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Abstract: The partition dimension of graph is one of open problem in the graph theory. Investigation of the problem can 

be solved by operations of graph. Several operations that are known is the partition dimension of corona 

product, cartesian product, subdivision operation. In this paper, the partition dimension is investigated by a 

bridge operation. Let 𝐺1, 𝐺2 be two connected graphs and let 𝑢 ∈ 𝑉(𝐺1) and 𝑢 ∈ 𝑉(𝐺2).  The Bridge graph, 

𝐵(𝐺1, 𝐺2 , 𝑢𝑣) is a graph which obtained from two graphs 𝐺1, 𝐺2 with a linking 𝑢 to 𝑣. This paper is devoted 

to find the partition dimension of the bridge graph from homogeneous caterpillars and the cycle graphs. 

1 INTRODUCTION 

On the transport network, there is always one path as 

the main road. On the main road, there will be several 

paths as branch roads. The design of the main path 

with a number of intersections originating from the 

main road in graph theory is known as caterpillar 

graph. In the caterpillar graph, the main path is known 

as the backbone edge and the paths of an intersection 

are called the leaves edges. In addition to the 

transportation path, the graph can be used to design a 

robot navigation network (B. Shanmukha et al. 2002, 

S. Khuller et al., 1996).  

The interesting problem in graph theory which is 

an open problem until now is a partition dimension of 

the graph. The problem of partition dimension is the 

problem to determine the classes of vertices such that 

each vertex is distinguished from each other. The 

researchers in dimensional partitions used in various 

methods namely research in the certain classes of the 

graph, or the operations of graphs. Some operations 

which were used are corona (Yero et al, 2011), 

subdivision (Amrullah et al., 2013, Amrullah et al., 

2015) and cartesian operations (Yero et al., 2010). 

One of the operations that have not yet appeared in 

partition dimension research is a bridge operation.

 

2 BASIC CONCEPTS 

First, we introduce several notations and basic 

concepts to investigate the partition dimension. Let 

𝐺 = (𝑉, 𝐸) be a connected graph, 𝑢, 𝑣 ∈ 𝑉(𝐺). The 

distance 𝑑(𝑢, 𝑣) from vertex 𝑢 to vertex 𝑣 is the 

length of a shortest path between 𝑢 and 𝑣. Let 𝐿 =
 {𝑣1 , 𝑣2 ,··· , 𝑣𝑘} be a subset of 𝑉(𝐺), Then the 

distance 𝑑(𝑢, 𝐿) from a vertex 𝑣 to 𝐿 is 

min {𝑑(𝑣, 𝑣𝑖)|𝑣𝑖 ∈ 𝐿}. Let Π = {𝐿1, 𝐿2, 𝐿3, … 𝐿𝑘} be a 

k-partition of 𝑉(𝐺). The representation 𝑟(𝑣|Π) of 

vertex 𝑣 with respect to Π is the vector 

(𝑑(𝑣, 𝐿1), 𝑑(𝑣, 𝐿2), … , 𝑑(𝑣, 𝐿𝑘)). The partition Π is 

called a resolving partition of 𝐺 if 𝑟(𝑤|Π) ≠ 𝑟(𝑣|Π) 

for all distinct 𝑤, 𝑣 ∈ 𝑉(𝐺). The partition dimension 

of 𝐺, denoted by 𝑝𝑑(𝐺), is the cardinality of a 

minimum resolving partition of 𝐺. If two vertices 𝑢 

and 𝑣 are in the same partition class under 𝛱, then we 

write 𝑢~𝜋𝑣,  otherwise 𝑢 ≁𝜋 𝑣. If 𝑑(𝑣, 𝐿𝑗) ≠

𝑑(𝑢, 𝐿𝑗)  for some 𝑗 ∈ [1, 𝑘], then we shall say that 𝑢 

and 𝑣 are distinguished by 
iL  or 𝑢 and 𝑣 are 

distinguishable. Let 
iv L  , if ( , ) 1id v L   for any 

j iL L  then 𝑣  is called a dominant vertex under Π. 

Let 𝐿𝑡 be a partition class distinguishing two vertices 

𝑢, 𝑣 where 𝑡 ∈ [1, 𝑝]. Vertices 𝑥 and 𝑦 in 𝐿𝑡 are called 

the distance defining vertices of 𝑢 and 𝑣 in 𝐿𝑡 if 

𝑑(𝑢, 𝐿𝑡) = 𝑑(𝑢, 𝑥), 𝑑(𝑣, 𝐿𝑡) = 𝑑(𝑣, 𝑦) and 

𝑑(𝑢, 𝑥) ≠ 𝑑(𝑣, 𝑦).  
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Let 𝐺1, 𝐺2 be two connected graphs, 𝑢 ∈ 𝑉(𝐺1) 

and 𝑣 ∈ 𝑉(𝐺2). The bridged graph of 𝐺1 and 𝐺2 by 

𝑒 = 𝑢𝑣, 𝐵(𝐺1, 𝐺2, 𝑢𝑣), is a graph obtained from 

graph 𝐺1 and 𝐺2 which linking the vertex 𝑢 in 𝑉(𝐺1) 

to the vertex 𝑣 in 𝐺2 . In this paper, we examine the 

bridge graphs 𝐵(𝐺1, 𝐺2, 𝑢𝑣) where 𝐺1 is the 

homogeneous caterpillar dan 𝐺2 is a cycle graph. The 

Homogeneous caterpillar, 𝐶(𝑚, 𝑛), is a graph 

obtained by attaching 𝑤𝑖,1, 𝑤𝑖,2, … 𝑤𝑖,𝑛 leaves to each 

vertex 𝑣𝑖 of the path 𝑃𝑚 , for 𝑖 ∈ [1, 𝑚]. The cycle 

graph, 𝐶𝑛 , is a connected graph which each vertex has  

one degree with 𝑉(𝐶𝑛) = {𝑐1, 𝑐2, … , 𝑐𝑛}. This paper 

is devoted to find the partition dimension of 

𝐵(𝐺1, 𝐺2, 𝑢𝑣) where 𝐺2 is a cycle graph. 

In the following lemmas, we introduce several 

properties which are useful in this research.  Lemma 

2.1 and Corollary 2.2 are given by G. Chartrand et al., 

(2000). 

Lemma 2.1. (G. Chartrand et al., 2000) Let 𝐺 be a 

connected with a resolving partition Π.  If 𝑑(𝑢, 𝑤)  =
 𝑑(𝑣, 𝑤) for all 𝑤 ∈  𝑉(𝐺) −  {𝑢, 𝑣}, then vertices 

𝑢, 𝑣 must be in distinct partition classes of Π. 

A lower bound of partition dimension of graph 

given by a direct consequence of Lemma 2.1 

Corollary 2.2. (G. Chartrand et al., 2000) Let 𝐺 be a 

connected graph, if 𝐺 has a vertex having 𝑘 leaves 

then 𝑝𝑑(𝐺)  ≥  𝑘.  

The next Lemma 2.2 gives the partition 

dimension of path 𝑃𝑛 (G. Chartrand et al., 1998) 

Lemma 2.2. (G. Chartrand, et al. 1998) Let 𝐺 be a 

connected graph of order 𝑛 ≥  2. Then 𝑝𝑑(𝐺)  =  2 

if and only if  𝐺 =  𝑃𝑛. 

The Lemma 2.2 shows that the other graphs have the 

partition dimension at least three. 

A homogeneous caterpillar 𝐶(𝑚, 𝑛) is a graph 

obtained by attaching 𝑚  vertices to each vertex 𝑣𝑖 of 

the path 𝑃𝑛,  for  𝑖 [1, 𝑛]. All vertices of degree one 

are called leaves. All leaves attached to vi are labelled 

by 𝑤𝑖,1, 𝑤𝑖,1, … , 𝑤𝑖,𝑚   Darmaji et al. (2009)  gave the 

partition dimension of a homogeneous caterpillar in 

the following theorem. 

Theorem 2.1 Let 𝐺 = 𝐶(𝑚, 𝑛) be a homogeneous 

caterpillar with 𝑚 ≥  3, 𝑛 ≥  2.  Then,  

𝑝𝑑(𝐺) = {
𝑚

𝑚 + 1
       

𝑖𝑓 𝑚 ≤ 𝑛
𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

3 MAIN RESULTS 

In first result, we give partition dimension of bridge 

graph obtaining from a homogeneous caterpillar 

C(m,n)  for m{1,2} and cycle C3. 

 

Lemma 3.1. If 𝐺1  =  𝐶(𝑚, 𝑛) and 𝐺2  =  𝐶𝑘 ,  

𝑚{1,2}, 𝑛 ≥  2, 𝑘 ≥ 3, and 𝑢 ∈  𝑉(𝐺1 ), 𝑣 ∈
𝑉 (𝐺2 ), then 𝑝𝑑(𝐵(𝐺1, 𝐶3, 𝑢𝑣))  =  3. 
 

Proof 

Since 𝐺2  =  𝐶𝑘, we obtain that 𝐵(𝐺1, 𝐺2, 𝑢𝑣) is not a 

path. So, we have 𝑝𝑑(𝐵(𝐺1, 𝐺2, 𝑢𝑣))  ≥  3 

Next, let Π =  {𝐿1 , 𝐿2, 𝐿3 } be a partition of 

𝑉(𝐵(𝐺1, 𝐺2, 𝑢𝑣)), look at Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The resolving partition of B(G1,C3, uv) where 

(i,ii,v,vi) 𝐺1 = 𝐶(1, 𝑛) and  (iii,iv,vii) 𝐺1 = 𝐶(2, 𝑛)  with 

𝑛 ≥ 1.    

By definition of Π at Figure 1, it is easy to say that  

𝛱 is a resolving partition of  𝐵(𝐺1, 𝐶3, 𝑢𝑣). So, we 

have 𝑝𝑑(𝐵(𝐺1, 𝐶3, 𝑢𝑣)) = 3.       

 

Lemma 3.2. If 𝐺1  =  𝐶(3, 𝑛) and 𝐺2  =  𝐶𝑘,   𝑛 ≥
 2, 𝑘 ≥ 3 and 𝑢 ∈  𝑉(𝐺1 ), 𝑣 ∈ 𝑉 (𝐺2 ), then 

𝑝𝑑(𝐵(𝐺1, G2, 𝑢𝑣)) 

= {
3 

4
       

𝑖𝑓 𝑛 ∈ [1.2]  𝑜𝑟

(𝑛 = 3 𝑎𝑛𝑑 𝑢 𝑖𝑠 𝑎 𝑙𝑒𝑎𝑓 𝑜𝑓 𝐺1),
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Proof.  

To easy our notation, let 𝐻 =  𝐵(𝐺1 , 𝐺2 , 𝑢𝑣). 

Without loss of generality, let  =  𝑐1 . This proof 

considers three cases. 

Case 1. For 𝑚 ∈  {1,2}, Since 𝐻 is not a path, then 

𝑝𝑑(𝐻)  ≥  3. Let 𝛱 =  {𝐿1 , 𝐿2 , 𝐿3 } be a partition 

of 𝑉(𝐻), look at Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The resolving partition of 𝐵(𝐺1, 𝐶3, 𝑢𝑣) where 

(i,ii) 𝐺1 = 𝐶(3,1) and  (iii,iv) 𝐺1 = 𝐶(3,2). 

By definition of Π at Figure 2, it is clear that  Π is 

a resolving partition of  𝐵(𝐺1, 𝐶3, 𝑢𝑣). Let  𝑥, 𝑦 in  

𝐵(𝐺1, 𝐶3, 𝑢𝑣).  If  𝑥, 𝑦  𝐿3 𝑉(𝐶𝑘) then they are 

distinguished by 𝑐2 or 𝐿2.  If  𝑥, 𝑦 𝑉(𝐶(𝑚, 𝑛))  then 

they are distinguished by some vertex which adjacent 

to 𝑥 or 𝑦, 𝑐2 or 𝐿2 . If  𝑥 𝑉(𝐶(𝑚, 𝑛)) and 𝑦 𝑉(𝐶𝑘)  

then they are distinguishe  𝐿2 .  So, we have 

𝑝𝑑(𝐵(𝐺1, 𝐶3, 𝑢𝑣)) = 3.  

Case 2. For 𝑚 = 3 and 𝑢 is a leaf of 𝐺1, since 𝐻 is 

not a path, then 𝑝𝑑(𝐻)  ≥  3. Let 𝛱 =  {𝐿1 , 𝐿2 , 𝐿3 } 

be a partition of  𝑉(𝐻), look at Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The resolving partition of 𝐵(𝐶(3,3), 𝐶𝑘 , 𝑢𝑣) 

where  𝑢 is a leaf of 𝐶(3,3). 

Base on the definition of Π at Figure 2, it is clear 

to say that Π is a resolving partition of  

𝐵(𝐶(3,3), 𝐶𝑘 , 𝑢𝑣). So, we have 𝑑(𝐵(𝐶(3,3), 𝐶3 𝑢𝑣)) 

= 3, where u is aleaf of 𝐺1. 

Case 3. We will show that 𝑝𝑑(𝐻) ≥  4. For a 

contradiction that 𝑝𝑑(𝐻)  <  4, let                       𝛱 =
 {𝐿1, 𝐿2 , 𝐿3 } be a resolving partition of 𝐻.  Since each 

vertex 𝑣𝑖 is adjacent to three leaves 𝑤𝑖,𝑗, without loss 

of generality 𝑣𝑖, 𝑤𝑖,𝑗 in a partition class 𝐿𝑖  for 

𝑖, 𝑗[1,3]. Now we consider the vertices 𝑐𝑖 for 

𝑖[1,3]. Since each 𝑣𝑖  is a dominant vertex then the 

vertices 𝑐1, 𝑐2, 𝑐3 contain at most in two partition 

classes.  

If 𝑐1𝐿3, then 𝑟(𝑐1| 𝛱){(2,1,0), (2,2,0), 
(1,2,0), (1,1,0)}. Since 𝑟(𝑣3| 𝛱) = (1,1,0), 𝑟(𝑤3,3| 

𝛱) = (2,2,0), 𝑟(𝑤2,3| 𝛱) = (2,1,0), and 𝑟(𝑤1,3| 
𝛱) = (1,2,0), then 𝑟(𝑐1| 𝛱) will same to  one of 

representation of 𝑣3, 𝑤1,3, 𝑤2,3 and 𝑤3,3.  This implies 

that 𝑐1 𝐿3. If 𝑐1 ∈ 𝐿2, then 

𝑟(𝑐1| 𝛱) {(2,0,1), (1,0,1)}. Since 𝑟(𝑣2| 𝛱) =
(1,0,1), 𝑟(𝑤3,2| 𝛱) = (2,0,1), then 𝑟(𝑐1| 𝛱) will 

same to  one of representation of 𝑣2, and 𝑤3,2.  This 

implies that 𝑐1 𝐿2. If 𝑐1𝐿1, then 

𝑟(𝑐1| 𝛱){(0,1,1), (0,2,1)}. Since 𝑟(𝑣1| 𝛱) =
(0,1,1), 𝑟(𝑤3,1| 𝛱) = (0,2,1), then 𝑟(𝑐1| 𝛱) will 

same to  one of representation of 𝑣1, and 𝑤3,1.  This 

implies that  𝑐1 𝐿1 .  

These implies 𝑐1 𝐿1 or 𝑐1 𝐿2 or 𝑐1 𝐿3 , 

contradiction. As the consequences  pd(H)≥ 4. 

To show the upper bound of pd(H), we define a 

new partition 𝛱 =  {𝐿1, 𝐿2, 𝐿3, 𝐿4} of 𝑉(𝐻) where 

𝐿1 = {𝑣1, 𝑣2, … , 𝑣𝑚} ∪ {𝑤𝑖,1|1 ≤ 𝑖 ≤ 𝑚}, 𝐿2 =

{𝑤𝑖,2|1 ≤ 𝑖 ≤ 𝑚} ∪ {𝑐2}, 𝐿3 = {𝑤𝑖,3|1 ≤ 𝑖 ≤ 𝑚} ∪

{𝑐1} and 𝐿4 = {𝑐3},  look at Figure 4. 

 

 

 

 

 

 

 

Figure 4: The resolving partition of 𝐵(𝐶(3, 𝑛), 𝐶3, 𝑢𝑣) with 

𝑛 ≥ 3. 

By definition of Π at Figure 3, it is easy to say that  Π 

is a resolving partition of  𝐵(𝐶(3, 𝑛), 𝐶3, 𝑢𝑣) with 

𝑛 ≥ 3. So, we have 𝑝𝑑(𝐵(𝐶(3, 𝑛) , 𝐶3, 𝑢𝑣) ) = 4.            

 

Theorem 3.1. If 𝐶𝑚, 𝐶𝑛  are two cycles for 𝑚, 𝑛 ≥  3, 

then 𝑝𝑑(𝐵(𝐶𝑚, 𝐶𝑛 , 𝑢𝑣))   =  3 for 𝑢 ∈  𝑉(𝐶𝑚 ), 𝑣 ∈
 𝑉 (𝐶𝑛 ). 

Proof.  

Let 𝑉(𝐶𝑚 )  =  {𝑢1, 𝑢2,··· , 𝑢𝑚} and 𝑉(𝐶𝑛)  =
 {𝑣1, 𝑣2, … , 𝑣𝑛}.  Let u1v1 be a bridge of B(Cm ,Cn ,u1 
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v1 ). Define 𝐿 =  {𝐿1, 𝐿2, 𝐿3} is a partition of 

𝑉(𝐵(𝑃1, 𝑃2, 𝑢1𝑣1)) where 𝐿1 =  {𝑢1, 𝑢2, … , 𝑢𝑚−1} ∪ 

{𝑣𝑛}, 𝐿2 =  {𝑣𝑛−1} and 𝐿3 =  {𝑣1, 𝑣2, … , 𝑣𝑛−2} ∪ 
{𝑢𝑚}. For 𝑥, 𝑦 ∈  𝐿1, if 𝑑(𝑥, 𝐿3)  =  𝑑(𝑦, 𝐿3) then 

𝑥, 𝑦 are distinguished by 𝑣𝑛−1. The otherwise, they 

are distinguished by 𝐿3. For 𝑥, 𝑦 ∈  𝐿3, if 𝑑(𝑥, 𝐿1 )  =
 𝑑(𝑦, 𝐿1) then 𝑥, 𝑦 are distinguished by 𝑣𝑛−1. The 

otherwise, they are distinguished by 𝐿1. The partition 

class 𝐿2 is a singleton. These implies that 𝐿 is a 

resolving partition of 𝐵(𝐶𝑚, 𝐶𝑛, 𝑢𝑣). Thus, we obtain 

𝑝𝑑(𝐵(𝐶𝑚, 𝐶𝑛 , 𝑢𝑣))  =  3. 

Lemma 3.3 Let 𝐺1 = 𝐶(𝑚, 𝑛) be a homogeneous 

caterpillar with 𝑚 ≥  4,  𝑚 ≤  𝑛 , and 𝐺2 = 𝐶𝑘 be a 

cycle with orde 𝑘 ≥ 3. If 𝑢 ∈  𝑉(𝐺1) is not a leaf and 

𝑣 ∈  𝑉(𝐺2), then 

𝑝𝑑(𝐵(𝐺1, G2, 𝑢𝑣)) = {
𝑚 

𝑚 + 1
       

𝑖𝑓 𝑚 ≤ 𝑛
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑠

 

 

Proof: 

Consider this proof in two cases. 

Case 1. For 𝑚 ≤ 𝑛, since there is a vertex 𝑣𝑖 which is 

adjacent to three leaves 𝑤𝑖,𝑖 then we obtain 

𝑝𝑑(𝐵(𝐺1, 𝐺2, 𝑢𝑣))   ≥  𝑚. Let  = {𝐿1, 𝐿2, . . . , 𝐿𝑚}  

of a recolving partition of 𝐺1 where 𝐿𝑖 = {𝑣𝑖 , 𝑤𝑗,𝑖|1 ≤

𝑗 ≤ 𝑚} for 𝑖[1, 𝑛]. Let 𝑣 = 𝑣𝑡  for some 𝑡[2, 𝑛]. 
Define a new partition  ′ = {𝐿′1, 𝐿′2, … , 𝐿′𝑚} of 

𝑉(𝐵(𝐺1, 𝐺2, 𝑢𝑣)) where 𝐿′𝑖 =  𝐿𝑖 for 𝑖{𝑡 − 1, 𝑡}, 

𝐿′𝑡−1 =   𝐿𝑡−1{𝑐𝑛} and 𝐿′𝑡 =  𝐿𝑡{𝑐𝑖|1 ≤ 𝑖 ≤ 𝑛 −
1}. We will show that   ’ = {𝐿′1, 𝐿′2, . . . , 𝐿′𝑚}  is a 

resolving partitito of 𝐵(𝐺1, 𝐺2 , 𝑢𝑣). 

Let 𝑥, 𝑦 in 𝑉(𝐵(𝐺1, 𝐺2, 𝑢𝑣)). If 𝑥, 𝑦 are the leaves, 

let 𝑥 = 𝑤𝑖,𝑡 dan 𝑦 = 𝑤𝑖,𝑡 then they are distinguished 

by 𝑣𝑖𝐿𝑖.   If (𝑥 = 𝑐𝑖  𝑜𝑟 𝑥 = 𝑤𝑖,𝑡  for some 𝑖, 𝑗) and 

𝑦 = 𝑣𝑖 , , then 𝑦 = 𝑣𝑗  is a  dominant vertex but 𝑥 is not 

a dominant vertex, so they are distinguished.  If 𝑥 =
𝑤𝑖,𝑡 and 𝑦 = 𝑐𝑗, then they are distinguished by L1 

because 𝑑(𝑥, 𝐿1) < 𝑑(𝑦, 𝐿1). 

If 𝑥 = 𝑐𝑖 and 𝑦 = 𝑐𝑘  for 𝑘𝑗 then they are 

distinguished by 𝐿1 or 𝐿𝑛.       

Case 2. For 𝑚 > 𝑛, since there are at least 𝑚 + 1 

verteces 𝑣𝑖 which is adjacent to 𝑚 leaves 𝑤𝑖,𝑗, then 

we obtain 𝑝𝑑(𝐵(𝐺1, 𝐺2, 𝑢𝑣))   ≥  𝑚 + 1.     

Let 𝑢 = 𝑣𝑟   for some 𝑟[1, 𝑛]. 
Define a  partition 1 = {𝐿1, 𝐿1, . . . , 𝐿𝑚+1}  of 

𝑉(𝐵(𝐺1, 𝐺2, 𝑢𝑣)) where 𝐿1 =  {𝑣𝑡|1 ≤ 𝑡 ≤
𝑟}{𝑤𝑡,1|1 ≤ 𝑡 ≤ 𝑛}{𝑣𝑡|1 ≤ 𝑡 ≤ 𝑛 − 1}, 𝐿2 =

 {𝑣𝑡|𝑟 + 1 ≤ 𝑡 ≤ 𝑛}{𝑤𝑡,2|1 ≤ 𝑡 ≤ 𝑛}, 𝐿𝑚+1 =

{𝑐𝑛} and, 𝐿𝑖 =  {𝑤𝑡,𝑖|1 ≤ 𝑡 ≤ 𝑚}  for 𝑖[3, 𝑚]. We 

will show that   1  is a resolving partitito of 

𝐵(𝐺1, 𝐺2, 𝑢𝑣). 

Let 𝑥, 𝑦 in 𝑉(𝐵(𝐺1, 𝐺2, 𝑢𝑣)). If 

𝑑(𝑥, 𝑐𝑛) 𝑑(𝑦, 𝑐𝑛) then they are distinguished by 

𝑐𝑛𝐿𝑚+1. If 𝑑(𝑥, 𝑐𝑛) = 𝑑(𝑦, 𝑐𝑛), then they are 

distinguished by 𝐿3 .         

Lemma 3.4 Let 𝐺1 = 𝐶(𝑚, 𝑛) be a homogeneous 

caterpillar with 𝑚 ≥  4,  and 𝐺2 = 𝐶𝑘 be a cycle with 

orde 𝑘 ≥ 3. If 𝑢 ∈  𝑉(𝐺1) is  a leaf and 𝑣 ∈  𝑉(𝐺2), 

then  

𝑝𝑑(𝐵(𝐺1, G2, 𝑢𝑣)) = {
𝑚 

𝑚 + 1
       

𝑖𝑓 𝑚 ≤ 𝑛 + 1
𝑜𝑡ℎ𝑒𝑟𝑠

 

 

Proof 

We consider this proof in two cases. 

Case 1. For 𝑚 ≤ 𝑛 + 1, since there is a vertex 𝑣𝑖 

which is adjacent to 𝑚  leaves 𝑤𝑖,𝑗, then we obtain 

𝑝𝑑(𝐵(𝐺1, G2, 𝑢𝑣))   ≥  𝑚. Let  = {𝐿1, 𝐿2, . . . , 𝐿𝑚}  

of a resolving partition of G1 where 𝐿𝑖 = {𝑣𝑖 , 𝑤𝑗,𝑖|1 ≤

𝑗 ≤ 𝑚} for 𝑖[1, 𝑛]. Let 𝑣 = 𝑣𝑡  for some 𝑡[2, 𝑛]. 
Define a new partition ’ = {𝐿′

1, 𝐿′
2, … , 𝐿′𝑚} of 

𝑉(𝐵(𝐺1, 𝐺2 , 𝑢𝑣)) where 𝐿′1 = 𝐿1  for 𝑖{𝑡 − 1, 𝑡}, 

𝐿′𝑡−1 =   𝐿𝑡−1{𝑐𝑛} and 𝐿′𝑡 =  𝐿𝑡{𝑐𝑖|1 ≤ 𝑖 ≤ 𝑛 −
1}. We will show that   ’ = {𝐿′1, 𝐿′2, . . . , 𝐿′𝑚}  is a 

resolving partition of 𝐵(𝐺1, 𝐺2 , 𝑢𝑣). 
Let x,y in 𝑉(𝐵(𝐺1, 𝐺2 , 𝑢𝑣)). If 𝑥, 𝑦 are the leaves, 

let 𝑥 = 𝑤𝑖,𝑡 dan 𝑦 = 𝑤𝑗,𝑡 then they are distinguished 

by 𝑣𝑖𝐿𝑖.       

If (𝑥 = 𝑐𝑖 or 𝑥 = 𝑤𝑖,𝑡 for some 𝑖, 𝑗) and 𝑦 = 𝑣𝑖 ,  then 

𝑦 = 𝑣𝑗 is a  dominant vertex but 𝑥 is not a dominant 

vertex. If 𝑥 = 𝑤𝑖,𝑡 and 𝑦 = 𝑐𝑗  then they are 

distinguished by 𝐿1 because 𝑑(𝑥, 𝐿1) < 𝑑(𝑦, 𝐿1). If 

𝑥 = 𝑐𝑗 and 𝑦 = 𝑐𝑘 for 𝑘𝑗 then they are distinguished 

by 𝐿1 or 𝐿𝑛. 

These imply that the vertices 𝑥, 𝑦 are distinguished. 

Case 2. For 𝑚 > 𝑛 + 1, since there are at least 𝑚 +
1  vertices 𝑣𝑖 which is adjacent to 𝑚 leaves 𝑤𝑖,𝑗, then 

we obtain 𝑝𝑑(𝐵(𝐺1, 𝐺2 , 𝑢𝑣))   ≥  𝑚 + 1. 

Let 𝑢 = 𝑤𝑟,1 for some 𝑟[1, 𝑛]. 
Define a partition 1  = {𝐿1, 𝐿2, . . . , 𝐿𝑚+1} of 

𝑉(𝐵(𝐺1, 𝐺2 , 𝑢𝑣)) where 𝐿1 =  {𝑣𝑡|1 ≤ 𝑡 ≤ 𝑟} 

{𝑤𝑡,1|1 ≤ 𝑡 ≤ 𝑛}{𝑐𝑡|1 ≤ 𝑡 ≤ 𝑛 − 1}, 𝐿2 =

 {𝑣𝑡|𝑟 + 1 ≤ 𝑡 ≤ 𝑛}{𝑤𝑡,2|1 ≤ 𝑡 ≤ 𝑛}, 𝐿𝑚+1 =

{𝑐𝑛} and, 𝐿𝑖 =  {𝑤𝑡,𝑖|1 ≤ 𝑡 ≤ 𝑚}  for 𝑖[3, 𝑚]. Let 

𝑥, 𝑦 in 𝑉(𝐵(𝐺1, 𝐺2 , 𝑢𝑣)). If 𝑑(𝑥, 𝑐𝑛) 𝑑(𝑦, 𝑐𝑛), then 

they are distinguished by 𝑐𝑛𝐿𝑚+1. If 𝑑(𝑥, 𝑐𝑛) =
𝑑(𝑦, 𝑐𝑛), then they are distinguished by  𝐿3 .     

 

The following theorem gives the upper bound of 

partition dimension of the bridge graph from any 

connected graph and  a cycle 𝐶𝑛. 
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Theorem 3.2. Let 𝐺1  be a connected graph and 𝐺2 =
𝐶𝑛 be a cycle with orde 𝑛 ≥ 3. If 𝑢 ∈  𝑉(𝐺1) and 𝑣 ∈
 𝑉(𝐺2), then 𝑝𝑑(𝐵(𝐺1, 𝐺2 , 𝑢𝑣))   ≤  𝑝𝑑(𝐺) + 1. 

Proof.  

Let 𝑉(𝐶𝑛) =  {𝑣1, 𝑣2, … , 𝑣𝑛} and 𝑢𝑣 be a bgidge of 

𝐵(𝐺1, 𝐺2 , 𝑢𝑣) with 𝑣 = 𝑣1. Suppose 𝐿 =
 {𝐿1 , 𝐿2, … , 𝐿𝑛 } is a resolving partition of 𝐺 and 

𝑢𝐿𝑛  and Π = {𝐿′
1 , 𝐿′

2, ··· , 𝐿′
𝑛, 𝐿′

𝑛+1 } be a 

partition of 𝐵(𝐺1, 𝐺2, 𝑢𝑣) where 𝐿′
𝑖 = 𝐿𝑖  for 

𝑖{1,2. . , 𝑛 − 1}, 𝐿′
𝑛 = 𝐿𝑛{𝑣1, 𝑣2, … , 𝑣𝑛−1} and 

𝐿′
𝑛+1 = {𝑣𝑛}. 

Let x, 𝑦 be two distinct vertices of 𝐵(𝐺1, 𝐺2, 𝑢𝑣). 

We consider 𝑥, 𝑦 in three cases. 

Case 1. the vertices 𝑥, 𝑦 in 𝑉(𝐵(𝐺1, 𝐺2, 𝑢𝑣))\𝑉(𝐶𝑛). 

If 𝑑(𝑥, 𝑣1) 𝑑(𝑦, 𝑣1), then they are distinguished by 

𝐿′𝑛+1. If 𝑑(𝑥, 𝑣1)  =  𝑑(𝑦, 𝑣1), then consider a 

partition class 𝐿𝑡 in 𝐺1 which is distinguishing  x, y. 

Since  𝐿′𝑡 = 𝐿𝑡 and the vertices 𝑥, 𝑦 in 

𝑉(𝐵(𝐺1, 𝐺2, 𝑢𝑣))\𝑉(𝐶𝑛), then the vertices x, y are 

distinguished by 𝐿′𝑡. 

Case 2. the vertices 𝑥, 𝑦 in 𝑉(𝐵(𝐺1, 𝐺2, 𝑢𝑣))\
𝑉(𝐺1).If 𝑑(𝑥, 𝑢) 𝑑(𝑦, 𝑢), then they are 

distinguished by 𝐿′1. 𝐼𝑓 𝑑(𝑥, 𝑢)  =  𝑑(𝑦, 𝑢), then 

they are distinguished by 𝐿′𝑛+1. 

Case 3. the vertex 𝑥 in 𝑉(𝐵(𝐺1, 𝐺2, 𝑢𝑣))\𝑉(𝐶𝑛)  and 

𝑦 in 𝑉(𝐵(𝐺1, 𝐺2, 𝑢𝑣))\𝑉(𝐺1). By definition a 

partition Π,  we only have 𝑥, 𝑦 in 𝐿𝑛. If  

𝑑(𝑥, 𝑣𝑛) 𝑑(𝑦, 𝑣𝑛), then they are distinguished by 

𝐿′𝑛+1. If  𝑑(𝑥, 𝑣𝑛) =  𝑑(𝑦, 𝑣𝑛), then we consider 

𝑑(𝑥, 𝐿′1) = 𝑝.  Since 𝐿′1  𝑉(𝐵(𝐺1, 𝐺2, 𝑢𝑣1))\
𝑉(𝐶𝑛),  we have  𝑑(𝑦, 𝐿′1) > 𝑝 . This implies that the 

vertices 𝑥, 𝑦 are distinguished by 𝐿′1. 

As the consequences that   Π = {𝐿′1 , 𝐿′2, ···
 , 𝐿′𝑛, 𝐿′𝑛+1 } is a resolving partition of 𝐵(𝐺1, 𝐺2, 𝑢𝑣). 

So, we have  𝑝𝑑(𝐵(𝐺1, 𝐺2, 𝑢𝑣))  ≤ pd(G)+1.    

 4 CONCLUSIONS 

In this paper, we obtained the partition dimension of 

the bridge graphs, 𝑝𝑑(𝐵(𝐺1, 𝐺2, 𝑢𝑣)) from two 

special graph namely the homogeneous caterpillar as 

𝐺1 and a cyclic graph as 𝐺2. The results show that  the 

partition dimension 𝑚 − 1 ≤ 𝑝𝑑(𝐵(𝐺1, 𝐺2, 𝑢𝑣))  ≤
 𝑚 + 1 where partition dimension of the 

homogeneous caterpillar is 𝑚.  
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