
 
 
Table 11: Comparison MAPE of VAR and VAR – Kalman 
Filter on each variable. 
5  CONCLUSIONS 
The model used in forecasting is the VAR (3) model. 
With the equation as follows: 
 
   
 
+
 
 
 
 
 
..... 
................................................    
   
 
+
 
 
 
 
 
 
           
   
 
+
 
 
 
 
 
  
 
   
 
 
 
 
 
 
 
 
 
.....................................................   
From  the  model,  it  is  known  that  the  value  of  R 
Square of rainfall is 0.56845. It shows that 56.845% 
model is influenced by the variable that defined in the 
model,  the  rest  is  influenced  by  other  variables 
outside the model. Then obtained the forecast error 
based on the MAPE value is 0.634581019. 
Forecasting rainfall using VAR (3) obtained high 
enough residual value, so it is necessary to improve it 
using the Kalman Filter method. Improvement VAR 
forecasting  using  Kalman  Filter  proved  to  be  very 
optimal. It has decreased residual value very much. 
The MAPE value of rainfall is become 0.008429293.
 
REFERENCES 
Abidin, Z. 2018. Citraland Dikepung Banjir, Tunda Dulu 
Malam Minggu Anda. Surabaya: Suarasurabaya.net. 
Ardiansyah,  M.  2016.  Hujan  kembali  guyur  Surabaya, 
banjir di mana-mana. Surabaya: Merdeka.com. 
Basuki, A. T., & Prawoto, N. 2016. Analisis Regresi dalam 
Penelitian  Ekonomi  &  Bisnis:  Dilengkapi  Aplikasi 
SPSS & Eviews. Depok: Rajawali Press. 
Chai Yoke Keng1, a. F., Shimizu, K., Imoto, T., Lateh, H., 
&  Peng,  a.  K.  2017.  Application  of  vector 
autoregressive model for rainfall and groundwater level 
analysis.  AIP  Conference  Proceedings  Volume  1870 
Issue 1. 
Fajerial, E. 2014. Hujan 4 Jam, Pemkot Surabaya: Cuma 
Genangan. Surabaya: TEMPO.COM. 
Herlinda, T. 2013. Peramalan Polusi Udara Oleh Karbon 
Monoksida  (CO)  Di  Kota  Pekanbaru  Dengan 
Menggunakan  Model  Vector  Autoregressive  (VAR). 
Pekanbaru:  Universitas  Islam  Negeri  Sultan  Syarif 
Kasim Riau. 
ITS Media Center. 2017. Intensitas Curah Hujan Penyebab 
Surabaya Dikepung Banjir. Surabaya. 
Lutkepohl,  H.  2005.  New  Introduction  to  Multiple  Time 
Series Analysis. Berlin: Springer. 
Nugroho,  A.,  Subanar,  Hartati, S.,  &  Mustofa,  K.  2014. 
Vector  Autoregression  (Var)  Model  for  Rainfall 
Forecast and Isohyet Mapping in Semarang – Central 
Java  –  Indonesia.  (IJACSA)  International  Journal  of 
Advanced Computer Science and Applications Vol. 5, 
No. 11, 44-49. 
Orpia,  C.,  Mapa,  D.  S.,  &  Orpia,  J.  2014.  Time  Series 
Analysis using Vector Auto Regressive (VAR) Model 
of Wind Speeds in Bangui Bay and Selected Weather 
Variables in Laoag City, Philippines. Munich Personal 
RePEc Archive. 
Pradipta, N. 2013. Analisis Pengaruh Curah Hujan di Kota 
Medan. Jurnal: Saintia Matematika 1. 
Rosita,  T.,  Zaekhan,  &  Estuningsih, R.  D.  2018.  Vector 
Autoregressive  (VAR)  for  Rainfall  Prediction. 
International Journal of Engineering and Management 
Research ISSN (ONLINE): 2250-0758, ISSN (PRINT): 
2394-6962, 96-102. 
Shcochrul, R. A. 2011. Cara Cerdas Menguasai Eviews. 
Jakarta: Salemba Empat. 
Suharsono,  A.,  Aziza,  A.,  &  Pramesti,  a.  W.  2017. 
Comparison  of  Vector  Autoregressive  (VAR)  and 
Vector Error Correction Models (VECM) for Index of 
ASEAN  Stock  Price.  International  Conference  and 
Workshop  on  Mathematical  Analysis  and  its 
Applications 978-0-7354-1605-5. 
Sulistiana, I., Hidayati, & Sumar. 2017. VAR and VECM 
Approach  for  Inflation  Relations  Analysis,  Gross 
Regional Domestic Product (GDP), Word Tin Price, Bi 
Rate and Rupiah Exchange Rate. Integrated Journal of 
Business and Economics ISSN: 2549-3280. 
Wei, W. W. 2006. Time Series Analysis: Univariate and 
Multivariate  Methods.  United  State  of  America: 
Addison-Wesley Publishing Company. 
Forecasting Rainfall at Surabaya using Vector Autoregressive (VAR) Kalman Filter Method
349