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Abstract: Longitudinal data is a pattern that consists of time series and cross section data pattern. In a research with 

longitudinal and panel data often be used combination between trend and seasonal or trend-seasonal pattern, 

for example the relationship between profit and demand for seasonal commodities, in education insurance, 

meteorology case and many more for many subjects. Recently, we develop Fourier series estimator to 

approach curve regression for longitudinal data. Fourier series that be used, not only include trigonometric 

Fourier series which usual be used in Mathematics, but also linear function. In this research we compare 

performance of new estimator with linear estimator that often be used in panel data regression or parametric 

regression for longitudinal data. The trend-seasonal data that be used in this analysis is gotten from 

simulation process based on Box et.al., (1976). The Fourier series estimator gives better result with 

goodness indicator smaller Mean Square Error (MSE) and greater determination coefficient than linear 

estimator. 

1 INTRODUCTION 

Recently, longitudinal data analysis develops for 

some Statistical method. Longitudinal data is a 

pattern that consists of more than one subject. Each 

subject is observed more than one time. Therefore, 

in longitudinal data structure, consist of time series 

and cross section data pattern (Weiss, 2005).  

In regression analysis, one of statistical method 

that be used to model the relationship between 

responses and predictors, longitudinal data analysis 

often be used. Panel data regression is one of the 

linear regressions for longitudinal data. The 

differences between longitudinal and panel data, 

panel data is longitudinal data with the number of 

observations and periods are same for every subject 

(Baltagi, 2005).  

Regression analysis that be developed is not only 

regression with linear estimator, but also 

nonparametric regression. Nonparametric regression 

is a Statistical modeling that be used to overcome 

the relationship between responses and predictors 

which have unknown pattern. Nonparametric 

regression is an alternative method that be used 

when the result of regression analysis with certain 

function, such as linear regression, cannot suitable 

with goodness criteria of regression analysis 

(Takezawa, 2006). The advantage of nonparametric 

regression is having high flexibility. Flexibility 

means that the pattern of data that presented on the 

scatter plot can determine the shape of regression 

curve based on estimators in the nonparametric 

regression (Budiantara et.al., 2015). Based on plot, 

we can identify the pattern of data, the pattern of 

pairs data, a response versus a predictor variable 

data, have trend, oscillation, uncertain pattern, and 

combination pattern.  

The pattern of data that often be found is 

combination between trend and seasonal or trend-

seasonal data pattern. In research with longitudinal 

and panel data this pattern often be encountered. 

Some example like, the relationship between profit 

and demand for seasonal commodities, in education 

insurance, meteorology case and many more for 

many subjects. 

Trend – seasonal data pattern popular in time 

series data analysis. This pattern will pass some 

procedure when time series analysis be used, be-

because there are some assumptions must be 

satisfied. Time series – regression approach is an 
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alternative to forecast time series data (Bloomfield, 

2000). Based on that concept, trend – seasonal data 

pattern analysis is applied to longitudinal data, that 

consist of time series and cross section data pattern.  

Regression for longitudinal data pattern that be 

discussed in this study based on linear and Fourier 

series estimator. Linear estimator represents trend 

pattern, and Fourier series represents seasonal 

pattern. Bilodeau (1992) proposed combination 

linear function and Fourier cosine series in his paper 

to get smooth estimator for the relationship of a 

response and predictors. In longitudinal analysis, 

linear estimator often be used, especially in 

regression, the most popular method is panel data 

regression. However, that method is not suitable 

when the variation of oscillation is large. So, we 

propose new method based on the development of 

Bilodeau (1992). The method is longitudinal data 

regression based on Fourier series estimator that 

consist of linear function, cosine and sine function. 

Visually and mathematically, that estimator 

accommodates trend-seasonal pattern that be 

presented in scatter plot and time series plot for 

longitudinal data. 

In this paper, second part discuss about linear 

estimator for longitudinal data regression. The third 

part discuss about Fourier series estimator for 

longitudinal data regression. Fourier series that be 

used based on Fourier series estimator that consist of 

linear function, cosine and sine function. Using 

simulation data, we make comparison based on MSE 

and determination coefficient value to make 

conclusion which regression method that suitable to 

be used for trend – seasonal longitudinal data 

pattern. In the end of this part, given longitudinal 

data structure in Table 1 as follows: 

Table 1: The structure of longitudinal data that be used. 

Subject Response Predictors 

𝑦𝑖𝑗 𝑥𝑖𝑗1 𝑥𝑖𝑗2 … 𝑥𝑖𝑗𝑝 

1st 

Subject 

𝑦11 

𝑦12 

⋮ 
𝑦1𝑛1

 

𝑥111 

𝑥121 

⋮ 
𝑥1𝑛11 

𝑥112 

𝑥122 

⋮ 
𝑥1𝑛12 

… 𝑥11𝑝 

𝑥12𝑝 

⋮ 
𝑥1𝑛1𝑝 

2nd 

Subject 
𝑦21 

𝑦22 

⋮ 
𝑦2𝑛2

 

𝑥211 

𝑥221 

⋮ 
𝑥2𝑛21 

𝑥212 

𝑥222 

⋮ 
𝑥2𝑛22 

… 𝑥21𝑝 

𝑥22𝑝 

⋮ 
𝑥2𝑛2𝑝 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
nth 

Subject 
𝑦𝑛1 

𝑦𝑛2 

⋮ 
𝑦𝑛𝑛𝑛

 

𝑥𝑛11 

𝑥𝑛21 

⋮ 
𝑥𝑛𝑛𝑛1 

𝑥𝑛12 

𝑥𝑛22 

⋮ 
𝑥𝑛𝑛𝑛2 

… 𝑥𝑛1𝑝 

𝑥𝑛2𝑝 

⋮ 
𝑥𝑛𝑛𝑛𝑝 

 

2 LINEAR ESTIMATORS FOR 

LONGITUDINAL DATA 

REGRESSION 

Linear estimator for longitudinal data regression is 

analogue with common effect model in panel data 

regression. Gujarati (2004) stated that general 

approach that have similarity with generalized linear 

model in panel data case is common effect model. 

Consider pair of predictor and response 

data(𝑥𝑖𝑗𝑘 , 𝑦𝑖𝑗), with 𝑖 = 1,2, … , 𝑛 represents the 

number of subjects, 𝑗 = 1,2, … , 𝑛𝑖 represents the 

number of observations for each subject, and 𝑘 =
1,2, … , 𝑝 represents the number of predictors. The 

structure of data pair has presented on Table 1. 

Based on pair of data can be formed regression 

model for longitudinal data based on linear approach 

as follows: 

𝑦𝑖𝑗 = 𝛽0 + ∑ 𝛽𝑘𝑥𝑖𝑗𝑘
𝑝
𝑘=1 + 𝜀𝑖𝑗;  𝜀𝑖𝑗~𝐼𝐼𝐷𝑁(0, 𝜎2) (1) 

with 𝛽0 is an intercept parameter for 𝑖𝑡ℎsubject, 𝛽𝑘 is 

parameter for 𝑘𝑡ℎpredictor and 𝑖𝑡ℎsubject. Random 

error for 𝑖𝑡ℎsubject and 𝑗𝑡ℎobservation denoted by 

𝜀𝑖𝑗 that independent and identically normal 

distributed with mean equals to 0 and variance 

equals to 𝜎2. An estimator for parameter which be 

formed as vector for equation (1) can be determined 

based on Weighted Least Square (WLS) 

optimization (Weiss, 2005). The WLS optimization 

result given as follows: 

𝜷̂ = (𝑿𝑇𝑾𝑿)−𝟏𝑿𝑇𝑾𝒚                  (2) 

In this case 𝒚 = (𝒚𝟏, 𝒚𝟐, … , 𝒚𝒏)
𝑇, that have 

∑ 𝑛𝑖 × 1𝑛
𝑖=1  or 𝑁 × 1 with vector components that 

correspond are 𝑦𝑖 = (𝑦𝑖1 , 𝑦𝑖2, … , 𝑦𝑖𝑛𝑖
)𝑇  that have 

𝑛𝑖 × 1. 

𝑿 =

[
 
 
 
 
 
 
 
 
 
1 𝑥111 𝑥112 ⋯ 𝑥11𝑝

1 𝑥121 𝑥122 ⋯ 𝑥12𝑝

⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥1𝑛11 𝑥1𝑛12 ⋯ 𝑥1𝑛1𝑝

⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥𝑛11 𝑥𝑛12 ⋯ 𝑥𝑛1𝑝

1 𝑥𝑛21 𝑥𝑛22 ⋯ 𝑥𝑛2𝑝

⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥𝑛𝑛𝑛1 𝑥𝑛𝑛𝑛2 ⋯ 𝑥𝑛𝑛𝑛𝑝]

 
 
 
 
 
 
 
 
 

 

𝑿 is a matrix that has 𝑁 × (𝑝 + 1) or ∑ 𝑛𝑖 × (𝑝 +𝑛
𝑖=1

1), and parameter vector defined by                      
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𝜷 = (𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑝)𝑇 that has (𝑝 + 1) × 1. In 

addition, there is 𝑾 = 𝑽−𝟏as a weight matrix with 

structure as follows: 

𝑽 = [

𝑽𝟏 𝟎 ⋯ 𝟎
𝟎 𝑽𝟐 ⋯ 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝑽𝒏

], 

where 

𝑽𝒊 = [

𝑣11 𝑣12 ⋯ 𝑣1𝑛

𝑣21 𝑣22 ⋯ 𝑣2𝑛

⋮ ⋮ ⋱ ⋮
𝑣𝑛1 𝑣𝑛2 ⋯ 𝑣𝑛𝑛

], 

with variance matrix 𝑣𝑎𝑏 = 𝑣𝑏𝑎 where 𝑎 ≠ 𝑏. The 

estimator for curve regression can be determined as 

follows: 

𝑦̂𝑖𝑗 = 𝛽̂0 + ∑ 𝛽̂𝑘𝑥𝑖𝑗𝑘
𝑝
𝑘=1 .                   (3) 

In regression for longitudinal data based on 

linear estimator, inference Statistics for significant 

test has been provided. There are unit root test using 

Augmented Dickey Fuller (ADF), simultaneous and 

partial significance test (Baltagi, 2005), 

heteroscedasticity test for error using Lagrange 

Multiplier (Greene, 2012) and normality test using 

Jarque Bera test (Baltagi, 2005). The good estimator 

is estimator with small MSE value, and big 

determination coefficient value. 

3.   FOURIER SERIES ESTIMATOR 

FOR LONGITUDINAL DATA 

REGRESSION 

Consider a longitudinal data structure that be 

presented in Table 1. Based on Table 1, there are 

pairs of data with form (𝑥𝑖𝑗𝑘 , 𝑦𝑖𝑗), 𝑥𝑖𝑗𝑘  denotes 𝑘𝑡ℎ 

predictor variable for 𝑗𝑡ℎ observation in  𝑖𝑡ℎsubject. 

Here, 𝑖 = 1,2, … , 𝑛 denote the number of subjects, 

𝑗 = 1,2, … , 𝑛𝑖 denote the number of observations for 

each subject, and 𝑘 = 1,2, … , 𝑝 represents the 

number of predictors. Response variable for 𝑗𝑡ℎ 

observation in  𝑖𝑡ℎ subject is denoted by 𝑦𝑖𝑗. The 

pairs of data that be presented in Table 1, follows 

nonparametric regression equation for longitudinal 

data as follows: 

𝑦𝑖𝑗 = ∑ 𝑓𝑘(𝑥𝑖𝑗𝑘) + 𝜀𝑖𝑗; 𝜀𝑖𝑗~𝑁(0, 𝜎2)
𝑝
𝑘=1 ,      (4) 

where 𝑓𝑘(𝑥𝑖𝑗𝑘) represents a regression curve. 

Random error for 𝑗𝑡ℎ observation in  𝑖𝑡ℎsubject is 

denoted by 𝜀𝑖𝑗 that independent, identically normal 

distributed with mean 0, and variance 𝜎2. In this 

case, 𝑓𝑘(𝑥𝑖𝑗𝑘) approached by Fourier series as 

follows: 

𝑓𝑘(𝑥𝑖𝑗𝑘) =
𝛼0𝑖𝑘

2
+ 𝛾𝑖𝑘𝑥𝑖𝑗𝑘 + 

∑ (𝛼𝑟𝑖𝑘 cos 𝑟𝑥𝑖𝑗𝑘 + 𝛽𝑟𝑖𝑘 sin 𝑟𝑥𝑖𝑗𝑘)𝑅
𝑟=1            (5) 

Equation (5) is substituted to equation (4), the result 

is a nonparametric regression equation for 

longitudinal data that be approached by Fourier 

series. Based on equation 5, 𝛾𝑖𝑘𝑥𝑖𝑗𝑘  is a component 

that accommodates trend pattern, 𝛾𝑖𝑘 denotes 

parameter that be estimated for 𝑘𝑡ℎ predictor and 𝑖𝑡ℎ 

subject. The other component accommodates 

seasonal pattern, 
𝛼0𝑖𝑘

2
 is an intercept parameter for 

𝑘𝑡ℎ predictor and 𝑖𝑡ℎsubject, 𝛼𝑟𝑖𝑘 is the parameter of 

cosine basis for 𝑘𝑡ℎ predictor, 𝑖𝑡ℎsubject, and 

oscillation parameter 𝑟 = 1,2, … , 𝑅 that be inputted, 

𝛽𝑟𝑖𝑘 is the parameter of sine basis for 𝑘𝑡ℎ predictor, 

𝑖𝑡ℎ subject, and oscillation parameter 𝑟 = 1,2, … , 𝑅 

that be inputted. 

An estimator for parameter which be formed as 

vector for nonparametric regression equation with 

longitudinal data that be approached by Fourier 

series can be determined based on Weighted Least 

Square (WLS) optimization. The WLS optimization 

result given as follows: 

𝜷̂ = (𝑿𝑇[𝑅]𝑾𝑿[𝑅])−𝟏𝑿𝑇[𝐾]𝑾𝒚 

The structure of 𝒚 vector is same with linear 

estimator for longitudinal data regression in second 

part. The matrix structure of 𝑿[𝑅] is given as 

follows: 

𝑿[𝑅] = [

𝑿𝟏[𝑅] 𝟎 ⋯ 𝟎

𝟎 𝑿𝟐[𝑅] ⋯ 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝑿𝒏[𝑅]

] 

where 𝑿𝒊[𝑅] equals as follows: 

[

1 𝑥𝑖11 cos 𝑥𝑖11 ⋯ cos𝑅𝑥𝑖11 sin 𝑥𝑖11 ⋯ sin 𝑅𝑥𝑖11 ⋯
1 𝑥𝑖21 cos 𝑥𝑖21 ⋯ cos𝑅𝑥𝑖21 sin 𝑥𝑖21 ⋯ sin𝑅𝑥𝑖21 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥𝑖𝑛𝑖1 cos 𝑥𝑖𝑛𝑖1 ⋯ cos 𝑅𝑥𝑖𝑛𝑖1 sin 𝑥𝑖𝑛𝑖1 ⋯ sin 𝑅𝑥𝑖𝑛𝑖1 ⋯

]. 

Vectors that include regression parameters denoted 

by 𝜷 = [𝜷𝟏 𝜷𝟐 … 𝜷𝒏]
𝑇, where 
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𝜷𝒊 = (
𝛼0𝑖1

2
, 𝛾𝑖1, 𝛼1𝑖1, … , 𝛼𝑅𝑖1, 𝛽1𝑖1, … , 𝛽𝑅𝑖1, … )

𝑇

. 

In addition, there is 𝑾 = 𝑽−𝟏 as a weight matrix. In 
this study, two kinds of weight are used based on 
Wu and Zhang (2006). There are uniform, and 
variance weighted.  The structure of 𝑽 based on 
uniform weight denoted as follows: 

𝑽 =
1

𝑁
[

𝑰𝟏 𝟎 ⋯ 𝟎
𝟎 𝑰𝟐 ⋯ 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝑰𝒏

],                (6) 

where 𝑁 denotes the total of the observations 

number for all subjects. An identity matrix for 𝑖𝑡ℎ 

subject is denoted by  𝑰𝒊. The structure of 𝑽 based on 

uniform weight denoted as follows: 

𝑽 = [

𝑺𝟏𝟏 𝑺𝟏𝟐 ⋯ 𝑺𝟏𝒏

𝑺𝟐𝟏 𝑺𝟐𝟐 ⋯ 𝑺𝟐𝒏

⋮ ⋮ ⋱ ⋮
𝑺𝒏𝟏 𝑺𝒏𝟐 ⋯ 𝑺𝒏𝒏

],           (7) 

with variance matrix 𝑺𝑎𝑏 = 𝑺𝑏𝑎 where 𝑎 ≠ 𝑏. The 

estimator for curve regression can be determined as 

follows: 

𝑦̂𝑖𝑗 = ∑ 𝑓𝑘(𝑥𝑖𝑗𝑘)
𝑝
𝑘=1 ,                  (8) 

with 

𝑓𝑘(𝑥𝑖𝑗𝑘) =
𝛼̂0𝑖𝑘

2
+ 𝛾̂𝑖𝑘𝑥𝑖𝑗𝑘 + ∑ (𝛼̂𝑟𝑖𝑘 cos 𝑟𝑥𝑖𝑗𝑘 + 𝛽̂𝑟𝑖𝑘 sin 𝑟𝑥𝑖𝑗𝑘)

𝑅
𝑟=1 .(9) 

In regression for longitudinal data based on 

Fourier series estimator, the good estimator is 

estimator with optimal oscillation parameter, small 

MSE value, and big determination coefficient value. 

An optimal parameter oscillation can be determined 

based on the smallest Generalized Cross Validation 

(GCV) value that given as follows: 

GCV(𝑅) =
MSE(𝑅)

(𝑁−1𝑡𝑟𝑎𝑐𝑒(𝑰−𝑨(𝑅)))2
,        (10) 

where  

MSE (𝑅) = 𝑁−1𝒚𝑇(𝑰 − 𝑨(𝑅))
𝑇
𝑾(𝑰 − 𝑨(𝑅))𝒚, 

and hat matrix is defined with 𝑨(𝑅) =
𝑿[𝑅](𝑿𝑇[𝑅]𝑾𝑿[𝑅])−𝟏 𝑿𝑇[𝑅]𝑾 (Tripena and 

Budiantara, 2006). 

4 DISCUSSIONS 

In this part we concentrate to application of either 

linear or Fourier series estimator for longitudinal 

data regression. There are four sub sections in this 

part. The first sub section we discuss about the 

simulation data. The second sub section we discuss 

about application for linear estimator. The third sub 

section we discuss about application for Fourier 

series estimator. The last sub section we compare the 

goodness of estimator result based on linear and 

Fourier series estimator for longitudinal data. 

 

4.1 About the Data 

 
Consider simulation data that consist of one 

response and two predictors. The response data used 

represent monthly wind velocity data in 10 cities, 

whereas the predictor data used represents the 

monthly average temperature in 10 cities, and the 

observation period. In this case study there are 10 

cities each observed for 12 months. Based on the 

scatter plot between response and predictors, there 

are trend – seasonal pattern. 

Simulation processes have been constructed 

based on the characteristics from equation (5) where 

the function included of linear and trigonometric 

parts. For this simulation, we concern to modified 

data based on Box et al. (1976) with take 2𝑅 +  2 

parameters. Two parameters represent trend 

components and 2𝑅 parameters represent seasonal 

components that be related to trigonometric 

function. This simulation based on an analogue from 

the data that be presented on Box et al. (1976). 

Figure 1 presents plot of data sample only for first 

subject. 

Based on Figure 1 it shows that there is a clear 

trend pattern between the first predictor variable 

with the response variable, and a clear seasonal 

pattern between the second predictor variable and 

the response variable. The pattern is same for the 

other subject. 

4.2 Linear Estimator Result 

Based on simulation data, first we use two predictor 

variables to estimate a response variable. The result 

of the first linear regression estimation for 

longitudinal data is as follows: 

𝑦̂𝑖𝑗 = −4.1801 + 0.3124𝑥𝑖𝑗1 + 0.0113𝑥𝑖𝑗2. 
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The summary from the series of hypothesis test for 

the first estimation is presented in Table 2. 

 

 

Figure 1: Plot of data sample for first subject. 

Table 2: The summary from the series of hypothesis test 

for the first estimation. 

Test Result 

Augmented 

Dickey Fuller 

Time series component stationer 

Simultaneous Parameter that be estimated affect 

to response variable 

simultaneously. 

Partial For second predictor (observation 

period) does not significant  

Lagrange 

Multiplier 

Heteroscedasticity is happened.  

Jarque Bera Error distribution is normal 

 

Because of second predictor, observation period, 

does not significant based on hypothesis test, so we 

eliminate that predictor, and we use a predictor 

variable, the first predictor, to estimate a response 

variable. The result of the second linear regression 

estimation for longitudinal data is as follows: 

𝑦̂𝑖𝑗 = −4.1136 + 0.3126𝑥𝑖𝑗1. 

The summary from the series of hypothesis test for 

the second estimation is presented in Table 3 as 

follows: 

Table 3: The summary from the series of hypothesis test 

for the second estimation. 

Test Result 

Augmented 

Dickey Fuller 

Time series component stationer 

Simultaneous Parameter that be estimated affect 

to response variable 

simultaneously. 

Partial Partially, predictor significant 

based on hypothesis test. 

Lagrange 

Multiplier 

Heteroscedasticity is happened.  

JarqueBera Error distribution is normal 

 

The second regression model has a 

determination coefficient value equals to 0.87241, 

which means that the predictor can explain the 

response of 87.241%. The MSE value equals to 

0.1106. The determination coefficient value is big, 

and the MSE value is small, so it can satisfy the 

indicator of goodness estimator. However, the 

weakness of the linear estimator for longitudinal 

data regression in this study, the wind speed 

estimation does not involve period variable, and 

there are cases of heteroscedasticity in the error. The 

resulting MSE value can be smaller, and the 

resulting determination coefficient value can be 

greater if using other approaches such as 

nonparametric regression for longitudinal data. 

4.3 Fourier Series Estimator Result 

Furthermore, using the same data, applied to 

nonparametric regression for longitudinal data based 

on Fourier series estimator. The weighting types that 

be used are uniform weighting and variance based 

on Wu and Zhang (2006). The criterion of goodness 

that be used is the small MSE value, and the large of 

determination coefficient value. The optimal 

oscillation parameter is determined based on 

minimum GCV value. The Fourier series estimator 

for nonparametric regression of longitudinal data is 

determined based on equation (8). The GCV value is 

calculated based on equation (10). The GCV values 

based on uniform weighting for each oscillation 

parameter are presented in Table 4. The GCV values 

based on uniform weighting for each oscillation 

parameter are presented in Table 5. 
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Table 4: GCV value based on uniform weighting for each 

oscillation parameters. 

Oscillation 

Parameter 

GCV 

Value 

 Oscillation 

Parameter 

GCV 

Value 

1 164,001.8  33 6,317.85 

2 145,905.457  34 6,041.737 

3 116,867.687  35 5,880.609 

4 103,764.306  36 5,910.787 

⋮ ⋮  37 7,320.536 

Table 5: GCV value based on variance weighting for each 

oscillation parameters. 

Oscillation 
Parameter 

GCV 
Value 

 Oscillation 
Parameter 

GCV 
Value 

1 19,680,216  33 776,253.6 

2 17,508,654.9  34 732,082.2 

3 14,024,122.4  35 712,005.9 

4 12,451,716.7  36 708,797.7 

5 10,386,213.6  37 1,591,221.6 

⋮ ⋮  38 1,663,382 

 

It can be seen from Table 4, based on uniform 

weighting obtained the minimum GCV is 5,880.609. 

That value is achieved by the Fourier series 

estimator with an oscillation parameter of 35. Table 

5 shows the result that the minimum GCV value is 

708,797.7 based on the variance weighting. That 

value is achieved by the Fourier series estimator 

with an oscillation parameter of 36. However, based 

on the comparison of GCV values that be generated 

in Table 4 and Table 5, it is seen that the GCV 

values for uniform weighting is always smaller than 

the GCV values for variance weighting in each 

oscillation parameter. In this case, it can be 

concluded that the uniform weighting is more 

optimal than the variance weighting. However, this 

study does not guarantee uniform weighting is 

always better than variance weighting. 

The selected of Fourier series estimator for 

longitudinal data nonparametric regression approach 

based on uniform weighting. The estimator has a 

small MSE value of 0.00214. The estimator has a 

high determination coefficient value of 0.99766 

which means that predictors can explain the 

response of 99.766%. 

4.4 A Comparison 

In this sub section we make comparison about the 

result of regression for trend-seasonal data pattern 

using linear estimator, the second estimator, and 

Fourier series estimator, based on uniform 

weighting. The comparison is presented on Table 6. 

Based on Table 6, it should be noted that in the 

goodness indicator of estimator, the Fourier series 

estimator is better than the linear estimator for 

regression that be used in case of trend – seasonal 

longitudinal data pattern. The MSE for Fourier 

series estimator is smaller than linear estimator. The 

determination coefficient for Fourier series is greater 

than linear estimator. In addition, the information 

that be obtained based on the Fourier series 

estimator is more complete than the linear estimator, 

since the predictor that be contained in the model for 

the Fourier series estimator are more complete. 

Table 7 presents estimation result for both of 

estimator for first subject. Based on Table 7 can be 

inferred that estimator value for Fourier series is not 

much different from the original data and linear 

estimator. The result is supported by plot that be 

presented on Figure 2. It can be concluded that 

Fourier series estimator can become an alternative 

for regression, in this case for longitudinal data. 

Table 6: The comparison between linear and Fourier series 

estimator in regression for trend-seasonal longitudinal data 

pattern. 

Linear estimator Fourier series estimator 

Consist of a predictor Consist of two predictors 

Does not fulfill the 

assumption of 

homogeneity 

It does not test the 

assumption of homogeneity, 

because there has been no 

relevant inference study. 

MSE value equals to 

0.1106 

MSE value equals to0.00214 

Determination 

coefficient value 

equals to 87.241% 

Determination  

coefficient value  

equals to99.766%. 

Estimator form is 

parsimony 

Estimator form is more 

complex 

 

 

Figure 2: Plot of the comparison result based on estimator 

value from linear and Fourier series estimator and original 

data for first subject. 
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Table 7: The comparison based on estimator value from 

linear and Fourier series estimator and original data for 

first subject. 

obs. y data y linear y Fourier series 

1 2.9 2.90543 2.910106 

2 3 2.97832 2.964548 

3 3.1 3.13808 3.132132 

4 3.1 3.08934 3.090152 

5 3 3.02323 3.027406 

6 3.2 3.16562 3.170019 

7 3.3 3.308 3.302801 

8 3.3 3.31139 3.303712 

9 3.2 3.19316 3.189406 

10 3 3.0228 3.014211 

5 CONCLUSIONS 

In modelling longitudinal data with trend - seasonal 

pattern with regression analysis, not only linear 

estimators are used, but also the Fourier series 

estimator can become an alternative. Based on the 

discussion, the Fourier series estimator has better 

value for the indicator of goodness estimator than 

the linear estimator. The MSE for Fourier series 

estimator is smaller than linear estimator. The 

determination coefficient for Fourier series is greater 

than linear estimator. Nevertheless, inference for the 

Fourier series estimator still needs to be developed 
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