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Abstract: Transmission of the diseases can occur through interactions within the infection chain either directly or 
indirectly. In some cases, there are diseases that can enter endemic conditions; conditions of an outbreak of 
a disease in an area over a long period of time. This condition can be mathematically modeled by using 
certain assumptions and   solved by the analytical and numerical solutions. In this research, we analyze the 
stability of disease spread by building a mathematical model of SIRS epidemic in infectious disease, whose 
numerical solution is obtained through Runge-Kutta 5th Order Method and simulated with MATLAB R2010 
software. In the result of the simulation, it is concluded that the greater the rate of disease transmission, the 
lower the rate of recovery is and natural death can be caused endemic condition. 

1 INTRODUCTION 

The epidemic model studies the dynamics of the 
spread or transmission of a disease in a population. 
The SIRS epidemic model is an outgrowth of the 
SIR epidemic model. The SIRS epidemic model 
differs from the previous model when individuals 
who have recovered can return to the susceptible 
class. 

The numerical method is also called an 
alternative to the analytic method, which is a method 
of solving mathematical problems with standard or 
common algebraic formulas. So, called, because 
sometimes math problems are difficult to solve or 
even cannot be solved analytically so it can be said 
that the mathematical problem has no analytical 
solution. Alternatively, the mathematical problem is 
solved by numerical method, for which the Runge-
Kutta method of order 5 is used with a high degree 
of accuracy. 

2 RUNGE-KUTTA ORDER 5 

The fifth-order Runge-Kutta method is the most 
meticulous method in terms of second, third and 
fourth order (Chapra, 2004). The fifth-order Runge-

Kutta order is derived and equates to the terms of the 
taylor series for the value of n = 5. 

The fifth-order Runge-Kutta can be done by 
following the steps below (Tulus. 2012): 
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3 MODEL FORMULATION  

Let ܵሺݐሻ,  ሻ successive statesݐሻ and ܴሺݐሺܫ
subpopulation density of susceptible individuals is 
infected and recovered, with number at time ݐ 
(Sinuhaji, 2015). In this model it is assumed that the 
total population density at all times is constant, that 
is ܰ ൌ ܵሺݐሻ ൅ ሻݐሺܫ ൅ ܴሺݐሻ (Adda and Bichara, 
2012). SIRS models discussed in this paper 
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compartment are illustrated in the following 
diagram:  

 

Figure 1: SIRS Model 

 
Obtained system of ordinary differential 

equations with three dependent variables were 
respectively declared rate of change in density of 
susceptible, infected and recovered:  
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Since the total population rate is equal to the rate 

of death, then ߤ = ߉ଵܵ ൅ ሺߤଶ ൅ ܫሻߜ ൅ ܵ ଷܴ, andߤ ൅
ܫ ൅ ܴ ൌ ܰ so the system becomes 
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, then system (3.2) 

with the first two equations can be simplified into: 
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Note that the first two equations in the system 

(3.3) do not contain the variable R (t) so that for the 
next reason it is enough to discuss the system with 
two equations. If the value of ܵሺݐሻ and  ܫሺݐሻ has 
been obtained, then the value of ܴሺݐሻ will be 
obtained by using the relationship ܵ ൅ ܫ ൅ ܴ ൌ ܰ.  

4 RESULT 

4.1 Disease Free Equilibrium Point 

The equilibrium point is reached when the variable 
that originally changes with time becomes constant. 

Thus, the equilibrium point is obtained when 
ௗௌ

ௗ௧
 and 

ௗூ

ௗ௧
 in equation (4) are zero. 
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Based on equation (6) two possibilities are 

obtained, namely ܫ ൌ 0 or ܵ ൌ
ఓమାఋାఈ

ఉ
. If ܫ ൌ 0 is 

substituted in equation (5). 
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obtained ܵ ൌ 1, so that obtained the disease-free 

equilibrium point ܧ଴ ൌ ሺ1,0ሻ.  

4.2 The Endemic Equilibrium Point 

The endemic equilibrium point is a point that 
indicates the possibility of spreading the disease in 

the population. In equation (6) if ܵ ൌ
ఓమାఋାఈ

ఉ
, 

obtained equilibrium point is a second, which is the 
point of equilibrium endemics ܧ∗ ൌ ሺܵ∗,  ሻ, with∗ܫ
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equilibrium point ܧ∗ ൌ ሺܵ∗,   ሻ will exist when∗ܫ
ܴ଴ ൐ 1. 

4.3 Analysis of Local Stability on ࡱ૙ 

The nature of local stability at equilibrium point E_0 
is determined by linearizing the system of equation 
(4) around the equilibrium point. 
Suppose:  
 

݂ሺܵ, ሻܫ ൌ െܫܵߚ ൅ ሺߤଶ ൅ ߜ െ ଷߤ െ  ܫሻߛ
		െሺߤଷ ൅ ሻܵߛ ൅ ሺߤଷ ൅   ሻߛ

݃ሺܵ, ሻܫ ൌ ܫܵߚ െ ሺߤଶ ൅ ߜ ൅  ܫሻߙ
 

Then each function is derived partially to the 
variable on the function, so that Jacobi matrix is 
obtained 
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The system linearization of equation (4) around 
the equilibrium point ܧ଴ ൌ ሺ1,0ሻ gives the Jacobi 
matrix 
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which has an eigen value ߣଵ ൌ െሺߤଷ ൅ ሻߛ ൏ 0 
and ߣଶ ൌ ߚ െ ሺߤଶ ൅ ߜ ൅ ଶߣ ሻ orߙ ൌ ሺܴ଴ െ
1ሻሺߤଶ ൅ ߜ ൅ ሻ. If ܴ଴ߙ ൏ 1 then ߣଶ ൏ 0 so the 
equilibrium point ܧ଴ is stable. Conversely, if ܴ଴ ൐ 1 
then the equilibrium point  ܧ଴ is unstable. 

4.4 Analysis of Local Stability on ࡱ∗ 

To obtain local stability properties in ܧ∗, the 
linearization around the endemic equilibrium point 
∗ܧ ൌ ሺܵ∗,  ሻ resulted in Jacobi matrix∗ܫ
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obtained a complex eigen value ߣଵ,ଶ ൌ ܽ ൅ ܾ݅, 

with ܽ ൏ 0. Therefore, the equilibrium point ܧ∗ is 
asymptotically stable. 

4.5 Model Solution with 5th Order 
Runge-Kutta Method 

Numerical analysis illustrates more clearly the 
model of disease spread by using certain predefined 
parameters and values. The system of equation (4) 
will be solved by simulating the Runge-Kutta 
method of order 5. The simulation of the SIRS 
epidemic model solved by the 5th order runge-kutta 
method is performed by giving the initial value of 
the susceptible (ܵሻ, infected (ܫሻ, recovered (ܴሻ 
individual size, and varying the parameters that 
influence the model interaction so that there will be 
2 possibilities that is  ܴ଴ ൏ 1 and  ܴ଴ ൐ 1. The 
initial values given for the SIRS epidemic model for 
HSV disease are: 

Table 1: The initial value of each subpopulation. 

Subpopulation Initial value (million souls) 
ܵ 400 
ܫ 200 
ܴ 100 

 

4.5.1 Simulation ࡾ૙ ൏ 1 

For ܴ଴ ൏ 1, given the parameter values to 
qualify ܴ଴ ൏ 1, earned value ܴ଴ ൌ 0,6. The values 
are as follows: 

Table 2: The parameter values ܴ଴ ൏ 1. 

Parameter Value  
ߙ 0,013 
ߚ 0,014 
ߛ 0,007 
ߜ 0,009 
ଵߤ 0,001 
ଶߤ 0,0013 
ଷߤ 0,00115 

 
From the initial value and the given parameter 

values obtained simulation ܴ଴ ൏ 1 is shown in 
Figure 2 and 3. Population ܵ, ,ܫ ܴ experience 
changes with time, indicating that the behavior of 
the solution will be towards the point ܧ଴ or it can be 
said that when ܴ଴ ൏ 1 the longer the epidemic 
disease will disappear from the population. 

Graphs do not reflect system behavior over time 
݄ ൌ 0.09. So, it can be concluded at the time range 
݄ ൌ 0.09 unstable system. The following present a 
table that describes the stability of the system 
depends on the value of ݄. 
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Figure 2: Simulation SIRS Model ܴ଴ ൏ 1 with ݄ ൌ 0.01. 

 

Figure 3: Simulation SIRS Model ܴ଴ ൏ 1 with ݄ ൌ
0.09. 

 

Table 3: The behavior of the system is based on the value 
of ݄ on the disease-free SIRS model. 

Step time ሺ݄ሻ System behavior 
0,01 Stable 
0,02 Stable 
0,03 Stable 
0,05 Stable 
0,07 Stable 
0,08 Stable 
0,09 Unstable 

 
The graph does not show stability in the 

population because ݄ is so large, the graph will be 
stable if the ݄ value is less than 0,09. 
 

4.5.2 Simulation ࡾ૙ ൐ 1 

For ܴ଴ ൐ 1, given the parameter values to 
qualify ܴ଴ ൐ 1, from the values obtained value ܴ଴ ൌ
1,34. The values are as follows: 

Table 4: The parameter values simulation 1 ܴ଴ ൐ 1. 

Parameter Value  
ߙ 0,012 
ߚ 0,026 
ߛ 0,008 
ߜ 0,006 
ଵߤ 0,002 
ଶߤ 0,0014 
ଷߤ 0,0017 

 
From the initial values and given parameter 

values ܴ଴ ൐ 1 simulation is shown in Figure 4 and 
5. The change in each population SIR against time, 
population ܵ has decreased even close to zero. When 
ݐ ൐ 5 years, population ܵ has increased while 
population ܫ and ܴ continue to decrease but not to 
zero. This indicates that the epidemic disease will 
become endemic. 

The graph does not reflect system behavior over 
time ݄ ൌ 0.07 as shown in Figure 6. So, it can be 
concluded that the system is not stable at the time 
range ݄ ൌ 0.07. The following present a table that 
describes the stability of the system depends on the 
value of ݄. 

Table 5: The behavior of the system is based on the value 
of ݄ on the endemic SIRS model. 

Step time ሺ݄ሻ System behavior 
0,01 Stable 
0,02 Stable 
0,03 Stable 
0,04 Stable 
0,05 Stable 
0,06 Stable 
0,07 Unstable 

 
The graph does not show stability in the 

population because h is large, the graph will be 
stable if the ݄ value is less than 0,07.  

 

 

Figure 4: Simulation 1 SIRS Model ܴ଴ ൐ 1 with ݄ ൌ
0,01. 
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Figure 5: Simulation 1 SIRS Model ܴ଴ ൐ 1 with ݄ ൌ
0,07. 

Then given the values for simulation ܴ଴ ൐ 1 
with different parameter values, the values given are 
as follows: 

Table 6: The parameter values simulation 2 ܴ଴ ൐ 1. 

Parameter Value  
 0,008 ߙ
 0,076 ߚ
 0,008 ߛ
 0,004 ߜ
 ଵ 0,0016ߤ
 ଶ 0,0012ߤ
 ଷ 0,0017ߤ

 
From the initial value and the given parameter 

values obtained simulation ܴ଴ ൐ 1 shown in Figure 
6 and 7. The population change of ܵ and ܫ is very 
significant, population ܵ is at critical point while 
population ܫ increases dramatically, population ܴ 
also increase, but it does not affect population ܵ 
because population ܫ increases very fast. When ݐ ൐
10	years population ܫ and ܴ decreased while 
population ܵ increased but does not exceed 
population ܫ as in figure 5.  

The graph does not reflect the behavior of the 
system at a time range ݄ ൌ 0.08 as in figure 7. The 
following present a table that describes the stability 
of the system depends on the value of ݄. 

 
 
 
 
 
 
 

Table 5: The behavior of the system is based on the value 
of ݄ on the endemic SIRS model. 

Step time ሺ݄ሻ System behavior 
0,01 Stable 
0,02 Stable 
0,03 Stable 
0,04 Stable 
0,05 Stable 
0,06 Stable 
0,07 Unstable 

 

 

Figure 6: Simulation 2 SIRS Model ܴ଴ ൐ 1 with ݄ ൌ
0,01. 

 

 

Figure 7: Simulation 2 SIRS Model ܴ଴ ൐ 1 with ݄ ൌ
0,07. 

The graph does not show stability in the 
population because ݄ is so large, the graph will be 
stable if the ݄ value is less than 0.08. So, the 5th 
order Runge-Kutta numerical scheme satisfies the 
stability properties of the SIRS model with ܴ଴ ൐ 1 
when the time step sizeሺ݄ሻ is not greater than 0,07. 

SIRS epidemic model simulation using Runge-
Kutta method of order 5 is influenced by time step 
ሺ݄ሻ. The time step ሺ݄ሻ affects the time needed to 
approach the equilibrium point, the greater the time 
step ሺ݄ሻ is used the shorter the time needed to 
approach the equilibrium point. 
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5 CONCLUSIONS 

1) At condition ܴ଴ ൏ 1 there is indication that the 
behavior of the solution will be longer to point 
 ଴, which means the longer the disease will beܧ
lost from the population.  

2) Under condition ܴ଴ ൐ 1 there will be an 
endemic condition, where the Infected 
population is still in the population, in other 
words the greater the rate of transmission of the 
disease (ߚሻ or the smaller the cure rate (ߙሻ and 
natural death ሺߤሻ causing endemic conditions. 

3) Time step ሺ݄ሻ  affects the time required to 
approach the equilibrium point in the SIRS 
epidemic model using the Runge-Kutta method 
of order 5, the greater the time step ሺ݄ሻ used 
the shorter the time it takes to approach the 
equilibrium point. 
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