂η

∂ζ0̆

∂t
− ∂ζ1̆

∂t
∂v0̆

y

∂η

)
+

∂p1̆

∂η
+ v0̆

y = Rpθ0,

(30)

order ε1

1
Va

(
∂ṽ0̆

x

∂t
− ∂ṽ0̆

x

∂η

∂ζ̃2̆

∂t
− ∂ζ1̆

∂η

∂ṽ1̆
x

∂t
− ∂ζ̃2̆

∂η

∂ṽ0̆
x

∂t

)
+

∂p̃1̆

∂x

− ∂p̃0̆

∂η

∂ζ2̆

∂x
− ∂ p̃1̆

∂η

∂ζ̃1̆

∂x
− ∂ p̃2̆

∂η

∂ζ̃0̆

∂x
+ v1̆

x = Rpθ̃
1̆,

(31)

1
Va

(
∂ṽ0̆

y

∂t
−

∂ṽ0̆
y

∂η

∂ζ̃2̆

∂t
− ∂ζ1̆

∂η

∂ṽ1̆
y

∂t
− ∂ζ̃2̆

∂η

∂ṽ0̆
y

∂t

)
+

∂ p̃2̆

∂η
+ v1̆

y = Rpθ̃
1̆, (32)

order ε2

∂ṽ2̆
x

∂x
− ∂ṽ3̆

x

∂η

∂ζ̃0̆

∂x
− ∂ṽ2̆

x

∂η

∂ζ̃1̆

∂x
− ∂ṽ1̆

x

∂η

∂ζ̃2̆

∂x

− ∂ṽ0̆
x

∂η

∂ζ̃3̆

∂x
+

∂ṽ3̆
y

∂η
= 0. (33)

The matching conditions as η→±∞ are

ṽ0̆ ∼ v0̆
∣∣∣∣
y1=±0

, (34)

ṽ1̆ ∼
(

∂v0̆

∂y1

∣∣∣∣
y1=±0

)
η+ v1̆

∣∣∣∣
y1=±0

, (35)

ṽ2̆ ∼ 1
2

(
∂2v0̆

∂y2
1

∣∣∣∣
y1=±0

)
η

2 +

(
∂v1̆

∂y1

∣∣∣∣
y1=±0

)
η

+ v2̆
∣∣∣∣
y1=±0

, (36)

ṽ3̆ ∼ 1
6

(
∂3v0̆

∂y3
1

∣∣
y1=±0

)
η

3 +
1
2

(
∂2v1̆

∂y2
1

∣∣∣∣
y1=±0

)
η

2

+

(
∂v2̆

∂y1

∣∣∣∣
y1=±0

)
η+ v3̆

∣∣∣∣
y1=±0

. (37)

Let us consider both the outer and the inner expan-
sion of the temperature (the same technique for the
variables α and v is used) and recall that η = y1/ε:

θ(x,y1) = θ
0̆(x,y1)+ εθ

1̆(x,y1)+ ε
2
θ

2̆(x,y1)+ ...,

θ(x,εη) = εθ̃
1̆(x,η)+ ε

2
θ̃

2̆(x,η)+ ....

Writing the outer solution in terms of the inner vari-
able η and using the Taylor expansion:

θ(x,y1) = θ
0̆(x,0)+ ε

(
∂θ0̆

∂η
(x,0)η+θ

1̆(x,0)
)
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+ε
2
(1

2
∂2θ0̆

∂η2 (x,0)η2 +
∂θ1̆

∂η
(x,0)η+θ

2̆(x,0)
)
+ ....

The zero order terms with respect to ε correspond
to the stationary solution. Taking into account that
∂θ0̆

∂η
(x,0−) = 0 and using the matching principle

(Nayfeh, 2008), it follows the matching conditions:

η→+∞ : θ̃
1̆ ∼ θ

1̆
∣∣∣∣
y1=0+

+η
∂θ0̆

∂y1

∣∣∣∣
y1=0+

,

α̃
0̆→ 0, ṽ0̆→ v0̆

∣∣∣∣
y1=0+

, (38)

η→−∞ : θ̃
1̆→ θ

1̆
∣∣∣∣
y1=0−

, α̃
0̆→ 1,

ṽ0̆→ v0̆
∣∣∣∣
y1=0−

. (39)

Denoting by s the quantity

s = ṽ0̆
x

∂ζ̃0̆

∂x
− ṽ0̆

y , (40)

Relation (28) gives that the parameter s does not de-
pend on η.

The jump conditions are derived from (24), in the
same way as it is usually done for combustion prob-
lems. From (25), it follows that α̃0̆ is a monotone
function of η and 0 < α̃0̆ < 1. Since zero-order reac-
tion is considered, it results φ(α̃0̆) ≡ 1. Using (24),

one concludes that
∂2θ̃1̆

∂η2 ≤ 0. when η→−∞ and tak-

ing into account (39), one has
∂θ̃1̆

∂η
= 0. Then

∂θ̃1̆

∂η
≤ 0

and θ̃1̆ is a monotone function.

Multiplying (24) by
∂θ̃1̆

∂η
and integrating with

respect to η from −∞ to +∞ taking into account
(38), (39) (θ̃1̆ changes from θ1̆|y1=0− to −∞ when η

changes from −∞ to +∞):(
∂θ̃1̆

∂η

)2∣∣∣∣∣
η=+∞

−

(
∂θ̃1̆

∂η

)2∣∣∣∣∣
η=−∞

=

2
A

∫
θ1̆
∣∣

y1=0−

−∞

exp
(

τ

1+δτ

)
dτ, (41)

where

A = 1+
(

∂ζ̃0̆

∂x

)2
. (42)

By adding (24) and (25) and integrating, one obtains:

∂θ̃1̆

∂η

∣∣∣
η=+∞

−∂θ̃1̆

∂η

∣∣∣
η=−∞

=− 1
A

(
∂ζ̃0̆

∂t
+ s
)
. (43)

Truncating the outer expansion (22), it follows that
θ ≈ θ0̆, ζ0̆ ≈ ζ, v ≈ v0̆. From the inner expansion
(23), one obtains Zθ≈ θ̃1̆, and from the matching

condition (39), θ̃1̆
∣∣∣∣
η=−∞

≈ θ1̆
∣∣∣∣
y1=0−
≈ Zθ|y1=0− . Thus,

θ
0̆ ≈ θ, θ

1̆
∣∣∣∣
y1=0−

≈ Zθ

∣∣∣∣
y1=0

, ζ
0̆ ≈ ζ, v≈ v0̆, (44)

The jump conditions are obtained (with the change
of variables τ→ Zτ under the integral)(

∂θ

∂y1

)2∣∣∣∣∣
y1=0+
−

(
∂θ

∂y1

)2∣∣∣∣∣
y1=0−
= 2Z

(
1+

(
∂ζ

∂x

)2)−1

×
∫

θ

∣∣
y1=0

−∞

exp

(
τ

Z−1 +δτ

)
dτ, (45)

∂θ

∂y1

∣∣∣
y1=0+

− ∂θ

∂y1

∣∣∣
y1=0−

=−
(

1+
(

∂ζ

∂x

)2)−1

×
(

∂ζ

∂t
+
(

vx
∂ζ

∂x
− vy

)∣∣∣
y1=0

)
, (46)

vz

∣∣∣∣
z1=0+

= vz

∣∣∣∣
z1=0−

, (47)

∂vy

∂y1

∣∣∣∣
y1=0+

=
∂vy

∂y1

∣∣∣∣
y1=0−

, (48)

∂2vy

∂y2
1

∣∣∣∣
y1=0+

=
∂2vy

∂y2
1

∣∣∣∣
y1=0−

, (49)

∂3vy

∂y3
1

∣∣∣∣
y1=0−

−
∂3vy

∂y3
1

∣∣∣∣
y1=0+

=

−Rp

(
1+
(

∂ζ

∂x

)2)−1

×((
1+
(

∂ζ

∂x

)2)−1

−1
)

∂θ

∂y

∣∣∣∣
y1=0+

. (50)

Here only the component vy of the velocity
is used.

3.2 Formulation of the Interface
Problem

The interface problem will be written in two system of
equations one for the media before reaction, and one
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for the media after reaction; and for the jump condi-
tions they will be extracted from the free boundary
problem seen previously.

To find the jump conditions approximation and so-
lution of the interface problem, the matched asymp-
totic expansions method is used, this leads to:

For unburnt medium (y > ζ):

∂θ

∂t
+v ·∇θ = ∆θ, (51)

α≡ 0, (52)

1
Va

∂v
∂t

+v+∇p = Rp(θ+θ0)γ, (53)

∇ ·v = 0. (54)

And for the burnt medium (y < ζ):

∂θ

∂t
+v ·∇θ = ∆θ, (55)

α≡ 1, (56)

1
Va

∂v
∂t

+v+∇p = Rp(θ+θ0)γ, (57)

∇ ·v = 0. (58)

These systems is completed by the following jump
conditions at the interface y = ζ:

[θ] = 0,
[

∂θ

∂y

]
=

∂ζ

∂t

1+
(

∂ζ

∂x

)2 , (59)

[(
∂θ

∂y

)2]
=− 2Z

1+( ∂ζ

∂x )
2

∫
θ(t,x,ζ)

−∞

exp
( s

1/Z +δs

)
ds,

(60)
[v] = 0, (61)[
∂v
∂y

]
= 0, (62)

[
∂2v
∂y2

]
= 0, (63)

with [ ] denotes the jump at the interface,

[ f ] = f |ζ0+
− f |ζ0−

.

This free boundary problem is completed by
the following conditions:

θ =−1 and v = 0 when y→+∞, (64)

θ = 0 and v = 0 when y→−∞. (65)

3.3 Travelling Wave Solution

In this subsection, the linear stability analysis of the
steady-state solution for the interface problem is per-
formed. Indeed, this interface problem has a travel-
ling wave solution (θ,α,v) such as:

θ(t,x,y) = θs(y−ut), α(t,x,y) = αs(y−ut),
v = 0,ζ = ut, (66)

with

θs(y1) =

{
0 if y1 < 0
e−uy1 −1 if y1 > 0

(67)

and

αs(y1) =

{
1 if y1 < 0
0 if y1 > 0

, (68)

here y1 = y−ut denotes the moving coordinate frame,
where u is the wave speed. With these coordinates,
the travelling wave is a stationary solution of the prob-
lem:

∂θ

∂t
+u

∂θ

∂y1
+v ·∇θ = ∆θ, (69)

1
Va

∂v
∂t

+v+∇p = Rp(θ+θ0)γ, (70)

∇ ·v = 0, (71)

supplemented with the jump conditions (59)-(63).
Consider now a small time-dependent perturba-

tion of the stationary solution of the form. To be done,
let’s choose the perturbation of the temperature and
the velocity in the following form:

ζ(t,x) = ut +ξ(t,x), (72)

θ(t,x,y) = θs(y−ut)+θ j(z)eωt+ikx, j = 1,2,

vy(t,x,y) = v j(z)eωt+ikx,
(73)

where

z = y−ζ(t,x) = y−ut−ξ(t,x), ξ(t,x) = ε1eωt+ikx,
(74)

j = 1 corresponds to z < 0 and j = 2 to z > 0.
Now, the system (69)-(71) needs to be linearized

around the stationary solution. For simplicity, the
pressure p and the component vx of the velocity will
be eliminated from the interface problem by applying
two times the operator curl. Hence, this expression is
obtained by applying this transformation to the equa-
tion (70):

1
Va

∂

∂t
(∇× (∇×v))+∇× (∇×v)

= Rp∇× (∇× (θ+θ0)γ),
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thus

1
Va

∂

∂t
(∇(∇.v)−4v)+∇(∇.v)−4v

= Rp(∇(∇.(θ+θ0)γ)−4(θ+θ0)γ),

due to the incompressibility of the fluid, it deduced:

1
Va

∂

∂t
(−4v)+(−4v) =−Rp(∇(∇.(θγ))−4θγ),

which drive to

−1
Va

∂

∂t
(

∂2vy

∂x2 +
∂2vy

∂y2 )− (
∂2vy

∂x2 +
∂2vy

∂y2 ) =

Rp(
∂2θ

∂y2 − (
∂2θ

∂x2 +
∂2θ

∂y2 )),

by replacing vy by its value (73), it result

1
Va

∂

∂t
(−k2v jeωt+ikx + v”

je
ωt+ikx)+

(−k2v jeωt+ikx + v”
je

ωt+ikx) = Rp(−k2
θ j)eωt+ikx,

so
ω

Va
(−k2v j + v”

j)+(−k2v j + v”
j) = Rp(−k2

θ j).

From below, the following differential systems of
equations are obtained:

For z < 0:

θ
′′
1 +uθ

′
1− (ω+ k2)θ1 = 0, (75)

v”
1− k2v1 =−

Va

ω+Va
Rpk2

θ1. (76)

For z > 0:

θ
”
2 +uθ

′
2− (ω+ k2)θ2 =−v2ue−uz, (77)

v”
2− k2v2 =−

Va

ω+Va
Rpk2

θ2. (78)

These systems is supplemented with the following
linearized jump conditions:

θ2(0)−θ1(0) = uε1, (79)

θ
′
2(0)−θ

′
1(0) =−ε1(u2 +ω), (80)

−u(u2
ε1 +θ

′
2(0)) = Zθ1(0), (81)

v(i)1 (0) = v(i)2 (0) for i = 0,1, (82)

where

v(i) =
∂iv
∂zi , θ

′ =
∂θ

∂y1
,

for z < 0, the resolution of (75) and (76) gives:

θ1(z) = a1eµz,

v1(z) = a1
Rpk2Va

(k2−µ2)(ω+Va)
eµz +a2ekz

with µ =
−u+

√
u2 +4(ω+ k2)

2
(83)

and for z> 0, the resolution of (77) and (78) gives:

v2(z) = b1w1 +b2w2, θ2(z) = b1s1 +b2s2,

with

wi(z) = ∑
j≥1

ai, jeσi, jz and si(z) = ∑
j≥1

ci, jeσi, jz

for i = 1,2 (84)

here a1,b1, a2, and b2 are arbitrary constants and the
coefficients ai, j, σi, j are given by:

σ1,1 =
−u−

√
u2 +4(ω+ k2)

2
, σ2,1 =−k,

c1,1 = 1, c2,1 = 0,
a1,1 = 0 a2,1 = 1,

∀ j ≥ 1 : ;σi, j+1 = σi, j−u for i = 1,2,

∀ j ≥ 1 : ;ci, j+1 =
−u

σ2
i, j+1 +uσ2

i, j+1− (ω+ k2)
ai, j

for i = 1,2,

with respect of the conditions:

(Va +ω) 6= 0,

∀ j ≥ 1 : σ
2
i, j+1 +uσ

2
i, j+1− (ω+ k2) 6= 0

for i = 1,2,

∀ j ≥ 1 : (σ2
i, j− k2) 6= 0

for i = 1,2,

∀ j ≥ 1 : ai, j =
−Rpk2Va

(Va +ω)(σ2
i, j− k2)

ci, j (85)

for i = 1,2 and (i, j) 6= (2,1).

The constants are sought from the jump conditions
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b1s1(0)+b2s2(0)−a1 = uε1
b1s′1(0)+b2s′2(0)−µa1 =−ε1(u2 +ω)

b1s′1(0)+b2s′2(0)+a1
Z
u
=−u2

ε1

b1w1(0)+b2w2(0)+
VaRpk2a1

(ω+Va)(µ2− k2)
−a2 = 0

b1w′1(0)+b2w′2(0)+
VaRpk2µa1

(ω+Va)(µ2− k2)
− ka2 = 0

(86)
To find the dispersion relation, it is convenient ot

subtracts the third equation from second equation of
the system (86), wich gives:

a1 =
uω

uµ+Z
ε1. (87)

Now by using the right linear combinaison of the
first and second lines in (86), the coefficients b1 and
b2 are obtained

b1 =
(a1 +uε1)s′2(0)+(ε1(u2 +ω)−µa1)s2(0)

s′2(0)s1(0)− s2(0)s′1(0)
,

(88)

=
(us′2(0)+(u2 +ω)s2(0))ε1 +(s′2(0)−µs2(0))a1

s′2(0)s1(0)− s2(0)s′1(0)
,

b2 =
(a1 +uε1)s′1(0)+(ε1(u2 +ω)−µa1)s1(0)

s′1(0)s2(0)− s1(0)s′2(0)
,

(89)

=
(us′1(0)+(u2 +ω)s1(0))ε1 +(s′1(0)−µs1(0))a1

s′1(0)s2(0)− s1(0)s′2(0)
,

to obtain a2, the fourth line in the system (86) will
be used. That’s leads:

a2 = b1w1(0)+b2w2(0)+
VaRpk2

(ω+Va)(µ2− k2)
a1.

(90)
At end from the fifth equation of the system (86),

the following dispersion relation is obtained:

(kw1(0)−w
′
1(0))(Buω+F(uµ+Z))
(uµ+Z)D

+

(Auω+E(uµ+Z))(kw2(0)−w
′
2(0))

(uµ+Z)C
+

VaRpk2uω

(ω+Va)(µ+ k)(uµ+Z)
= 0, (91)

with

A = s′1(0)−µs1(0), B = s′2(0)−µs2(0),

C =−s′1(0)s2(0)+ s1(0)s′2(0),

D =−s′2(0)s1(0)+ s2(0)s′1(0),

E = us′1(0)+(u2 +ω)s1(0),

F = us′2(0)+(u2 +ω)s2(0).

4 NUMERICAL SIMULATIONS

The dispersion relation (91) is solved numeri-
cally by using Maple software and the convergence of
the series (84) is tested within small tolerance limit.
This gives the stability threshold of the reaction front.
From (83), (85) and (91), it’s seen that when ω = 0,
Vadasz number will not affect the stability thersh-
old. For this reason, those numerical simulations will
check the oscillatory stability threshold.

Figure 1: Critical Railey R versus wave number k for differ-
ent values of Zeldovich number Z and for Va = 40.

Following the same steps as in (Khalfi. O, 2016),
the interface problem is sloved by introducing the
travelling wave solution and reducing the system to
a dispersion relation. Figure 1 shows the evolution of
critical Raylaigh number Rc as function of wave num-
ber k for different values of Zeldovich number with
u =
√

2. Here, it is remarqued that the reaction front
gains stability when Zeldovich number increases. It
can also be seen that for small values of k (k < 0.4)
the number critical Rayleig becomes very large and
Rc increases with the wave number k when (k < 0.4).

The critical Rayleigh number Rc versus Vadasz
number for different values of Zeldovich number with
u =
√

2 and Va = 40 is shown in figure 2. Here, the
lost of stablility is visible when Vadasz number Va in-
creases, it is also remarqued that the loss of stability
is more improtant for a bigger values of Zeldovich
number Z.
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Figure 2: Critical Railey number R versus Vadasz number
Va for different values of Zeldovich number Z and for k =
0.5.

5 CONCLUSIONS

In this paper, we have studied a problem decribing
the reaction front propagation in porous media. The
model consists of two reaction diffusion equations of
heat and concentration coupled of those of hydrody-
namics under Darcy law.

It was observed that the key parameters of the
problem play an essential role in the convective sta-
bility of the propagating reaction front. Indeed, it was
observed that the reaction front gains stability when
Zeldovich number increases, also the lost of stablility
is remarked when Vadasz number increases.
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