Boundedness in Finite Dimensional n-Normed Spaces

Esih Sukaesih
UIN Sunan Gunung Djati Bandung, Jl. A. H. Nasution no. 105, Bandung, Indonesia

Keywords: Finite Dimensional Spaces, n-Normed Spaces.

Abstract: \quad Sukaesih and Gunawan, in 2016, shown relation of bounded set in n-normed spaces through the equivalence of norm and n-norm. In this paper, the relation of boundedness with respect to m linearly independent vectors ($m \geq n$) are shown by the relation of linearly independent sets.

1 INTRODUCTION

Gähler was introduced 2-normed spaces, in 1964. The generalization to n-normed spaces also done by Gähler (Gähler, 1969). An n-norm is a real function $\|\cdot, \ldots, \cdot\|: X^{n} \rightarrow[0, \infty)$ which satisfies the following conditions for all $x, x_{1}, \ldots, x_{n} \in X$ and for any $\alpha \in \mathbb{R}$,

- $\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|=0$ if and only if $x_{1}, x_{2}, \ldots, x_{n}$ linearly dependent,
- $\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|$ is invariant under permutation,
- $\left\|\alpha x_{1}, x_{2}, \ldots, x_{n}\right\|=|\alpha|\left\|x_{1}, \ldots, x_{n}\right\|$ for every $\alpha \in \mathbb{R}$,
- $\left\|x_{1}+x, x_{2}, \ldots, x_{n}\right\| \leq\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|+$ $\left\|x, x_{2}, \ldots, x_{n}\right\|$.
The pair $(X,\|\cdot, \ldots, \cdot\|)$ is called an n-normed space.

In 2011, Harikrishnan and Ravindra introduced the definition of bounded set in 2 -normed spaces. It was than generalized to definition of bounded set in n-normed spaces by Kir and Kiziltunc (Kir and Kiziltunc, 2014). But, Gunawan et.al. (Gunawan et.al., 2016) found lack of the Kir and Kiziltunc's definition, they then defined new definition of bounded set in n-normed spaces.
Definition 1: (Sukaesih, 2017) Let $(X,\|\cdot, \cdots, \cdot\|)$ be an n-normed space, B be a nonempty subset of X and $\mathcal{A}=\left\{a_{1}, \cdots, a_{m}\right\}$ be a linearly independent set ($m \geq$ n). Then B is called bounded with respect to \mathcal{A} if there is $M>0$ such that

$$
\left\|x, a_{i_{2}}, \cdots, a_{i_{n}}\right\| \leq M
$$

for every $x \in B$ and for every $\left\{i_{2}, \cdots, i_{n}\right\} \subset$ $\{1, \cdots, m\}$.

Let $\mathfrak{B}_{\mathcal{A}}(X,\|\cdot, \ldots, \cdot\|)$ be a collection of bounded set with respect to \mathcal{A}. If a set B is bounded with respect to \mathcal{A}, then $B \in \mathfrak{B}_{\mathcal{A}}(X,\|\cdot, \ldots, \cdot\|)$.

Hereafter, let $(X,\|\cdot \cdots, \cdot\|)$ be a finite dimensional n-normed space $(\operatorname{dim}(X)=d), B$ be a nonempty set of X, and $\mathcal{A}=\left\{a_{1}, \cdots, a_{m}\right\}$ be a linearly independent vectors in $X(\operatorname{rank}(\mathcal{A})=m)$, where $n \leq m \leq d$.

Sukaesih and Gunawan (Sukaesih and Gunawan, 2016) shown the relation of boundedness with respect to any linearly independent sets.

Lemma 2: (Sukaesih and Gunawan, 2016) Let (X, || • $, \cdots, \|)$ be a finite dimensional n-normed space, B be a nonempty set of X. If $\mathcal{A}_{1}=\left\{a_{11}, \cdots, a_{1 m_{1}}\right\}$ be a linearly independent set in $X\left(m_{1}=n\right.$ or $\left.m_{1}=d\right)$ and $\mathcal{A}_{2}=\left\{a_{21}, \cdots, a_{2 m_{2}}\right\}$ be a linearly independent set in $X\left(m_{2}=n\right.$ or $\left.m_{2}=d, \mathcal{A}_{1} \neq \mathcal{A}_{2}\right)$ then a set B is bounded with respect to \mathcal{A}_{1} if and only if B is bounded with respect to \mathcal{A}_{2}.

Figure 1: The relation between the boundedness with respect to \mathcal{A}_{1} and the boundedness with respect to \mathcal{A}_{2}.

Lemma 2 was proven by following Corollary and equivalencies in normed spaces.

Corollary 3: (Sukaesih and Gunawan, 2016) Let $(X,\|; \cdots, \cdot\|)$ be a finite dimensional n-normed
space $(\operatorname{dim}(X)=d)$ which also equipped with a norm $\|\cdot\|_{\mathcal{A}}, B$ be a nonempty set of X. If $\mathcal{A}=\left\{a_{1}, \cdots, a_{n}\right\}$ be a linearly independent set in X then a set B is bounded with respect to \mathcal{A} if and only if B is bounded in $\left(\mathrm{X},\|\cdot\|_{\mathcal{A}}\right)$.

Let $\mathfrak{B}\left(X,\|\cdot\|_{\mathcal{A}}\right)$ be collection of bounded set in $\left(X,\|\cdot\|_{\mathcal{A}}\right)$. If a set B is bounded in $\left(X,\|\cdot\|_{\mathcal{A}}\right)$, then $B \in \mathfrak{B}\left(X,\|\cdot\|_{\mathcal{A}}\right)$. Further on norm $\|\cdot\|_{\mathcal{A}}$ could be studied in (Burhan, 2011).

2 MAIN RESULT

In an n-normed space $(X,\|\cdot \cdots, \cdot\|)$, we have many sets of m linearly independent vectors in X ($n \leq m \leq$ $d)$. Here some relation of boundedness in finite dimensional n-normed spaces.

Theorem 4: Let $(X,\|\cdot, \cdots\|$,$) be a finite dimensional$ n-normed space $\quad(\operatorname{dim}(X)=d) \quad$ and $\quad \mathcal{A}_{1}=$ $\left\{a_{1}, \cdots, a_{m_{1}}\right\}, \quad \mathcal{A}_{2}=\left\{b_{1}, \cdots, b_{m_{2}}\right\} \quad$ be linearly independent sets in X that $\operatorname{span}\left(\mathcal{A}_{1}\right) \subset \operatorname{span}\left(\mathcal{A}_{2}\right)$ and $n \leq m_{1} \leq m_{2} \leq d$. If a set B is bounded with respect to \mathcal{A}_{2}, then B is bounded set with respect to \mathcal{A}_{1}.
Proof: Because of the boundedness with respect to \mathcal{A}_{2} then we have $\left\|x, b_{l_{2}}, \ldots, b_{l_{n}}\right\| \leq M$ for every $x \in B$ and for every $\left\{l_{2}, \ldots, l_{n}\right\} \subset\left\{1, \ldots, m_{2}\right\}$. Because of $\operatorname{span}\left(\mathcal{A}_{1}\right) \subset \operatorname{span}\left(\mathcal{A}_{2}\right)$ then we have $a_{i}=\sum_{l=1}^{m_{2}} \alpha_{i l} b_{l}$, such that

$$
\begin{aligned}
& \left\|x, a_{i_{2}}, \ldots, a_{i_{n}}\right\| \\
& =\left\|x, \sum_{l_{2}=1}^{m_{2}} \alpha_{i_{2} l_{2}} b_{l_{2}}, \sum_{l_{3}=1}^{m_{2}} \alpha_{i_{3} l_{3}} b_{l_{3}}, \ldots, \sum_{l_{n}=1}^{m_{2}} \alpha_{i_{n} l_{n}} b_{l_{n}}\right\| \| \\
& \leq \sum_{l_{2}=1}^{m_{2}} \alpha_{i_{2} l_{2}}\left\|x, b_{l_{2}}, \sum_{l_{3}=1}^{m_{2}} \alpha_{i_{3} l_{3}} b_{l_{3}}, \ldots, \sum_{l_{n}=1}^{m_{2}} \alpha_{i_{n} l_{n}} b_{l_{n}}\right\| \\
& \leq \sum_{l_{2}=1}^{m_{2}} \alpha_{i_{2} l_{2}}\left[\sum_{l_{3}=1}^{m_{2}} \alpha_{i_{3} l_{3}}\left\|x, b_{l_{2}}, b_{l_{3}}, \ldots, \sum_{l_{n}=1}^{m_{2}} \alpha_{i_{n} l_{n}} b_{l_{n}}\right\|\right] \\
& \leq \sum_{l_{2}=1}^{m_{2}} \alpha_{i_{2} l_{2}} \\
& {\left[\sum_{l_{2}}^{m_{2}} \alpha_{i_{3} l_{3}}\left[\ldots\left[\sum_{l_{n}=1}^{l_{3}} \alpha_{i_{n} l_{n}}\left\|x, b_{l_{2}}, b_{l_{3}}, \ldots, b_{l_{n}}\right\|\right] \ldots\right]\right.}
\end{aligned}
$$

$\leq S M$,
with $S=\left(m_{2}\right)^{n} \max \left\{\alpha_{i_{2} l_{2}}, \ldots, \alpha_{i_{n} l_{n}}\right\} \quad$ for $\quad l_{2}=$ $1, \ldots, m_{2}, \ldots, \quad l_{n}=1, \ldots, m_{2}$ and for every $\left\{i_{2}, \ldots, i_{n}\right\} \subset\left\{1, \ldots, m_{1}\right\}$.

A vector space can be generated by many linearly independent sets. If two linearly independent sets generated the same space, then the boundedness with respect to a linearly independent set tie up the boundedness with respect to another linearly independent set. Then Lemma 2 was generalized for any m with $n \leq m \leq d$.
Lemma 5: Let $(X,\|\cdot, \cdots, \cdot\|)$ be a finite dimensional n-normed space $(\operatorname{dim}(X)=d)$ and $\mathcal{A}_{1}=\left\{a_{1}, \cdots, a_{m}\right\}$, $\mathcal{A}_{2}=\left\{b_{1}, \cdots, b_{m}\right\}$ be linearly independent sets in X such that $\operatorname{span}\left(\mathcal{A}_{1}\right)=\operatorname{span}\left(\mathcal{A}_{2}\right)$ and $n \leq m \leq d$. A set B is bounded with repect to \mathcal{A}_{2} if and only if a set B is bounded with respect to \mathcal{A}_{1}.

Proof. From the boundedness with respect to \mathcal{A}_{2}, we have $\left\|x, b_{l_{2}}, \ldots, b_{l_{n}}\right\| \leq M$ for every $x \in B$ and for every $\left\{l_{2}, \ldots, l_{n}\right\} \subset\{1, \ldots, m\}$. Since $\operatorname{span}\left(\mathcal{A}_{1}\right)=\operatorname{span}\left(\mathcal{A}_{2}\right)$ then we have $a_{i}=$ $\sum_{l=1}^{m} \alpha_{i l} b_{l}$, such that
$\left\|x, a_{i_{2}}, \ldots, a_{i_{n}}\right\|$

$$
\begin{aligned}
& =\left\|x, \sum_{l_{2}=1}^{m} \alpha_{i_{2} l_{2}} b_{l_{2}}, \sum_{l_{3}=1}^{m} \alpha_{i_{3} l_{3}} b_{l_{3}}, \ldots, \sum_{l_{n}=1}^{m} \alpha_{i_{n} l_{n}} b_{l_{n}}\right\| \| \\
& \leq \sum_{l_{2}=1}^{m} \alpha_{i_{2} l_{2}}\left\|x, b_{l_{2}}, \sum_{l_{3}=1}^{m} \alpha_{i_{3} l_{3}} b_{l_{3}}, \ldots, \sum_{l_{n}=1}^{m} \alpha_{i_{n} l_{n}} b_{l_{n}}\right\| \\
& \leq \sum_{l_{2}=1}^{m} \alpha_{i_{2} l_{2}}\left[\sum_{l_{3}=1}^{m} \alpha_{i_{3} l_{3}}\left\|x, b_{l_{2}}, b_{l_{3}}, \ldots, \sum_{l_{n}=1}^{m} \alpha_{i_{n} l_{n}} b_{l_{n}}\right\|\right] \\
& \leq \sum_{l_{2}=1}^{m} \alpha_{i_{2} l_{2}} \\
& {\left[\sum_{l_{3}=1}^{m} \alpha_{i_{3} l_{3}}\left[\ldots\left[\sum_{l_{n}=1}^{m} \alpha_{i_{n} l_{n}}\left\|x, b_{l_{2}}, b_{l_{3}}, \ldots, b_{l_{n}}\right\|\right] \ldots\right]\right.} \\
& \leq S M,
\end{aligned}
$$

$$
\text { with } \quad S=(m)^{n} \max \left\{\alpha_{i_{2} l_{2}}, \ldots, \alpha_{i_{n} l_{n}}\right\} \quad \text { for } \quad l_{2}=
$$ $1, \ldots, m, \ldots, l_{n}=1, \ldots, m$ and for every $\left\{i_{2}, \ldots, i_{n}\right\} \subset$ $\{1, \ldots, m\}$.

Conversely, use the same way.

Figure 2: The relation between any two linearly independent set that generated the same space.

For \mathcal{A}_{1} and \mathcal{A}_{2} are basis of X, we have the following condition.

Corollary 6: Let $(X,\|\cdot, \cdots, \cdot\|)$ be a finite dimensional n-normed space $(\operatorname{dim}(X)=d)$ and $\mathcal{B}_{1}, \mathcal{B}_{2}$ be basis on X. A set B is bounded with repect to \mathcal{B}_{2} if and only if set B is bounded with respect to \mathcal{B}_{1}.

Proof. Use Lemma 5 for \mathcal{A}_{1} and \mathcal{A}_{2} are basis of X.

REFERENCES

Burhan, M. J. I. 2011. Teorema Titik Tetap di Ruang Normn Berdimensi Hingga, Master thesis, Institut Teknologi Bandung.
Gähler, S. 1964. Lineare 2-normierte Räume, Math. Nachr, 28.

Gähler, S. 1969, Untersuchungen Uber Verallgemeinerte m-Metrische Räume I, Math. Nachr.
Gähler, S. 1969, Untersuchungen Uber Verallgemeinerte m-Metrische Räume II, Math. Nachr.
Gunawan, H., Neswan, O., and Sukaesih, E. 2015. Fixed point theorems on bounded sets in an n-normed spaces, JMA, 6(3), pp.51-58.
Harikrishnan, P., Ravindran, K. 2011. Some properties of Accretive operators in linear 2-normed spaces, Int. Math. Forum, 6(59).
Kir, M., and Kiziltunc, H. 2014. On fixed point theorems for contraction mappings in n-normed spaces, Applied Math. Information Sci. Letters, 2.
Sukaesih, E. and Gunawan, H. 2016. Bounded sets in finite dimensional n-normed spaces, Proceeding IICMA 2015.

Sukaesih, E. 2017. Contractive mapping theorems in bounded sets in n-normed spaces, Doctoral Dissertation, Institut Teknologi Bandung.

