
Modified Firefly Algorithm using Smallest Position Value for

Job-Shop Schedulling Problems

Muhaza Liebenlito1, Nur Inayah1, Aisyah Nur Rahmah1 and Ario Widiatmoko2
1Departement of Mathematics, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Tangerang Selatan, Indonesia

2Department of Informatics, University of Sriwijaya, Jl. Srijaya Negara, Ilir Barat I, Kota Palembang, Indonesia

ario_widiatmoko@student.unsri.ac.id

Keywords: Job-Shop Scheduling Problem, Modified Firefly Algorithm, Smallest Position Value, Minimizing

Makespan.

Abstract: In this paper, we will modify the firefly algorithm to find the minimum makespan of job-shop scheduling

problem. Firefly algorithm generally is used to solve continuous optimization problem which is have to

modify by adding smallest position value to fit the discrete optimization problems, named Modified Firefly

Algorithm–Smallest Position Value (MFASPV). The result from MFASPV is compared with Bi-directional

algorithm, Tabu Search, and Discrete Firefly Algorithm. The MFASPV obtain minimum makespan as good

as Tabu Search and outperform the Discrete Firefly Algorithm and Bi-directional Algorithm.

1 INTRODUCTION

One of the scheduling problems often encountered

by the manufacturing industry is the job-shop

scheduling or Job-Shop Scheduling Problem (JSSP).

JSSP is sorting out the creation or work of the job as

a whole with the order of the machine through each

different job. JSSP is classified into the

combinatorial or discrete optimization problem. The

computation complexity for JSSP has been

categorized into Nondeterministic Polynomial-hard

problem (NP-hard) if the 𝑚 ≥ 3, where 𝑚 is the

number of machine(Garey et al., 1976).Because of

its complexity, many research has been developed to

solve this problem. In the paper (Dell’Amico &

Trubian, 1993) use Tabu Search (TS) and Bi-

directional (Bidir) algorithms to solve JSSP by

minimizing the makespan.

In the 2009, Xin-She Yang developed a bio-

inspired algorithm called Firefly Algorithm (FA) to

handle continuous optimization problem (Yang,

2009). In that paper shown FA outperform the

Genetic Algorithm (GA), Particle Swarm

Optimization (PSO) and Differential Evolution

(DE). Furthermore, the FA can be applied in various

continuous nonlinear optimization problem in any

Engineering problems (Yang & He, 2013).

In the 2009, Tasgetiren et al. solved the flow-

shop scheduling problem using PSO combined with

Smallest Position Value (SPV) rule. The SPV rule

used to convert continuous variables on PSO

mechanism into discrete variables (Tasgetiren et al.,

2009). Recently, the paper of K.C. Udaiyakumar and

M. Chandrasekaran proved that Discrete Firefly

Algorithm (DFA) which they proposed can be used

to solve JSSP by minimizing makespan

(Udaiyakumar & Chandrasekaran, 2014). However,

four of the twenty-five of Lawrence problems that

tested have not met the optimum value.

Based on the explanation above, we tried to

modify the FA with SPV rule to solve the JSSP. The

results will be compared with previous results TS

and Bidir (Dell’Amico & Trubian, 1993) and DFA

(Udaiyakumar & Chandrasekaran, 2014) which

solved the same problem that provided by Taillard

benchmark (Taillard, 1993).

2 PROBLEM DESCRIPTION

The JSSP can be defined as follows, given a

sequence {𝐽𝑗}
𝑗=1

𝑛
 jobs and {𝑀𝑖}𝑖=1

𝑚 machines. Job 𝑗

consist of sequence of 𝑘 operations 𝑂𝑗1, 𝑂𝑗2 , … , 𝑂𝑗𝑘

which must be processed in this order, i.e. we have

precedence constraints of the form 𝑂𝑗𝑘 → 𝑂𝑗,𝑘+1,

Liebenlito, M., Inayah, N., Rahmah, A. and Widiatmoko, A.
Modified Firefly Algorithm using Smallest Position Value for Job-Shop Schedulling Problems.
DOI: 10.5220/0008516600230027
In Proceedings of the International Conference on Mathematics and Islam (ICMIs 2018), pages 23-27
ISBN: 978-989-758-407-7
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

23

where 𝑘 = 1, 2, … , 𝐾 − 1(Brucker, 2007). The

operation 𝑂𝑗𝑘 of job has to be performed in the

predefined order by specified machines 𝑀𝑖 within 𝑡𝑖𝑗

processing time. Each machine can process only one

job at the same time and each job can be processed

by only one machine at the same time. The problem

is to find a feasible schedule which minimizes the

makespan which is some objective function

depending on the finishing times 𝐶𝑗 of the last

operations 𝑂𝑗𝑘 of the jobs called. The makespan

denoted

𝐶𝑚𝑎𝑥 = max(𝐶𝑗) , 𝑗 = 1,2, … , 𝑛 (1)

𝐶𝑗 = ∑ 𝑡𝑖𝑗 + 𝑤𝑖

𝑚

𝑖=1

where 𝑤𝑖 is waiting time.

The problems can be represented as disjunctive

graph (Bażewicz et al., 2000; Kuhpfahl, 2016). Let

𝐺 = (𝑉(𝐺), 𝐴(𝐺), 𝐸(𝐺)) is disjunctive graph with

the operation 𝑘-th of job 𝑗 denoted by node (𝑘/𝑗) ∈
𝑉(𝐺) and node 0 as starting node and node 1 as

ending node. Arc of node (𝑘/𝑗) to node ((𝑘 + 1)/𝑗)

is element of 𝐴(𝐺). For all job 𝑗, there is one arc that

connects node 0 to (1/𝑗) and one arc connects node

(𝐾/𝑗) to node 1, where node (𝐾/𝑗) represents as the

last operation 𝐾 of job 𝑗. Each arc connects from

node (𝑘/𝑗) to node ((𝑘 + 1)/𝑗) and has a weight

that represents as processing time of operation 𝑘-th

of job 𝑗. The weight of arc which connects from

node 0 to node (1/𝑗) is 0 and weight of arc from

node (𝐾/𝑗) to node 1 is processing time of operation

𝐾 of job 𝑗. 𝐸(𝐺) denotes a set of edges that connects

node (𝑘/𝑗) ∈ 𝑉(𝐺) of all different jobs which

processed on the same machines.
For more details see the following example,

given two jobs {𝐽1, 𝐽2} with 𝑘 order of operations and
the jobs processed in three machines {𝑀1, 𝑀2, 𝑀3}
within 𝑡𝑖𝑗 processing time. The operations of each
jobs can be represent as matrix,

𝑂𝑗𝑘 = [
𝑀1 𝑀2 𝑀3

𝑀2 𝑀3 𝑀1
].

and its processing time,

𝑡𝑖𝑗 = [
4 25
2 38

20 14
].

In Figure 1, there are three edges {𝑒1, 𝑒2, 𝑒3}which is

the element of 𝐸(𝐺). Its edges have dash line which

represent as the possible solution of the problem.

The edge 𝑒1 connects the vertices (1/1) and (3/2),

it because 𝑂11 and 𝑂23 processed in the same

machine 𝑀1 as well as 𝑒2 and 𝑒3. Then the total

weight of its longest path represent as makespan.

Figure 1: Representation of disjunctive graph for the

example problem.

3 FIREFLY ALGORITHM

Firefly Algorithm (FA) is meta-heuristic algorithm

inspired by flashing of the fireflies. FA first

introduced by Xin-She Yang to solve Multimodal

Optimization (Yang, 2009). There are three

important things on the FA, that is:

• Light intensity proportional to the objective

function 𝐼(𝐱) ∝ 𝑓(𝐱).

• The attractiveness function of fireflies denoted

𝛽(𝑟) = 𝛽0𝑒−𝛾𝑟𝑣𝑤
2

 (2)

where 𝑟𝑣𝑤 = ‖𝐱𝑣 − 𝐱𝑤‖2; 𝑣, 𝑤 = 1,2, … , 𝑁

represents the distance between any two

fireflies 𝐱𝑣 and 𝐱𝑤; and the number of fireflies

denoted 𝑁. The Parameters 𝛽0 = 1 and 𝛾 ∈
[0, ∞).

• The movement of fireflies denoted

𝑥𝑣
(𝑡+1)

= 𝑥𝑣
(𝑡)

+ 𝛽(𝑟)(𝑥𝑤
(𝑡)

− 𝑥𝑣
(𝑡)

) (3)

 +𝛼⨂ (𝑍~𝑈(0,1) −
1

2
)

where 𝛼 is a vector represents controlling step-

size parameter and it has a value 𝛼 = (0,1); 𝑍

is random variables whose uniformly

distribution (0,1); the operator ⨂ is vector-

scalar multiplication.

The pseudo-code FA formulate as Algorithm 1.

ICMIs 2018 - International Conference on Mathematics and Islam

24

Algorithm 1: Pseudo-code continuous FA.

Input: Objective Function 𝑓(𝐱); number of

population 𝑁; FA parameters: 𝛼, 𝛽0, and 𝛾;

and maximum iteration MAXITER.

Output: Best 𝐼𝑁.

1. Generate the initial population 𝐱𝑣, 𝑣 =
1,2, . . , 𝑁

2. Evaluate 𝐼𝑣 = 𝑓(𝐱𝑣)

3. while (𝑡 < MAXITER) do
4. for𝑣 = 1 to 𝑁do
5. for𝑤 = 1 to 𝑁do
6. if𝐼𝑣 > 𝐼𝑤then

7. Calculate the attractiveness

with distance 𝑟 using (1).

8. Move firefly 𝑣 to 𝑤 using

(2).

9. end if

10. Evaluate the objective function

11. end for

12. end for

13. Rank the fireflies and find the current

best.

14. end while

In Algorithm 1 starts with input FA parameters,

maximum iteration MAXITER, number of firefly

population 𝑁, and define the objective function 𝑓. If

we will find maximum of the objective function then

set 𝐼𝑣 < 𝐼𝑤 in step 6. Otherwise, if we find minimum

of objective function then set 𝐼𝑣 > 𝐼𝑤 .

4 OUR PROPOSED ALGORITHM

The JSSP belongs to the combinatorial optimization

problem where the decision variable is positive

integer. Therefore, the Algorithm 1 should be

adapted in order to solve the JSSP problem. To

change continuous decision variables into discrete

variables in Algorithm 1, we use SPV which firstly

introduced by (Tasgetiren et al., 2004). The pseudo-

code SPV has shown as follows:

Algorithm 2: Pseudo-code SPV.

Input: 𝑌, 𝑟, 𝑠.

Output: 𝑋.

1. 𝑚 = 𝑟 × 𝑠

2. 𝑌′ = {𝑦𝑖 ∈ 𝑌| 𝑦𝑖
′ = 𝑠𝑜𝑟𝑡(𝑦𝑖)}

3. 𝑋 ′ = 𝑖𝑛𝑑𝑒𝑥_𝑠𝑜𝑟𝑡(𝑌)

4. 𝑋 = {𝑥𝑖
′ ∈ 𝑋 ′|𝑥𝑖 = (𝑥𝑖

′ 𝑚𝑜𝑑 𝑠) + 1}

On Algorithm 2, input 𝑌 is a set of random

numbers which have 𝑚 elements. The input 𝑟 is the
number of machine and 𝑠 is the number of job. In

Step 2 Algorithm 2, sort the elements of 𝑌
ascendingly. Then in Step 3, 𝑋′ contains the index of
elements of 𝑌 that has been sorted.

On problem example in section II we have 𝑠 = 2
and 𝑟 = 3, so based on Algorithm 2 in Step 2 we get
𝑚 = 3 × 2 = 6. Let we generated the values of

𝑌 = {0.9755, 0.4326, 0.0397, 0.1821, 0.7702, 0.6918}.

Based on Algorithm 2 in Step 2, obtain the sorted
elements of 𝑌 that stored in

𝑌′ = {0.0397, 0.1821, 0.4326, 0.6918, 0.7702, 0.9755 }.

In Step 3, 𝑋′ is set that contains the indices of sorted
elements of 𝑌, i.e.

𝑋′ = {3, 4, 6, 5, 2, 1}.

On Algorithm 2 in Step 4, each of elements of 𝑋′
the modular operation and depend on the number of
job 𝑠 = 2, we get

𝑋 = {2, 1, 1, 1, 2, 2}.

Set 𝑋 is feasible solution of the problem example in
section II which represents the order of operations

𝑂21 → 𝑂11 → 𝑂12 → 𝑂13 → 𝑂22 → 𝑂23.

In Figure 2, node (1/1) is predecessor from
(3/2), because the operation 𝑂11 is executed before
the operation 𝑂23. The successor from (1/2)
is(2/1), because 𝑂12 is executed after 𝑂21 finished.
Thus, longest path of its disjunctive graph is

0 → (1/2) → (2/1) → (3/1) → (2/2) → (2/3) → 1

whose total weight is 0 + 38 + 2 + 20 + 14 + 25 =
99.

Figure2: Disjunctive graph for the feasible solution in

Problem Example in Section II.

Modified Firefly Algorithm using Smallest Position Value for Job-Shop Schedulling Problems

25

5 EXPERIMENTAL RESULTS

The result from our proposed algorithm called
MFASPV. Compared to the previous results from
Bidir and TS (Dell’Amico & Trubian, 1993), DFA
(Udaiyakumar & Chandrasekaran, 2014) on the
same benchmark Lawrence data provided by OR-
Library (Beasley, 1990). The summary of
benchmark data can be seen in Table 1. All
experiments were performed on Notebook Intel
Celeron N2840 @2.16 GHz with 4 GB RAM, and
the code was compiled using Microsoft Visual C++.
We use the number population 𝑁 = 50 and
maximum iteration MAXITER = 100 for all
benchmark data. The FA Parameters which used in
this experiment i.e. 𝛼 = 0.5, 𝛾 = 0.1, 𝛽0 = 1, and
𝛿 = 0.97. To measure the performance of each
algorithm, we use the formula

𝑃𝐹 = 100% − (|
𝑐max (𝑏)−𝑐max (𝑎)

𝑐max (𝑏)
| × 100%) (4)

where 𝐶max (𝑎) is the results from each algorithms
and 𝐶max (𝑏) is the optimal value for Lawrence data
that provided by Taillard (Taillard, 1993).

Table 1: Summary of benchmark data.

Job Machine Problem Names

10 5 La05

15 5 La09, La10

20 5 La11, La14

The best makespan results obtained using

MFASPV, Bidir, TS, and DFA are shown in Table

2. From Table 2 can be seen the comparison of the

best makespan results from the Bidir, TS, DFA, and

MDFA-SPV algorithms. Referring to Opt, the TS

and MFASPV algorithms on JSSP is able to produce

the best makespan for all benchmark, while DFA is

able to produce the best makespan in four problems

and the Bidir algorithm is able to produce the best

makespan only in two problems.

Table 2: Summary of benchmark data.

Problem

Name
Opt Bidir TS DFA

MFA

SPV

La05 593 593 593 593 593

La09 951 1017 951 951 951

La10 958 958 958 958 958

La11 1222 1259 1222 1222 1222

La14 1292 1294 1292 1295 1292

To evaluate the performance of the four

algorithms, we used (4). The percentage of

performance is presented in Table 3. From Table 3

seen that the average performance of the Bidir and

DFA algorithms is less than 100%, it means that the

makespan results obtained using both algorithms

have not been able to achieve Opt. While the

average performance for TS and MDFA-SPV

algorithms is 100%, which means the results of

makespan obtained using both algorithms are able to

achieve the Opt.

Table 3: Summary of benchmark data.

Problem

Name
Bidir TS DFA MFASPV

La05 100 100 100 100

La09 93.059 100 100 100

La10 100 100 100 100

La11 96.972 100 100 100

La14 99.845 100 99.767 100

Mean 𝟗𝟕. 𝟗𝟕𝟓 𝟏𝟎𝟎 𝟗𝟗. 𝟗𝟓𝟑 𝟏𝟎𝟎

6 CONCLUSIONS

In this paper, our proposed algorithm which named

as MFASPV is tested using Taillard benchmark

problem available in the literature. MFASPV

compared with previous results Bidir, TS, and DFA

to find minimum value of makespan from the data

benchmark that provided by OR-Library. The

performance of MFASPV is found to be good and

able to achieve the best for five Lawrence problems.

REFERENCES

Bażewicz, J., Pesch, E. & Sterna, M., 2000. The

disjunctive graph machine representation of the job

shop scheduling problem. European Journal of

Operational Research, 127(2): 317–331.

Beasley, J. E., 1990. OR-Library: Distributing Test

Problems by Electronic Mail. The Journal of the

Operational Research Society, 41(11): 1069–1072.

Brucker, P., 2007. Scheduling algorithms. 5th ed. Berlin ;

New York: Springer.

Dell’Amico, M. & Trubian, M., 1993. Applying tabu

search to the job-shop scheduling problem. Annals of

Operations Research, 41(3): 231–252.

ICMIs 2018 - International Conference on Mathematics and Islam

26

Garey, M.R., Johnson, D.S. & Sethi, R., 1976. The

Complexity of Flowshop and Jobshop Scheduling.

Mathematics of Operations Research, 1(2): 117–129.

Kuhpfahl, J., 2016. Job Shop Scheduling with

Consideration of Due Dates: Potentials of Local

Search Based Solution Techniques. Gabler Verlag.

Taillard, E., 1993. Benchmarks for basic scheduling

problems. European Journal of Operational Research,

64(2): 278–285.

Tasgetiren, F., Chen, A., Gencyilmaz, G. & Gattoufi, S.,

2009. Smallest Position Value Approach. In

Differential Evolution: A Handbook for Global

Permutation-Based Combinatorial Optimization.

Studies in Computational Intelligence. Springer,

Berlin, Heidelberg: 121–138.

Tasgetiren, M. F., Sevkli, M., Liang, Y. & Gencyilmaz,

G., 2004. Particle swarm optimization algorithm for

single machine total weighted tardiness problem. In In

Proceedings of the 2004 Congress on Evolutionary

Computation (CEC’04. 1412–1419.

Udaiyakumar, K. C. & Chandrasekaran, M., 2014.

Application of Firefly Algorithm in Job Shop

Scheduling Problem for Minimization of Makespan.

Procedia Engineering, 97: 1798–1807.

Yang, X.-S., 2009. Firefly Algorithms for Multimodal

Optimization. In Stochastic Algorithms: Foundations

and Applications. Lecture Notes in Computer Science.

International Symposium on Stochastic Algorithms.

Springer, Berlin, Heidelberg: 169–178.

Yang, X.-S. & He, X., 2013. Firefly algorithm: recent

advances and applications. International Journal of

Swarm Intelligence, 1(1): 36–50.

Modified Firefly Algorithm using Smallest Position Value for Job-Shop Schedulling Problems

27

