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Abstract: In this paper, we propose and analyze an optimal control problem to asses the effectiveness of control 

measures on the spread of HIV. We formulate and analyze a deterministic mathematical model with use of 

condom education and antiretroviral therapy as control variables using optimal control theory and 

Pontryagin’s maximal principle. We formulated the appropriate optimal control problem and investigate the 

necessary conditions for the disease control in order to determine the role of asymptomatic infectives, pre-

AIDS, and full-down AIDS in the spread of HIV. We further investigate the impact of combinations of the 

strategies in the control of HIV infection. The combination of antiretroviral therapy on pre-AIDS and full-

blown AIDS shows a significant difference in the number of the infected individuals in the asymptomatic 

stage, infected individuals in the pre-AIDS class, and  infected individuals in full-blown AIDS class. 

1 INTRODUCTION 

The model to be considered in this paper is an 

extension of the model proposed by Marsudi et. al. 

(2017) in which the effect of antiretroviral therapy at 

full-blown AIDS group is considered by the inclusion 

of model validation and applying  optimal control 

theory to study and analyze the dynamics of HIV 

model. The stability analysis and optimal control of 

an epidemic model with vaccination and treatment 

have discussed by Sharma and Samanta (2015). 

Marsudi et. al. (2018) used the optimal control to 

examine the role of educational campaigns and 

antiretroviral therapy in controlling the spread of HIV 

dynamics. Okosun et. al. (2013) studied the impact of 

treatment of HIV/AIDS and screening of unaware 

infectives on optimal control of HIV/AIDS. 

Many mathematical models of HIV/AIDS 

transmission dynamics have been developed 

including those with optimal control (Joshi, 2002; 

Lenhart and Workman, 2002; Marsudi et. al., 2017; 

Yusuf and Benyah, 2011). The main objective of this 

paper is to develop a mathematical model for human 

interaction, this will be done with the aim of using 

three optimal control strategies:  condom education, 

antiretroviral therapy for pre-AIDS and full-blown 

AIDS at different rates on the spread of the disease.  
In section 2, we show the mathematical model for 

the HIV model that will be studied in this paper. 

Sections 3 is presented to the optimal control problem 

formulation.  In this section, we use Pontryagin’s 

maximum principle to analyze the control strategies 

and to determine the necessary conditions for the 

optimal control of the HIV infection. In Section 4, we 

presented the numerical simulations of the model in 

order to interpret the results of the dynamics and the 

conclusion is presented in Section  

 

2    MATHEMATICAL MODEL 

Following the model proposed by Marsudi et. al. 

(2017),  the total population (N) is divided into six 

categories: susceptible (S), susceptible who receive 

condom education (E), infected in the asymptomatic 

stage (I), infected in pre-AIDS class (P), full-blown 

AIDS class (A), and pre-AIDS and full-blown AIDS 

who receive antiretroviral therapy (T). 
The model is built according to the following 

main assumptions: 

(i)  The rate of transmission is directly proportional to 

the susceptibles individuals and also to the ratio 
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between the members of the infected population 

(I and P) to the total population.  

(ii) Asymptomatic infectives and pre-AIDS class can 

infect susceptibles class at different rates 

21 and    respectively where ).21    

(iii)  Susceptible   individuals   who   receive   

condom educations at the rate 1u  )10( 1  u . 

(iv) Only pre-AIDS and full blown AIDS can be 

treated with antiretroviral therapy at different 

rates 2u  and 3u  respectively 

)3,2,10( = iui .  

(v) Asymptomatic infectives only move to pre-AIDS 

at different rates 1  and  pre-AIDS class will 

move to full-blown AIDS at different rates 2 . 

 (vi) Natural death rate  , the death rate due to full-

blown AIDS and pre-AIDS who receive 

antiretroviral therapy at different rates 1  and 

2  respectively ).( 21    

(vii) The recruitment rate   and condom education 

efficacy on the S class is ).10(   

The population is homogeneously mixed and each 

susceptible individual has an equal chance of 

acquiring HIV infection when contacting 

asymptomatic infective individuals or pre-AIDS 

individuals.  

The population dynamics is given by the 

following set of ordinary differential equations:  
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The effective reproduction number eR , for 

system (1) is given  

( )
.

))()((

])1[(

))((

)1(

2211

112

11

11









++++

+−
+

++

+−
=

uu

u

u

u
Re    (3) 

3 OPTIMAL CONTROL PROBLEM 

We search the optimal strategies for implementing 

condom education and antiretroviral therapy use on a 

finite time .T  Our goal is to minimize the number of 

cases in asymptomatic class I,  pre-AIDS class P, full-

blown AIDS class, and the costs required to control 

HIV by these three control measures. The objective 

function considered takes the form 

dtuwuwuwAbPbIbuuuJ
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where T stands for the final time to control HIV. The 

constants 3,2,1, =iwi  are measure of the relative 

cost of the interventions associated with the control 

,  and,, 321 uuu  respectively, and the constant 

3,2,1, =ibi  are the weight constant for the class I, P, 

and A.   

We seek an optimal control triple ) ,,( *
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where  

 ],0[,3,2,1,10),,( 321 TtiuuuuU i ==  is 

the control set.  

The optimal control must satisfy the necessary 

conditions that are formulated by Pontryagin’s 

maximum principle7].  This principle transforms the 

system of equations (1) and (4) into the problem of 

minimizing point-wise a Hamiltonian (H), with 

respect to )(),(),( 321 tututu as 
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where  6,5,4,3,2,1, =ii  are the adjoint variables 

associated by  .,,,,, ATPIES  We differentiate 

Hamiltonian (6) with respect to states 

,,,,,, ATPIES  and respectively, and then the 

adjoint system can be written as 
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The optimal control pair ) ,,( *
3

*
2

*
1 uuu  that solves 

the control problem is the pair of the time-dependent 

functions that minimizes H. We solved the equation 
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We can now impose the bounds  ,3,2,10 = iui  

on the controls to get 
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4   NUMERICAL RESULTS 

In this section, we give some numerical results of the 

system (1), using parameter values from Marsudi et. 

al. (2018b),   
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The solution of the optimal control problem was 

obtained by solving the optimality system of state and 

adjoint system through Forward-Backward Sweep 

method Lenhart and Workman (2002). The adjoint 

system (7-12) were solved by fourth–order Runge-

Kutta scheme using the forward solution of the state 

equations. We used the weight at the final time,  
220,50,1 321321 ====== wwwbbb   and  for 

simulation of HIV model with optimal control.  

4.1 Strategy A: Control with Combination 
of Antiretroviral Therapy of Pre-
AIDS  and Full-blown AIDS  

In this strategy, we applied antiretroviral therapy 

control 2u  and antiretroviral therapy control 3u  are 

used to optimize the objective function while we set 

condom education is set to zero. In Figure 1(a), (b), 

and (c), we observe the control strategies with 

combination of antiretroviral therapy of Pre-AIDS 

and full-blown AIDS results in decreasing the 

numbers of infected in the asymptomatic stage I, 

infected in pre-AIDS P, and infected in full-blown 

AIDS respectively, but not go to zero.  Therefore, this 

strategy is not 100% effective in eradicating the 

disease in the specified period of time.  
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Figure 1: Simulation optimal control with antiretroviral 

therapy on pre-AIDS class and full-blown AIDS group 

 

Figure 1(d) shows the controll profile for 

antiretroviral therapy of pre-AIDS class ( 2u ) is at the 

upper bound for about 11.8=t  before dropping to 

lower bound while the control profile for 

antiretroviral therapy of full-blown AIDS ( 3u ) is at 

the upper bound until about 59.9=t before gradually 

decreasing to lower bound. 

4.2 Strategy B: Control with Combination 
of Condom Education  and 
Antiretroviral Therapy of Full-blown 
AIDS  

Figure 2 show the simulation of the model where both 

control condom education ( 1u ) in susceptible and the 

antiretroviral therapy of full-blown AIDS group ( 3u ) 

are optimized.  The numerical results shows that the 

infected individuals in the asymptomatic stage and 

infected individuals in pre-AIDS class increases 

(Figure 2(a) and 2(b)) while infected individuals in 

full-blown AIDS group decrease and then starts to 

increase because of a lack of antiretroviral therapy 

(Figure 2(c)). As a result, the use combination of 

condom education and antiretroviral therapy might 

not be sufficient to eradicate the burden of the 

infection of HIV.  

 
 
Figure 2: Simulation optimal control with condom 

education on susceptible and full-blown AIDS  

 

Figure 2(d) shows the control profile of  

antiretroviral therapy ( 3u ) in which the control 3u  as 

at the upper bound for about 95.9=t  before 

dropping to the lower bound at the final time while 

the control profile of condom education at the lower 

bound from the beginning to the end of the 

intervention. 

 

4.3   Strategy C: Control with 
Combination of Condom Education  
and Antiretroviral Therapy of Pre-
AIDS  

With this strategy, the condom education  and 

antiretroviral therapy are used to optimize the 

objective function while controlling antiretroviral 

therapy of full-blown AIDS class is set to zero. In 

Figure 3(a)-(c) we observe that this control strategy 

show a significant decrease in the number of the 

infected individuals in the asymptomatic stage,  

infected individuals in the pre-AIDS class, and  

infected individuals in full-blown AIDS group 

compared with the case without control.  

The control profile is shown in Fig. 3(d), control 

antiretroviral therapy of full-blown AIDS group ( 3u ) 

is at the upper bound for about 33.8=t  before 

dropping to lower bound while control condom 

education ( 1u ) to be at the lower bound. 

 
Figure 3: Simulation optimal control with condom 

education and pre-AIDS class.  

4.4 Strategy D: Control with Combination 
of Condom Education, Antiretroviral 
Therapy of Pre-AIDS, and  Full-
blown AIDS 

In this strategy, the combination of three controls 

condom education, antiretroviral therapy of pre-
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AIDS and full-blown AIDS are used to optimize the 

objective function and then analysed its impact in 

infected individuals. Figure 4(a)-(c) shows the impact 

of with and without control application in the model. 

The significant difference is observed in the number 

of the infected individuals in the asymptomatic stage, 

infected individuals in the pre-AIDS class, and  

infected individuals in full-blown AIDS group.  

Figure 4(d) showns the the controll profile for 

antiretroviral therapy of pre-AIDS class ( 2u ) is at the 

upper bound for about 11.8=t  before dropping to 

lower bound while the control profile for 

antiretroviral therapy of full-blown AIDS ( 3u ) is at 

the upper bound until about 59.9=t before gradually 

decreasing to lower bound. 

 
Figure 4: Simulation optimal control with condom 

education, antiretroviral therapy on pre-AIDS and full-

blown AIDS  

5    CONCLUSIONS 

In this paper, a deterministic model with optimal 

control for HIV was derived and analyzed to examine 

the effect of condom education, antiretroviral therapy 

on pre-AIDS and full-blown AIDS on the dynamics 

of HIV. The Pontryagin’s maximum principle used to 

derive and analyze the necessary conditions for 

optimal control strategies such as condom education 

( 1u ), antiretroviral therapy on pre-AIDS ( 2u ), and 

antiretroviral therapy on full-blown AIDS ( 1u ) for 

minimizing the spread of HIV. Numerically, the 

model was analyzed. Graphically, strategies A, C, and 

D shows a significant difference in the number of the 

infected individuals in the asymptomatic stage,  

infected individuals in pre-AIDS class, and  infected 

individuals in full-blown AIDS group while strategy 

B it’s not positive impact observed in the infected 

individuals in the asymptomatic stage and infected 

individuals in pre-AIDS class. 

 

ACKNOWLEDGMENT 

The work was supported by DRPM RISTEKDIKTI, 

Directorate General of Research and Development 

Reinforcement, Ministry of  Research, Technology, 

and Higher Education in accordance with the Letter 

of Appointment Agreement of Implementation of 

Research Program No: 054/SP2H/LT/DRPM/2018. 

   

REFERENCES 

Joshi, H.R., 2002. Optimal control of an HIV immunology 

model, Optimal Control Application Mathematics, 

vol.  23,  pp. 199-213. 

Lenhart, S. and Workman, J.T., 2002. Optimal Control 

Applied to Biological Models. London: Chapman 

and Hall,  

Marsudi, Hidayat, N., and Wibowo, R.B.E., 2017. 

Application of optimal control strategies for the 

spread of HIV in a Population,  Research Journal 

of Life Science, vol. 4 (1), pp. 1-9. 

Marsudi, N. Hidayat, and Wibowo, R.B.E., 2017.  

Sensitivity analysis of the parameters of an 

HIV/AIDS model with condom education and 

antiretroviral therapy, AIP Conference 

Proceedings, vol. 1913 (1): 020019.  

Marsudi, N. Hidayat, and Wibowo, R.B.E., 2018(a). 

Optimal strategy for controlling the spread of HIV 

dynamics with educational educations and 

antiretroviral therapy,  J. Phys.: Conf. Ser., vol. 

1028 (012115). 

Marsudi, N. Hidayat, and Wibowo, R.B.E., 2018(b). 

Optimal strategy for controlling the spread of HIV 

dynamics with educational educations and 

antiretroviral therapy,  J. Phys.: Conf. Ser., vol. 

1028 (012115). 

Okosun, K.O., Makinde, O.D., and Takaidza, I., 2013. 

Impact of optimal control on the treatment of  

HIV/AIDS and screening of unaware infectives,  

Applied Mathematical Modelling, vol. 37, pp. 

3802-3820. 

Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., 

and  Mishchenko, E.F., 1962. The Mathematical 

Theory of Optimal Processes, New York: 

Interscience Publisher. 

Sharma, S. and Samanta, G. P., 2015. Stability analysis and 

optimal control of an epidemic model with 

vaccination,” International Journal of 

Biomathematics, Vol. 8, No. 3 (1550030).  

Yusuf, T.T. and Benyah, F., 2011.Optimal strategy for 

controlling the spread of HIV/AIDS disease: A  

case study of South Africa,”  Journal of Biological 

Dynamics, vol.  6 (2), pp. 475-494. 

Optimal Control of an HIV Model with Condom Education and Therapy

419


