4 CONCLUSIONS 
Simulation of control system for evaporator have 
been done. The result shows that PID-fuzzy reach 
faster rise and settling time on the step response 
compare to the PID control system. The ramp 
response show that the control system is able to adjust 
the output in-line with the desired temperature. The 
future work is finishing experimental setup which 
implement the simulation result and do experiment of 
deposition with the thermal evaporator. 
ACKNOWLEDGEMENTS 
We would like to thanks to Faculty of Engineering 
UNNES for providing research grant for this work. 
REFERENCES 
Asraf, H. M., Dalila, K. A. N., Hakim, A. W. M., & 
Hon, R. H. M. F. (2017). Development of 
Experimental Simulator via Arduino-based PID 
Temperature Control System using LabVIEW. 
Journal of Telecommunication, Electronic and 
Computer Engineering, Vol 9(1–5), 53–57. 
Atia, D. M., & El-madany, H. T. (2016). Analysis and 
design of greenhouse temperature control using 
adaptive neuro-fuzzy inference system. Journal 
of Electrical Systems and Information 
Technology, Vol 4(1), pp 34-48 
Choi, H. H., Yun, H. M., & Kim, Y. (2013). 
Implementation of Evolutionary Fuzzy PID 
Speed Controller for PM Synchronous Motor, 
(c), Vol 11(2), pp 540-547 
Huang, H., Zhang, S., Yang, Z., Tian, Y., Zhao, X., 
Yuan, Z., … Wei, Y. (2018). Modified Smith 
fuzzy PID temperature control in an oil-
replenishing device for deep-sea hydraulic 
system.  Ocean Engineering,  149(November 
2017), Vol 149,  14–22.  
Jung, J., Leu, V. Q., Do, T. D., Kim, E., & Choi, H. 
H. (2015). Adaptive PID Speed Control Design 
for Permanent Magnet Synchronous Motor 
Drives.  IEEE Transactions on Power 
Electronics, Vol 30(2), pp 900–908. 
https://doi.org/10.1109/TPEL.2014.2311462 
Khan, I. A., Amna, N., Kanwal, N., Razzaq, M., 
Farid, A., Amin, N., … Ahmad, R. (2017). Role 
of oxygen pressure on the structural, 
morphological and optical properties of c -Al 
2
 
O 
3
 films deposited by thermal evaporator. 
Materials Research Express, Vol 4(3), 036402.  
Kobersi, I. S., Finaev, V. I., Almasani, S. A., & Abdo, 
K. W. A. (2013). Control of the heating system 
with fuzzy logic. World Applied Sciences 
Journal, Vol 23(11), 1441–1447. 13156 
Kumar, A., & Kumar, V. (2017). A novel interval 
type-2 fractional order fuzzy PID controller: 
Design, performance evaluation, and its 
optimal time domain tuning. ISA Transactions, 
Vol 68, pp 251–275.  
Lal, D. K., Barisal, A. K., & Tripathy, M. (2018). 
Load Frequency Control of Multi Area 
Interconnected Microgrid Power System using 
Grasshopper Optimization Algorithm 
Optimized Fuzzy PID Controller. 2018 Recent 
Advances on Engineering, Technology and 
Computational Sciences (RAETCS), pp 1–6. 
Liu, L., Pan, F., & Xue, D. (2015). Variable-order 
fuzzy fractional PID controller. ISA 
Transactions, Vol 55, pp 227–233.  
Ochoa, G. V., & Forero, J. D. (2018). Fuzzy Adaptive 
PID Controller Applied to an Electric Heater in 
MATLAB / Simulink, Vol 11(58), pp 2849–
2856. 
Premkumar, K., & Manikandan, B. V. (2014). 
Adaptive Neuro-Fuzzy Inference System based 
speed controller for brushless DC motor. 
Neurocomputing, Vol 138, pp 260–270. 
https://doi.org/10.1016/j.neucom.2014.01.038 
Sahu, B. K., Pati, S., Mohanty, P. K., & Panda, S. 
(2015). Teaching-learning based optimization 
algorithm based fuzzy-PID controller for 
automatic generation control of multi-area 
power system. Applied Soft Computing 
Journal, Vol 27, pp 240–249.  
Singhala, P., Shah, D. N., & Patel, B. (2014). 
Temperature Control using Fuzzy Logic. 
International Journal of Instrumentation and 
Control Systems (IJICS), Vol 4(1), pp 1–10.  
Vasičkaninová, A., Bakošová, M., Mészáros, A., & 
Oravec, J. (2015). Fuzzy controller design for a 
heat exchanger. Intelligent Engineering 
Systems (INES), 2015 IEEE 19th International 
Conference On, pp 225–230.