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Abstract: Let k be a natural number and G be a simple graph. An inclusive d-distance vertex irregular labelling of a 

graph G is a function 𝜆: 𝑉(𝐺) ⟶ {1,2,… , 𝑘} so that the weights at each vertex are different. Let v be a 

vertex of G. The weight of v ∈V(G), denoted by wt(v), is the sum of the label of v and all vertex labels up to 

distance 1 from v. An inclusive 1-distance vertex irregularity strength of G, denoted by 𝑑𝑖�̂�(𝐺) is the 

minimum k for the existence of an inclusive 1-distance vertex irregular labelling of a G. Here, we find the 

exact value of an inclusive 1-distance vertex irregularity strength of a firecracker, a broom, anda banana 

tree. 

1 INTRODUCTION 

Suppose that 𝐺 is an undirected and finite graph 
without loop and parallel edges. For a vertex v in a 
graph G, the degree of v with notation d(v) is the 
number of edges in G that are incident to v. For two 
vertices u and v in a graph G (not necessarily 
distinct), a u – v walk in G is defined as a sequence 
of vertices and edges in G, starting with u and 
ending at v such that consecutive vertices are 
connected by an edge. A path defined as a u – v walk 
with different vertices. The length of the shortest 
path from vertex u to vertex v is said to be a distance 
from u to v and denoted by d(u,v) (see Chartrand, 
Lesniak & Zhang, (2011) for another terminology). 

The labelling in graph is one of research topics 
introduced in the 1960s. The labelling of a graph is a 
function from a set of graph elements (vertices or 
edges or both) onto a set of numbers (usually natural 
numbers) with certain condition. There are many 
kinds of graph labelling that have been introduced 
(see Gallian (2016) for a complete survey). 
Chartrand et al. suggested the concept of an irregular 
labelling in 1988. The problem of this labelling is 
how to assign natural numbers label to the edges of a 
graph so that the sum of edge labels at each vertex is 
different. In this labelling also introduced a notion, 
called irregularity strength, i.e. the minimum largest 

label among all of the possible irregular assignments 
of a graph (Chartrand et al., 1988). 

In 2007, Bačá et al. introduced the similar 
assignment but apply to both edges and vertices of a 
graph. This labelling is called the irregular total k-
labelling. A total k-labelling is a mapping from the 
vertex set and edge set to the set of natural numbers 
{1,2,… , 𝑘}. The minimum k for such labelling is said 
to be the total irregularity strength. Furthermore, 
Mirka, Rodger & Simanjuntak (2003) introduced 
another kind labelling, which is called distance 
magic labelling.    

Motivated by Mirka and Bačá, Slamin (2017) 
introduced a distance vertex irregular labelling of 
graphs. A distance vertex irregular labelling of a 
graph G is a function 𝜆: 𝑉(𝐺) ⟶ {1,2,… , 𝑘} such that 
the weight of every vertex v in G is different. The 
weight of a vertex𝑣 ∈ 𝑉(𝐺), denoted by wt(v),is the 
sum of the labels of all the vertices of distance1 
from v. Moreover, Bong, Lin & Slamin (2017), 
generalized concept of a distance irregular vertex 
labelling to inclusive vertex irregular d-distance 
vertex labelling. Inclusive in this labelling means 
that the weight of the vertex v included the label of a 
vertex v. The minimum k for the existence of this 
labelling is said to bea distance irregularity strength 
of G and denoted by 𝑑𝑖�̂�𝑑(𝐺). Furthermore, Bong, 
Lin & Slamin (2017) obtained 𝑑𝑖�̂�(𝐺), for G are a 
path Pn for n= 3k, 𝑘 ∈ ℕ, a star 𝐾1,𝑛 , and a double 
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star 𝑆(𝑚, 𝑛) with 𝑚 ≤ 𝑛. In the same paper, they 
gave the lower bound for caterpillar, cycle and 
wheel. In 2018, Bačá et al. determined the exact 
value of the inclusive distance vertex irregularity 
strength of a complete graph, complete bipartite 
graph, path, fan, and cycle. 

In this paper, we discuss an inclusive 1-distance 

vertex irregular labelling and find the exact value of 

an inclusive 1-distance vertex irregularity strength of 

a firecracker, broom, and banana tree. 

2 DEFINITION AND USEFUL 

PROPERTIES 

Before we start the further discussion, we will 
present the definition and some useful properties of 
an inclusive 1-distance vertex irregular labelling. 

Definition 1.Let k be a natural number. An inclusive 

d-distance vertex irregular labelling of a graph G is 

a function 𝜆: 𝑉(𝐺) ⟶ {1,2,… , 𝑘} so that the weights 

of two vertices u and v are different for each 𝑢, 𝑣 ∈
𝑉(𝐺). The weight of a vertex v∈V(G), denoted by 

wt(v), is defined as the sum of the label of v and all 

vertex labels up to distance d from v, namely 

𝑤𝑡(𝑣) = 𝜆(𝑣) + ∑ 𝜆(𝑢)

1≤𝑑(𝑢,𝑣)≤𝑑

, 

where 𝑑(𝑢, 𝑣) is distance from vertex u to v.  

The smallest k for the largest labelling this 
labelling is called an inclusive d-distance 
irregularity strength of G and denoted by 𝑑𝑖�̂�𝑑(𝐺). 
Since in this paper we take 𝑑 = 1, we denote it with 
𝑑𝑖�̂�(𝐺). Not all graphs G have an inclusive 1-
distance irregularity strength of G, and we say that 
𝑑𝑖�̂�(𝐺) = ∞.  

Bong, Lin & Slamin (2017), gave the lower 
bound of the inclusive 1-distance irregularity 
strength of G, by the following lemma. 

 

Lemma 1. For a connected graph G with n vertices, 

δ,∆ as minimum and maximum degree, respectively 

then 𝑑𝑖�̂�(𝐺) ≥ ⌈
𝑛+𝛿

∆+1
⌉. 

       
Next, Bačá et al. (2018) proved the sufficient and 
necessary condition for 𝑑𝑖�̂�(𝐺) = ∞. 

 
Lemma 2. For a connected graph G,𝑑𝑖�̂�(𝐺) = ∞ if 
and only if there exist two different vertices 𝑢, 𝑣 ∈
𝑉(𝐺) such that {𝑢} ∪ 𝑁(𝑢) = {𝑣} ∪ 𝑁(𝑣), where 

N(u) is the set of all neighborhood of u(distance 1 
from u). 

   
As the firecracker, broom, and banana graphs are 

the kind of the tree graph, that clearly not satisfy the 
Lemma 2, so we can find the inclusive 1-distance 
vertex irregular labelling of them. The definition of 
firecracker, broom, and banana tree graphs are as 
follow: 

 
Definition2. A firecracker graph 𝐹𝑛,𝑚 is a graph 
formed by connecting one vertex of degree one from 
each of n copies of a star 𝐾1,𝑚. 

Definition3. A broom 𝐵𝑟𝑛,𝑚 is a graph formed from 
identifying one end leaf of a path Pn with the center 
of a star 𝐾1,𝑚. 

 
Definition4. A banana tree 𝐵𝑛,𝑚is a graph obtained 
from connecting one vertex of degree one from each 
of n copies of a star 𝐾1,𝑚 with a new vertex.  

 

In this paper, we determine an inclusive 1-

distance vertex irregularity strength of a firecracker 

𝐹𝑛,3, a broom 𝐵𝑟3,𝑚, and a banana tree 𝐵2,𝑚. 

3  MAIN RESULTS 

In this section, we discuss an inclusive 1-distance 
irregularity strength of firecracker𝐹𝑛,3, broom 𝐵𝑟3,𝑚, 
and banana tree 𝐵2,𝑚. 

 
Theorem 1. Let 𝐹𝑛,3 be a firecracker graph with 𝑛 ≥
3. Then 𝑑𝑖�̂�(𝐹𝑛,3) = 𝑛 + 1. 

 

Proof. Suppose 𝑉(𝐹𝑛,3) = {𝑣𝑖𝑗|1 ≤ 𝑖 ≤ 4, 1 ≤ 𝑗 ≤

𝑛} where 𝑑(𝑣1𝑗) = 3, 𝑑(𝑣2𝑗) = 𝑑(𝑣3𝑗) = 1, and 

𝑑(𝑣41) = 𝑑(𝑣4𝑛) = 2, and for 𝑗 ≠ 1,2, 𝑑(𝑣4𝑗) = 3. 

As illustration, the vertex notation of 𝐹𝑛,3 can be 

seen in Figure 1. 

 

Figure 1: The notation of vertices of a firecracker 𝐹𝑛,3. 
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We know that a firecracker 𝐹𝑛,3 has 4n vertices, 

Δ(𝐹𝑛,3) = 3 and δ(𝐹𝑛,3) = 1. Based on Lemma 1, 

we get  

𝑑𝑖�̂�(𝐹𝑛,3) ≥ ⌈
4𝑛+1

3+1
⌉ = 𝑛 + 1. 

To show that 𝑑𝑖�̂�(𝐹𝑛,3) ≤ 𝑛 + 1, we define an 

inclusive irregular 1-distance vertex labelling λ of 

𝐹𝑛,3 with label 1,2, … , 𝑛 + 1 as follow: 

 

𝜆(𝑣𝑖𝑗) =

{
 
 

 
 
𝑗 + 1,
1,         
2,         

for 𝑖 = 1; 1 ≤ 𝑗 ≤ 𝑛,        

for 𝑖 = 2; 1 ≤ 𝑗 ≤ 𝑛 − 2,
for 𝑖 = 2; n − 1 ≤ 𝑗 ≤ 𝑛,

𝑛 − 1,
𝑛 + 1,
𝑛 + 1,

for 𝑖 = 3; 𝑗 = 1,                  
for 𝑖 = 3; 2 ≤ 𝑗 ≤ 𝑛,          
for 𝑖 = 4; 1 ≤ 𝑗 ≤ 𝑛.          

  

 

So, the vertices weight of 𝐹𝑛,3 are 

𝑤𝑡(𝑣𝑖𝑗)

{
 
 
 
 
 
 

 
 
 
 
 
 
2𝑛 + 3,           
2𝑛 + 6,           
2𝑛 + 4 + 𝑗

for 𝑖 = 1; 𝑗 = 1,                                     
for 𝑖 = 1; 𝑗 = 2, 𝑛 ≥ 4,                         
for 𝑖 = 1; 3 ≤ 𝑗 ≤ 𝑛 − 2, 𝑛 ≥ 5,        

2𝑛 + 𝑗 + 5,    
3,                      
𝑗 + 2,              
𝑗 + 3,              
𝑛 + 1,              
𝑛 + 𝑗 + 2,       
2𝑛 + 4,            
3𝑛 + 𝑗 + 4,     
3𝑛 + 3,            

for 𝑖 = 1; 𝑛 − 1 ≤ 𝑗 ≤ 𝑛,                      
for 𝑖 = 2; 𝑗 = 1,                                      
for 𝑖 = 2; 2 ≤ 𝑗 ≤ 𝑛 − 2, 𝑛 ≥ 4,         
for 𝑖 = 2; 𝑛 − 1 ≤ 𝑗 ≤ 𝑛,                     
for 𝑖 = 3; 𝑗 = 1,                                      
for 𝑖 = 3; 2 ≤ 𝑗 ≤ 𝑛,                            

for 𝑖 = 4; 𝑗 = 1,
 for 𝑖 = 4; 2 ≤ 𝑗 ≤ 𝑛 − 1,                      
for 𝑖 = 4; 𝑗 = 𝑛.                                     

 

 

 

We obtain that all vertices of a graph 𝐹𝑛,3 have 

distinct weight. Hence, 𝑑𝑖�̂�(𝐹𝑛,3) ≤ 𝑛 + 1. 

Therefore, we can conclude that 𝑑𝑖�̂�(𝐹𝑛,3) = 𝑛 +

1.∎ 
 

Theorem 2. Let 𝐵𝑟3,𝑚 be a broom with 𝑚 ≥ 2, then 
𝑑𝑖�̂�(𝐵𝑟3,𝑚) = 𝑚. 

 
Proof. Suppose that 𝑉(𝐵𝑟3,𝑚) = {𝑢𝑖 , 𝑣𝑗|1 ≤ 𝑖 ≤
3, 1 ≤ 𝑗 ≤ 𝑚} is the vertex set of a broom 𝐵𝑟3,𝑚, 
where the vertices 𝑢1 and 𝑣𝑗 are leaves of a broom 
𝐵𝑟3,𝑚 for each 𝑗 ∈ [1,𝑚] and 𝑢3 is the vertex of 
degree 𝑚 + 1 (see Figure 2). Then, the broom 𝐵𝑟3,𝑚 
has 𝑚 + 1 leaves. So, all leaves of a broom 𝐵𝑟3,𝑚 
must have distinct weight, where 𝑤𝑡(𝑢1) = 𝜆(𝑢1) +
𝜆(𝑢2) and 𝑤𝑡(𝑣𝑗) = 𝜆(𝑢3) + 𝜆(𝑣𝑗). Obviously that 
the smallest weight of a leaf of a broom 𝐵𝑟3,𝑚 is at 
least 2 and minimum of the largest weight of a leaf 
of a broom 𝐵𝑟3,𝑚 is at least 𝑚 + 2. To obtain 
distinct weight of leaves 𝑣𝑗, the leaves 𝑣𝑗 must have 
different label for each 𝑗 ∈ [1,𝑚]. Hence, minimum 

of the largest label of leaves from a broom 𝐵𝑟3,𝑚 is 
at least 𝑚. It means that 𝑑𝑖�̂�(𝐵𝑟3,𝑚) ≥ 𝑚. 

 
 

 
 

 

 

 

 

 

Figure 2: The notation of vertices of a broom 𝐵𝑟3,𝑚. 

 

Now, we show that 𝑑𝑖�̂�(𝐵𝑟3,𝑚) ≤ 𝑚. We define 

the inclusive irregular 1-distance vertex labelling λ 

as follow, 

𝜆(𝑣𝑗) = 𝑗, for 1 ≤ 𝑗 ≤ 𝑚,                

𝜆(𝑢𝑖) = {
𝑚,     for 𝑖 = 1,              
4 − 𝑖, for 2 ≤ 𝑖 ≤ 3.      

 

 

So, the corresponding weights of each vertex of a 

broom 𝐵𝑟3,𝑚 are 

𝑤𝑡(𝑣𝑗) = 𝑗 + 1, for 1 ≤ 𝑗 ≤ 𝑚,     

𝑤𝑡(𝑢𝑖) = {
𝑚 + 1 + 𝑖,     for 1 ≤ 𝑖 ≤ 2,
1

2
(𝑚2+𝑚+6), for 𝑖 = 3.       

 

The differences of every vertex weight in a 
broom graph 𝐵𝑟3,𝑚 can be verified easily. Since the 
largest label of a vertex of a broom 𝐵𝑟3,𝑚 is at most 
𝑚, 𝑑𝑖�̂�(𝐵𝑟3,𝑚) ≤ 𝑚. Therefore, we can conclude 
that 𝑑𝑖�̂�(𝐵𝑟3,𝑚) = 𝑚.∎ 

 

Theorem 3. Let 𝐵2,𝑚 be a banana tree with 𝑚 ≥ 3, 
then  

𝑑𝑖�̂�(𝐵2,𝑚) = {
4, for 𝑚 = 3,
𝑚, for 𝑚 ≥ 4.

 

Proof. Let 𝑉(𝐵2,𝑚) = {𝑧, 𝑥𝑖 , 𝑦𝑖|0 ≤ 𝑖 ≤ 𝑚} be the 
vertex set of a banana tree 𝐵2,𝑚, where the only two 
vertices adjacent to z are 𝑥1 and 𝑦1, 𝑑(𝑥0) =
𝑑(𝑦0) = 𝑚, and the others are leaves. The notation 
of vertices of a banana tree 𝐵2,𝑚 as depicted in 
Figure 3. First, we will find the lower bound of the 
inclusive 1-distance irregularity strength for a 
banana tree 𝐵2,𝑚. To find this, we consider 2 cases. 

Case1. For 𝑚 = 3 

Suppose the vertex set of a banana tree 𝐵2,3 is 

𝑉(𝐵2,3) = {𝑧, 𝑥𝑖 , 𝑦𝑖|𝑖 = 0,1,2,3}. A banana tree 𝐵2,3 
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has 4 leaves, namely 𝑥1, 𝑥2, 𝑦1, 𝑦2. The smallest 

weight of a leaf of a banana tree 𝐵2,3 is at least 2, 

and minimum of the largest weight of a leaf of a 

banana tree 𝐵2,3 is at least 5. So, the label of each 

leaf is at least ⌈5
2
⌉ = 3. Without loss of generality, it 

causes 𝜆(𝑥0) = 1 and 𝜆(𝑦0) = 2. However, 

minimum of the largest weight of all vertices of a 

banana tree 𝐵2,3 is at least 10. If the largest vertex 

label of a banana tree 𝐵2,3 is 3, then the vertex with 

weight 10 should be 𝑦0. It cause 𝜆(𝑦1) = 3 and the 

possibility of weight of 𝑦1 is either 6, 7, or 8. On the 

other hand, the possibility of weight of 𝑥0 is either 6 

or 7. Two possibilities of weight of 𝑥0 will cause 

two of vertices 𝑧, 𝑥0, 𝑥1, and 𝑦1 have the same 

weight. Hence, the largest label of each vertex of a 

banana tree 𝐵2,3 is at least 4. So, 𝑑𝑖�̂�(𝐵2,3) ≥ 4. 

 

 

 

 

 

Figure 3: The notation of vertices of a banana tree 𝐵2,𝑚. 

To show that 𝑑𝑖�̂�(𝐵2,3) ≤ 4, we can label of a 

banana tree 𝐵2,3as depicted in Figure 4. 

 

 
Figure 4: The labelling of banana tree 𝐵2,3. 

 

Figure 4 shows the inclusive irregular 1-distance 
vertex labelling, where the number outside the cycle 
shows the weight of the given vertex. 

 

Case2. For 𝑚 ≥ 4 

A banana tree 𝐵2,𝑚 has (2𝑚 − 2) leaves. The 

smallest weight of a leaf of a 𝐵2,𝑚 is at least 2 and 

minimum of the largest weight of a leaf of a 𝐵2,𝑚is 

at least 2𝑚 − 1. So, minimum of the largest leaf 

label of a banana tree 𝐵2,𝑚 is at least ⌈2𝑚−1
2
⌉ = 𝑚. 

Meanwhile, minimum of the largest weight for every 

vertex of a graph 𝐵2,𝑚 is at least 2𝑚 + 4. Therefore, 

minimum of the largest vertex label of a banana tree 

𝐵2,𝑚 is at least min{⌈2𝑚−1
2
⌉, ⌈2𝑚+4

2
⌉} = 𝑚. So, 

𝑑𝑖�̂�(𝐵2,𝑚) ≥ 𝑚. 

To show that 𝑑𝑖�̂�(𝐵2,𝑚) ≤ 𝑚, let the inclusive 

irregular1-distance vertex labelling λ is defined in 

the following way: 

 𝜆(𝑧) = 𝑚 

𝜆(𝑦𝑖) = {
𝑚 − 1,          
𝑚,                  
𝑖,                    

for 𝑖 = 0                   
for 𝑖 = 1                   
for 2 ≤ 𝑖 ≤ 𝑚

 

So, the corresponding weights of each vertex of a 

banana tree 𝐵2,𝑚 are as follows. 

𝑤𝑡(𝑧) = 3𝑚                                                    

𝑤𝑡(𝑥𝑖) = {

1

2
(𝑚2 +𝑚 + 2),   for 𝑖 = 0                   

2𝑚 + 1,                  for 𝑖 = 1                   
𝑖,                               for 2 ≤ 𝑖 ≤ 𝑚

 

 

𝑤𝑡(𝑦𝑖) = {

1

2
(𝑚2 + 5𝑚 − 4), for 𝑖 = 0                   

3𝑚 − 1,                   for 𝑖 = 1                   
𝑚 + 𝑖 − 1,              for 2 ≤ 𝑖 ≤ 𝑚

 

 

The differences of every vertex weight can be 

verified easily, and the largest label is m. So, 

𝑑𝑖�̂�(𝐵2,𝑚) ≤ 𝑚. Therefore, we can conclude that 

𝑑𝑖�̂�(𝐵2,𝑚) = 𝑚.∎ 

 

For example, the inclusive irregular 1-distance 

vertex labelling of a banana tree 𝐵2,4 can be seen in 

Figure 5.  

 

Figure 5: The labelling of banana tree 𝐵2,4. 
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