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Abstract: In this paper we introduce geographically weighted polynomial regression (GWPolR) model as a 

generalization of GWR model. It is an alternative solution to overcome the existence of nonlinear relationships 

between response variable and one or more explanatory variables involved in spatial modelling. This study 

aims to provide a procedure for finding the optimal bandwidth and polynomial degrees in the GWPolR 

technique. This procedure is applied to Water Quality Index (WQI) modelling based on several factors. 

Because GWR method does not account for nonlinearity relationships of the spatial data type, we hypothesize 

that a GWPolR model will help us better understand how the factors are related to WQI patterns. Both types 

of models were applied to examine the relationship between WQI and various explanatory variables in 33 

provinces of Indonesia. The goal was to determine which approach yielded a better predictive model. Based 

on three explanatory variables, i.e. percentage of untreated waste, population density, and number of micro 

industries, the GWR produced a spatial precision, i.e. R2, of 35.28%. GWPolR efforts increased the value 

explained by explanatory variables with better spatial precision (R2 = 50.12%). The results of GWPolR 

approach provide more complete understanding of how each explanatory variable is related to WQI, which 

should allow improved planning of explanatory management strategies. 

1 INTRODUCTION 

The geographically weighted regression (GWR) 

model has been one of the useful methods in spatial 

analysis (Fotheringham et al., 2002). The GWR 

technique has been studied both in theory and 

application. In the scope of theory, many authors have 

studied the GWR technique, for example: Brunsdon 

et al. (1999), and Fotheringham et al. (1998; 2002). In 

application, the GWR technique has been also widely 

applied to different areas, for example: in climatology 

(Al-Ahmadi& Al-Ahmadi, 2013; Brunsdon et al., 

2001; and Wang et al., 2012), in econometric (Mittal 

et al., 2004; Lu et al., 2014), in social field 

(Fotheringham et al., 2001; Han & Gorman, 2013). 

From those studies, some procedures relating to the 

GWR model have been established. 

The GWR coefficients are spatially varying. 

However, it is important to remember that the GWR 

model is an expansion of global linear regression 

(GLR) model, so the response variable in each 

location is fitted as a linear function of a set of 

explanatory variables. It may be unrealistic in some 

real-life situations. There are many possibilities of 

nonlinearity cases in the relationships between one or 

more explanatory variables and the response. In a 

health study, the relationship between age and child 

weight tend to be nonlinear. In economic study, the 

relationship between advertising finance and the 

revenue is commonly nonlinear. In application of 

spatial analysis, Chamidah et al. (2014) inspected the 

vulnerability modelling of dengue hemorrhagic fever 

(DHF) disease in Surabaya based on geographically 

regression. The results obtained have not been 

satisfactory. The existence of nonlinear relationships 

between one or more explanatory variables and the 

DHF level is suspected to be the cause. In other 

example, Chiang et al. (2015) showed that the 

influence of the convenience factor (access to public 

facilities) is nonlinear over the housing prices in 

Taipei, Taiwan. If the nonlinear relationships are 

present in the real situation, then the linear approach 

may be unrealistic. Therefore, some approach models 
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which accommodate the actual pattern of the real data 

are required to improve the basic GWR model. 

Some expansions of GWR have been proposed in 

recent years. One of the important expansions is 

geographically weighted generalized linear models 

(GWGLM) covering geographically weighted 

poisson regression (GWPR) and geographically 

weighted logistic regression (GWLR). Although 

there was GWGLM, an extension of GWR which 

accommodates response in continuous variable and 

has nonlinear relationships with the explanatory 

variables has not been found. Thus, an extension of 

the GWR model which can overcome the problems 

described above is needed. 

As a solution to the above problem, we introduce 

a generalization of the basic GWR model by using 

polynomial function approach. Then, it is called the 

geographically weighted polynomial regression 

(GWPolR) model. Here, we provide an analytical 

formula for the coefficient estimator which still 

depends on a bandwidth and several polynomial 

degrees. Next, the purpose of this paper is to provide 

a procedure for selecting the optimal bandwidth and 

the optimal polynomial degree of each explanatory 

variable involved in the model. Then, as an example 

of application we provide a modelling of water 

quality index in Indonesia.  

2 GEOGRAPHICALLY 

WEIGHTED POLYNOMIAL 

REGRESSION 

In this section, we will introduce the GWPolR model 

and a procedure to get its optimal estimator. 

2.1 Model and Weighted Least Squares 
Estimation 

We briefly review the basic GWR model from 

Brunsdon et al. (1996; 1999) and Fotheringham et al. 

(1998; 2002). The GWR model is in the form of 

𝑦𝑖 = ∑ 𝛽𝑗(𝑢𝑖 , 𝑣𝑖)𝑥𝑖𝑗
𝑝
𝑗=1 + 𝜀𝑖,𝑖 =

1, 2, … , 𝑛, 

(1) 

where 𝜀𝑖is distributed 𝑁(0, 𝜎2).  

We expand the linear relationship in equation (1) 

by using polynomial function approach as follows 

𝑦𝑖 = 𝛽0(𝑢𝑖 , 𝑣𝑖) + ∑ ∑𝛽𝑘,𝑗(𝑢𝑖 , 𝑣𝑖)𝑥𝑖𝑘
𝑗

𝑑𝑘

𝑗=1

𝑝

𝑘=1

+ 𝜀𝑖 , (2) 

where 𝜀𝑖~𝑁(0, 𝜎2). In a matrix form, it can be written 

as 

𝑦𝑖 = 𝒙𝒊
∗T𝜷𝑝𝑜𝑙(𝑢𝑖 , 𝑣𝑖) + 𝜀𝑖 ,    𝑖 = 1,2, … , 𝑛, (3) 

where 

𝒙𝒊
∗T = (1𝑥𝑖1𝑥𝑖1

2   ⋯  𝑥𝑖1
𝑑1   ⋯   𝑥𝑖𝑝𝑥𝑖𝑝

2   ⋯  𝑥𝑖𝑝

𝑑𝑝), (4) 

and 

𝜷𝑃𝑜𝑙
T (𝑢𝑖 , 𝑣𝑖)

= ( 𝛽0(𝑢𝑖 , 𝑣𝑖)𝛽1,1(𝑢𝑖 , 𝑣𝑖)𝛽1,2(𝑢𝑖 , 𝑣𝑖)⋯𝛽1,𝑑1
(𝑢𝑖 , 𝑣𝑖)⋯ 

𝛽𝑝,1(𝑢𝑖 , 𝑣𝑖)𝛽𝑝,2(𝑢𝑖 , 𝑣𝑖)⋯𝛽𝑝,𝑑𝑝
(𝑢𝑖 , 𝑣𝑖) ). (5) 

For a given location (𝑢0, 𝑣0), we can estimate 

𝜷𝑃𝑜𝑙(𝑢0, 𝑣0)by minimizing the weighted least square 

function as follows 

∑ (𝑦𝑖 − 𝒙𝒊
∗T𝜷𝑝𝑜𝑙(𝑢0, 𝑣0))

2
𝑛
𝑖=1 𝑤𝑖(0), (6) 

with respect to each element of 𝜷𝑝𝑜𝑙(𝑢0, 𝑣0). An 

explicit expression of the solution is  

�̂�𝑝𝑜𝑙(𝑢0, 𝑣0) = [𝑿𝑝𝑜𝑙
T 𝑾(𝑢0, 𝑣0)𝑿𝑝𝑜𝑙]

−1
𝑿𝑝𝑜𝑙

T 𝑾(𝑢0, 𝑣0)𝒚, (7) 

where 𝐲 = (𝑦1, 𝑦2, … , 𝑦𝑛)T, 

𝑿𝑝𝑜𝑙 =

[
 
 
 
 
 1𝑥11𝑥11

2   ⋯  𝑥11
𝑑1   ⋯    𝑥1𝑝𝑥1𝑝

2   ⋯  𝑥1𝑝

𝑑𝑝

1𝑥21𝑥21
2   ⋯  𝑥21

𝑑1   ⋯    𝑥2𝑝𝑥2𝑝
2   ⋯  𝑥2𝑝

𝑑𝑝

⋮

1𝑥𝑛1𝑥𝑛1
2   ⋯  𝑥𝑛1

𝑑1   ⋯    𝑥𝑛𝑝𝑥𝑛𝑝
2   ⋯  𝑥𝑛𝑝

𝑑𝑝

]
 
 
 
 
 

, (8) 

and 

𝐖(𝑢0, 𝑣0) = diag[𝑤1(0), 𝑤2(0), … , 𝑤𝑛(0)], (9) 
 

is a diagonal weighting matrix with the elements 

𝑤𝑖(0)for 𝑖 = 1, 2, … , 𝑛. 

By taking (𝑢0, 𝑣0) to be each of the designed 

locations(𝑢𝑖 , 𝑣𝑖), 𝑖 = 1, 2, … , 𝑛,  we can obtain the 

vector of the fitted values for the response y at n 

designed locations as  

�̂�𝑃𝑜𝑙 = (�̂�1
∗, �̂�2

∗, … , �̂�𝑛
∗)T = G 𝐲,           (10) 

where   
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G =

[
 
 
 
 𝒙1

∗𝑇[𝐗𝑝𝑜𝑙
𝑇 𝐖(𝑢1, 𝑣1)𝐗𝑝𝑜𝑙]

−1
𝐗𝑝𝑜𝑙

𝑇 𝐖(𝑢1, 𝑣1)

𝒙2
∗𝑇[𝐗𝑝𝑜𝑙

𝑇 𝐖(𝑢2, 𝑣2)𝐗𝑝𝑜𝑙]
−1

𝐗𝑝𝑜𝑙
𝑇 𝐖(𝑢2, 𝑣2)

⋮

𝒙𝑛
∗𝑇[𝐗𝑝𝑜𝑙

𝑇 𝐖(𝑢𝑛, 𝑣𝑛)𝐗𝑝𝑜𝑙]
−1

𝐗𝑝𝑜𝑙
𝑇 𝐖(𝑢𝑛, 𝑣𝑛)]

 
 
 
 

 ,  (11) 

is called a hat matrix of GWPolR model. Based on the 

hat matrix G, the residual vector is 

�̂�𝑃𝑜𝑙 = 𝒚 − �̂�𝑃𝑜𝑙 = (𝐈 − G)𝒚,             (12) 

and the residual sum of squares(RSSpol) is 

RSSpol = �̂�𝑝𝑜𝑙
T �̂�𝑃𝑜𝑙 =  𝒚T(𝐈 − 𝐆)T(𝐈 − 𝐆)𝒚 ,  (13) 

where I is identity matrix of order n. 

2.2 Spatial Weighting Functions 

In spatial analysis, the weighting matrix 𝐖(𝑢𝑖, 𝑣𝑖) 

contains of different emphases on different 

observations in producing the estimated parameters. 

The first approach of the weighting matrix at location 

i can be expressed as 

𝑤𝑗(𝑖) = {
1, 𝑖𝑓𝑑𝑖𝑗 ≤ ℎ,    𝑗 = 1, 2, … , 𝑛.

0, 𝑖𝑓𝑑𝑖𝑗 > ℎ.
     (14) 

The weighting function written above has a 

discontinuity problem. One method to solve the 

problem is to specify 𝑤𝑗 (𝑖) as a continuous function 

of 𝑑𝑖𝑗 . One preference might be 

𝑤𝑗 (𝑖) = 𝑒𝑥𝑝 (−1

2
(

𝑑𝑖𝑗

ℎ
)
2
) ,   𝑗 = 1, 2, … , 𝑛, (15) 

where h denotes the bandwidth. It is the most 

common choice in practice (Fotheringham et al., 

2002). 

An alternative weighting function can be created 

by the bisquare kernel weighting function as follows  

𝑤𝑗 (𝑖) = {
(1 − (

𝑑𝑖𝑗

ℎ
)
2
)
2

, 𝑖𝑓 𝑑𝑖𝑗 ≤ ℎ,    𝑗 = 1, 2,… , 𝑛.

0,           𝑖𝑓 𝑑𝑖𝑗 > ℎ.
 (16) 

2.3 Cross-Validation Criterion for 
Choosing the Optimal Model 

The estimator of GWPolR depends on the weighting 

function selected and on the polynomial degree of 

each explanatory variable. So, the bandwidth h and 

the number of the polynomial degrees should be 

determined.  

The problem is how to select the optimal 

bandwidth and the optimal number of polynomial 

degree of each explanatory variable. Cross-validation 

(CV) approach is a solution to this problem 

(Fotheringham et al, 2002). Here, we adopt such 

procedure by adding polynomial degrees for 

explanatory variables which should be selected. So, 

we have 

CV(ℎ, 𝑑1, 𝑑2, … , 𝑑𝑝) = ∑ (𝑦𝑖 − �̂�(𝑖)(ℎ, 𝑑1, 𝑑2, … , 𝑑𝑝 ))
2𝑛

𝑖=1   (17) 

as an objective function, where �̂�(𝑖)(ℎ, 𝑑1, 𝑑2, … , 𝑑𝑝) 

is the fitted value of 𝑦𝑖under bandwidth h and degrees 

of polynomial 𝑑1, 𝑑2, … , 𝑑𝑝 with the observation at 

location (𝑢𝑖 , 𝑣𝑖) omitted from the process of 

estimation. Select ℎ0, 𝑑1o, 𝑑2o, … , 𝑑𝑝o as the optimal 

values, such that the equation (17) is minimum. 

2.4 An Algorithm for Finding 
Bandwidth and Polynomial Degrees 
in Optimal Condition 

Here, we provide an algorithm to select the optimal 

bandwidth and the optimal number of polynomial 

degrees based on the CV criterion as follows: 

1) Determine the number of explanatory variables 

involved in the model, denoted by p. 

2) Specify the maximum polynomial degree for 

each explanatory variable, denoted by 𝑑𝑗 for 𝑗 =

1, 2, … , 𝑝. 
3) Find all arrays of numbers obtained from the 

existing polynomial degrees for all explanatory 

variables. Let s be the number of arrays, then 

𝑠 = ∏ 𝑑𝑗
𝑝
𝑗=1 . 

4) Find the minimum CV value of GWPolR 

modelling in each array. 

5) Find the smallest CV value among the minimum 

CV values generated from the entire arrays. 

6) Select the bandwidth and polynomial degrees 

that yield the smallest CV value obtained in step 

5 as the optimal solution. 

To explain the above algorithm, we will give the 

following illustration. For example, based on a given 

spatial dataset we use three explanatory variables in 

the model, so we have 𝑝 = 3. Then, we specify the 

maximum polynomial degree for each explanatory 

variable, for instance we set 𝑑1 = 2, 𝑑2 = 3 and 𝑑3 =
2 for the 1st, 2nd and 3rd explanatory variables, 

respectively. Based on the setting, we have several 

𝑠 = 2 × 3 × 2 = 12 arrays of polynomial degrees. 

These arrays are listed in Table 1. 
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Table 1: All possible arrays of polynomial degrees for the 

setting of 𝑑1 = 2, 𝑑2 = 3 and 𝑑3 = 2. 

Number Array 

1 (1, 1, 1) 

2 (1, 1, 2) 

3 (1, 2, 1) 

4 (1, 2, 2) 

5 (1, 3, 1) 

6 (1, 3, 2) 

7 (2, 1, 1) 

8 (2, 1, 2) 

9 (2, 2, 1) 

10 (2, 2, 2) 

11 (2, 3, 1) 

12 (2, 3, 2) 

 

An array represents the polynomial degree of the 

1st, 2nd and 3rd explanatory variables, respectively. For 

example, in number 3 we have an array of       (1, 2, 

1) which means that the polynomial degree of the 1st, 

2nd and 3rd explanatory variables are 1, 2, and 1, 

respectively. This leads to a model as follows 

𝑦𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖) + 𝛽1,1(𝑢𝑖, 𝑣𝑖)𝑥𝑖1 + 𝛽2,1(𝑢𝑖, 𝑣𝑖)𝑥𝑖2 

+𝛽2,2(𝑢𝑖 , 𝑣𝑖)𝑥𝑖2
2 + 𝛽3,1(𝑢𝑖 , 𝑣𝑖)𝑥𝑖3 + 𝜀𝑖.      (18) 

Using the model in (18), we select the minimum 

CV value based on GWPolR estimation procedure. 

The same selection is conducted on other arrays. So, 

we have 12 minimum CV values. Then, we select the 

smallest CV value among the existing 12 minimum 

CV values. In the last step, we take the bandwidth and 

polynomial degrees corresponding to the smallest CV 

value obtained. 

3 AN EMPIRICAL EXAMPLE: 

WATER QUALITY INDEX 

MODELLING 

In this section, we will apply the algorithm explained 

above to water quality index modelling. In addition, 

we also provided modelling results to such data using 

global linear regression (GLR) and GWR for 

comparison. 

3.1 Water Quality Index Dataset 

Some researchers have stated that WQI is influenced 

by many factors, including untreated waste (Dhawde 

et al., 2018), population density (Opaminola and 

Jessie, 2015; Liyanage and Yamada, 2017), and the 

number of micro industries (Bhutiani et al., 2018). 

The explanation from these researchers led the 

authors to include the variables in the example here. 

The involved variables in this study are water 

quality index (WQI) as the response variable, and 

three explanatory variables, i.e. percentage of 

untreated waste (PUW), population density (PD), and 

number of micro industries (NMI). Data was 

provided by Ministry of Environment and Forestry 

Republic of Indonesia (Kementerian Lingkungan 

Hidup, 2015) and Statistics of Indonesia (BPS, 2016; 

2017a; 2017b). Observation units are 33 provinces of 

Indonesia in 2014.  

Logically in public opinion, WQI variable has 

contrary relationship with each explanatory variable 

here. If the value of each explanatory variable 

increases, it will cause in decreasing of the WQI 

value. It means that the parameter of each explanatory 

variable should have negative sign. The conformity 

of the estimator signs will also be considered in the 

comparison of models. 

3.2 Global Linear Regression Results 

Firstly, WQI is fitted by using GLR model. Based on 

three explanatory variables declared above, the 

simultaneous test for parameters yields a p-value of 

0.007. It means that the parameters affect to the 

response variable simultaneously. Here, we have four 

global parameters including the intercept. 

Furthermore, the results of GLR estimation on the 

WQI dataset is listed in Table 2. 

Table 2: Summary of global linear regression results on the 

WQI dataset. 

Predictor Coef SE Coef T p-value  

Intercept 36.92 16.67 2.21 0.035 

PUW 0.2228 0.2020 1.10 0.279 

PD -0.0015 0.0004 -3.45 0.002 

NMI -0.0079 0.0064 -1.24 0.226 

 

From table 2, based on partial test with 

significance level of 0.05 we know that only PD 

variable affect significantly to the WQI (p-value < 

0.05), whereas PUW and NMI variables are not 

significant (p-value > 0.05). We suspect that PUW 

and NMI variables may not have linear relationships 

with the response, but they may have nonlinear 

relationships. Here we don’t continue with 

remodeling that uses significant explanatory 

variables, but we let the results. We would like to see 
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the comparison of results with other modelling 

(especially using polynomial approach) involving the 

same explanatory variables. In other words, if a 

model yielded better results while we didn't apply the 

same variables to all models in a comparison, we 

would not know if the improvement was due to the 

modelling approach or the explanatory variables that 

was used to build each model. 

To clarify our allegation, we examine the 

misspecification function using Ramsey RESET. For 

this test, we hypothesize 

H0:  there is not misspecification function in global 

linear regression 

H1: there is misspecification function in global 

linear regression 

By using syntax of resettest() in R statistical 

software with optional input power=2 (for testing 

the existence of polynomial degree of 2), we find that 

the p-value of Ramsey RESET test is 0.0415. If we 

take a significance level of 0.05, we decide to reject 

the null hypothesis and conclude that there is 

misspecification function in GLR modelling. Then, 

this conclusion becomes an early reason for the need 

to extend the linear modelling with polynomial 

modelling on WQI dataset. 

3.3 Geographically Weighted 
Regression Results 

This WQI dataset was drawn based on spatial area, 

therefore proceeding with GWR model was 

warranted. The GWR model in this study was 

implemented using the following model: 

𝑊𝑄𝐼(𝑢𝑖 , 𝑣𝑖) = 𝛽0(𝑢𝑖, 𝑣𝑖) + 𝛽1(𝑢𝑖 , 𝑣𝑖)𝑃𝑈𝑊𝑖 

+𝛽2(𝑢𝑖 , 𝑣𝑖)𝑃𝐷𝑖 + 𝛽3(𝑢𝑖 , 𝑣𝑖)𝑁𝑀𝐼𝑖 + 𝜀𝑖.    (19) 

Based on this model and using weighting function in 

equation (15), we found that the 𝑅2 of GWR was 

0.3528 with a bandwidth of 31.3° (or equals to 

3,484.378 km) when the minimum CV was 

10232.400. Our preferred measure of model fit, RSS, 

gave a value of 1,253.488. Here, we have several four 

parameters that vary in 33 locations. The summary of 

the GWR estimators is listed in Table 3.  

We can see in Table 3 that the estimated 

parameter of PD and NMI variables have negative 

sign in every quartile, which is suitable with the 

public opinion mentioned above. On the other hand, 

the estimated parameter of PUW does not have 

negative value at all. It is a contradiction to the public 

opinion. We will try to correct this case by using 

GWPolR modelling in the next subsection. 

Table 3: Summary of geographically weighted regression 

results on the WQI dataset. 

Coef. of 

Predictor Min 

1st 

Quartil Med 

3rd 

Quartil Max 

Intercept 30.900 33.490 35.4000 38.160 43.6300 

PUW 0.13850 0.20720 0.24160 0.26540 0.29780 

PD -0.00161 -0.00159 -0.00158 -0.00156 -0.00153 

NMI -0.00797 -0.00794 -0.00791 -0.00789 -0.00775 

3.4 Geographically Weighted 
Polynomial Regression Results 

Because of the presence of nonlinear relationships in 

WQI dataset, we suspected that a GWPolR model 

would help us better understand how explanatory 

variables were related to WQI patterns. In this 

subsection, we use an algorithm for selecting the 

optimal bandwidth and polynomial degrees explained 

above.  

Based on WQI dataset we involved three 

explanatory variables in the model, so we have 𝑝 =
3. Then, we specified the maximum polynomial 

degree for each explanatory variable. Here, we set the 

same value, i.e. 𝑑1 = 𝑑2 = 𝑑3 = 2 for the maximum 

polynomial degree of PUW, PD, and NMI variables. 

Based on the setting, we had number of 𝑠 = 2 × 2 ×
2 = 8 arrays of polynomial degrees. Further, we 

selected the minimum CV value based on GWPolR 

estimation procedure in each array. The minimum CV 

value and the accordingly optimal bandwidth are 

listed in Table 4. 

The smallest CV value among eight minimum CV 

values was 4878.902.  It is found in the row of number 

six, according to the optimal bandwidth of 9 (or 

equals to 1,001.898 km) and array of (2, 1, 2). This 

array means that the optimal polynomial degree for 

PUW, PD, and NMI variables are 2, 1, and 2, 

respectively. So, the GWPolR model under optimal 

condition in this study was  

𝑊𝑄𝐼(𝑢𝑖 , 𝑣𝑖) = 𝛽0(𝑢𝑖, 𝑣𝑖) + 𝛽1,1(𝑢𝑖 , 𝑣𝑖)𝑃𝑈𝑊𝑖  

    +𝛽1,2(𝑢𝑖 , 𝑣𝑖)𝑃𝑈𝑊𝑖
2 + 𝛽2,1(𝑢𝑖 , 𝑣𝑖)𝑃𝐷𝑖 

  +𝛽3,1(𝑢𝑖, 𝑣𝑖)𝑁𝑀𝐼𝑖 + 𝛽3,2(𝑢𝑖 , 𝑣𝑖)𝑁𝑀𝐼𝑖
2 + 𝜀𝑖.   (20) 

Based on model in equation (20) and weighting 

function in equation (15) we found that the 𝑅2 of 

GWPolR was 0.5012.A goodness indicator of model 

fit, RSS, gave a value of 966.1458. Here, we have 

several six parameters that vary in 33 locations. 

Furthermore, the summary of the GWPolR estimators 

is listed in Table 5. 
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Table 4: Optimal bandwidth and minimum CV for each 

array of polynomial degrees on the WQI dataset. 

Number Array Opt h Minimum CV 

1 (1, 1, 1) 31 10253.855 

2 (1, 1, 2) 42 11032.556 

3 (1, 2, 1) 1 95336.878 

4 (1, 2, 2) 1 95336.878 

5 (2, 1, 1) 42 20854.561 

6 (2, 1, 2) 9 4878.902 

7 (2, 2, 1) 1 95336.878 

8 (2, 2, 2) 1 95336.878 

Table 5: Summary of geographically weighted polynomial 

regression results on the WQI dataset. 

Coef. Of 

Predictor 

Min. 1st Quartile Median 3rd Quartile Max. 

Intercept -35.0200 64.4100 203.2000 273.0000 322.5000 

PUW -7.1840 -5.9930 -4.1800 -0.4828 2.4000 

PUW^2 -0.01593 0.00331 0.02799 0.03972 0.04789 

PD -0.00182 -0.00179 -0.00174 -0.00147 -0.00122 

NMI -0.04314 -0.04153 -0.00371 -0.02613 -0.01414 

NMI^2 0.00001 0.00002 0.00004 0.000046 0.000049 

 

From Table 5, the estimated parameter for the first 

degree of explanatory variables involved in the model 

have negative sign in almost of all positions. It means 

that the estimated parameters of GWPolR are 

according to the public opinion explained above. In 

addition, another information can be obtained from 

the GWPolR modelling. The estimated parameters of 

the second-degree polynomial variables have positive 

sign in almost of all positions. It interprets that the 

PUW and NMI variables have an accelerating effect 

to the WQI decrease. 

3.5 A Comparison on Water Quality 
Index Modelling 

In this subsection, we make comparison about the 

results obtained under the optimal condition of the 

GWPolR, GWR, and GLR modelling on the WQI 

dataset. The comparison is based on some goodness 

of fit indicators (including CV, RSS, and R2) and 

several other criteria. The results are presented in 

Table 6. 

We know that the minimum CV is a criterion for 

finding the best fitted model. From Table 6, the CV 

value of the GWPolR model is much lower than that 

of the GWR model. 

Table 6: The comparison of the GWPolR, GWR, and GLR 

modelling on the WQI dataset. 

Indicator 
Model 

GLR GWR GWPolR 

Optimal h - 31.3 9.0 

Minimum 

CV 

- 10232.400 4878.902 

RSS 1289.380    1253.488 966.145 

R2 33.40% 35.28% 50.12% 

Conformity 

to public 

opinion  

No No Yes 

Number of 

parameters 

Simple 

(Parsimony) 

Complex More 

complex 

 

Table 6 also presents that the RSS of GWPolR is the 

lowest among the RSS of involved models here. In 

view of GWPolR model, there are RSS decrease of 

323.235 and 287.343 from GLR and GWR, 

respectively. The coefficient of determination (R2) of 

the GWPolR model can capture the largest amount 

(50.12%) of variance of water quality index based on 

the explanatory variables. There are R2 increase of 

16.72 and 14.84 from GLR and GWR, respectively. 

These are relatively strong evidence of an 

improvement in the model fit to the data. It means that 

GWPolR model is the best model among the studied 

models here based on goodness of fit indicators.  

Furthermore, the estimated parameters of 

GWPolR confirm to the public opinion about the 

relation of WQI and the explanatory variables. The 

other two models give inappropriate results. In 

addition, here GWPolR has a parameter for the 2nd 

polynomial degree which interprets that the speed of 

response change caused by an explanatory variable is 

not constant. In other word, there is an acceleration 

here. So, the GWPolR modelling has more complete 

interpretation. On the other hand, The GWPolR 

model has several more complex parameters. In 

modelling, people often prefer to use a model with a 

small number of parameters to be easily interpreted. 

Therefore, a statistical test especially inter spatial 

modelling is needed to examine whether a GWPolR 

is significantly better than a GWR or not. If GWPolR 

is proven to be significantly better than GWR even 

though the number of parameters is more complex, 

then GWPolR should be selected.  
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4 CONCLUSIONS 

The algorithm written in this paper yields a 

bandwidth and some polynomial degrees for the 

GWPolR model in optimal condition. It means that 

the result is the best condition based on the used 

criterion. However, computational programming 

based on this algorithm still takes a long time. The 

time will be longer when the number of variables 

involved in model increases or the maximum degree 

of polynomial is set greater. An efficient algorithm in 

term of execution time is needed even though the 

results may be only sub-optimal, for example, genetic 

algorithm or neural network. Based on the goodness 

of fit criteria(inter alia: CV, RSS, and R2) and 

consideration of conformity with public opinion, we 

can empirically conclude that the GWPolR model is 

the best model among some models used here on 

WQI dataset. Nevertheless, statistical tests between 

spatial modelling need to be developed to determine 

whether a GWPolR is significantly better than a 

GWR or not. 
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