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Abstract: In this paper, we will modify the firefly algorithm to find the minimum makespan of job-shop scheduling 

problem. Firefly algorithm generally is used to solve continuous optimization problem which is have to 

modify by adding smallest position value to fit the discrete optimization problems, named Modified Firefly 

Algorithm–Smallest Position Value (MFASPV). The result from MFASPV is compared with Bi-directional 

algorithm, Tabu Search, and Discrete Firefly Algorithm. The MFASPV obtain minimum makespan as good 

as Tabu Search and outperform the Discrete Firefly Algorithm and Bi-directional Algorithm.  

1 INTRODUCTION 

One of the scheduling problems often encountered 

by the manufacturing industry is the job-shop 

scheduling or Job-Shop Scheduling Problem (JSSP). 

JSSP is sorting out the creation or work of the job as 

a whole with the order of the machine through each 

different job. JSSP is classified into the 

combinatorial or discrete optimization problem. The 

computation complexity for JSSP has been 

categorized into Nondeterministic Polynomial-hard 

problem (NP-hard) if the 𝑚 ≥ 3, where 𝑚 is the 

number of machine(Garey et al., 1976).Because of 

its complexity, many research has been developed to 

solve this problem. In the paper (Dell’Amico & 

Trubian, 1993) use Tabu Search (TS) and Bi-

directional (Bidir) algorithms to solve JSSP by 

minimizing the makespan.  

In the 2009, Xin-She Yang developed a bio-

inspired algorithm called Firefly Algorithm (FA) to 

handle continuous optimization problem (Yang, 

2009). In that paper shown FA outperform the 

Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO) and Differential Evolution 

(DE). Furthermore, the FA can be applied in various 

continuous nonlinear optimization problem in any 

Engineering problems (Yang & He, 2013). 

In the 2009, Tasgetiren et al. solved the flow-

shop scheduling problem using PSO combined with 

Smallest Position Value (SPV) rule. The SPV rule 

used to convert continuous variables on  PSO 

mechanism into discrete variables (Tasgetiren et al., 

2009). Recently, the paper of K.C. Udaiyakumar and 

M. Chandrasekaran proved that Discrete Firefly 

Algorithm (DFA) which they proposed can be used 

to solve JSSP by minimizing makespan 

(Udaiyakumar & Chandrasekaran, 2014). However, 

four of the twenty-five of Lawrence problems that 

tested have not met the optimum value.  

Based on the explanation above, we tried to 

modify the FA with SPV rule to solve the JSSP. The 

results will be compared with previous results TS 

and Bidir (Dell’Amico & Trubian, 1993) and DFA 

(Udaiyakumar & Chandrasekaran, 2014) which 

solved the same problem that provided by Taillard 

benchmark (Taillard, 1993). 

2 PROBLEM DESCRIPTION 

The JSSP can be defined as follows, given a 

sequence {𝐽𝑗}
𝑗=1

𝑛
 jobs and {𝑀𝑖}𝑖=1

𝑚  machines. Job 𝑗 

consist of sequence of 𝑘 operations 𝑂𝑗1, 𝑂𝑗2 , … , 𝑂𝑗𝑘 

which must be processed in this order, i.e. we have 

precedence constraints of the form 𝑂𝑗𝑘 → 𝑂𝑗,𝑘+1, 
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where 𝑘 = 1, 2, … , 𝐾 − 1(Brucker, 2007). The 

operation 𝑂𝑗𝑘 of job has to be performed in the 

predefined order by specified machines 𝑀𝑖 within 𝑡𝑖𝑗 

processing time. Each machine can process only one 

job at the same time and each job can be processed 

by only one machine at the same time. The problem 

is to find a feasible schedule which minimizes the 

makespan which is some objective function 

depending on the finishing times 𝐶𝑗 of the last 

operations 𝑂𝑗𝑘 of the jobs called. The makespan 

denoted 

𝐶𝑚𝑎𝑥 = max(𝐶𝑗) , 𝑗 = 1,2, … , 𝑛 (1) 

𝐶𝑗 = ∑ 𝑡𝑖𝑗 + 𝑤𝑖

𝑚

𝑖=1
 

 

 

where 𝑤𝑖  is waiting time. 

The problems can be represented as disjunctive 

graph (Bażewicz et al., 2000; Kuhpfahl, 2016). Let 

𝐺 = (𝑉(𝐺), 𝐴(𝐺), 𝐸(𝐺)) is disjunctive graph with 

the operation 𝑘-th of job 𝑗 denoted by node (𝑘/𝑗) ∈
𝑉(𝐺) and node 0 as starting node and node 1 as 

ending node. Arc of node (𝑘/𝑗) to node ((𝑘 + 1)/𝑗) 

is element of 𝐴(𝐺). For all job 𝑗, there is one arc that 

connects node 0 to (1/𝑗) and one arc connects node 

(𝐾/𝑗) to node 1, where node (𝐾/𝑗) represents as the 

last operation 𝐾 of job 𝑗. Each arc connects from 

node (𝑘/𝑗) to node ((𝑘 + 1)/𝑗) and has a weight 

that represents as processing time of operation 𝑘-th 

of job 𝑗. The weight of arc which connects from 

node 0 to node (1/𝑗) is 0 and weight of arc from 

node (𝐾/𝑗) to node 1 is processing time of operation 

𝐾 of job 𝑗. 𝐸(𝐺) denotes a set of edges that connects 

node (𝑘/𝑗) ∈ 𝑉(𝐺) of all different jobs which 

processed on the same machines.  
For more details see the following example, 

given two jobs {𝐽1, 𝐽2} with 𝑘 order of operations and 
the jobs processed in three machines {𝑀1, 𝑀2, 𝑀3} 
within 𝑡𝑖𝑗 processing time. The operations of each 
jobs can be represent as matrix, 

𝑂𝑗𝑘 = [
𝑀1 𝑀2 𝑀3

𝑀2 𝑀3 𝑀1
]. 

and its processing time, 

𝑡𝑖𝑗 = [
4 25
2 38

20 14
]. 

In Figure 1, there are three edges {𝑒1, 𝑒2, 𝑒3}which is 

the element of 𝐸(𝐺). Its edges have dash line which 

represent as the possible solution of the problem. 

The edge 𝑒1 connects the vertices (1/1) and (3/2), 

it because 𝑂11 and 𝑂23 processed in the same 

machine 𝑀1 as well as 𝑒2 and 𝑒3. Then the total 

weight of its longest path represent as makespan. 

 

Figure 1: Representation of disjunctive graph for the 

example problem. 

3 FIREFLY ALGORITHM 

Firefly Algorithm (FA) is meta-heuristic algorithm 

inspired by flashing of the fireflies. FA first 

introduced by Xin-She Yang to solve Multimodal 

Optimization (Yang, 2009). There are three 

important things on the FA, that is: 

• Light intensity proportional to the objective 

function 𝐼(𝐱) ∝ 𝑓(𝐱). 

• The attractiveness function of fireflies denoted 

 

𝛽(𝑟) = 𝛽0𝑒−𝛾𝑟𝑣𝑤
2

 (2) 

 

where 𝑟𝑣𝑤 = ‖𝐱𝑣 − 𝐱𝑤‖2; 𝑣, 𝑤 = 1,2, … , 𝑁 

represents the distance between any two 

fireflies 𝐱𝑣 and 𝐱𝑤; and the number of fireflies 

denoted 𝑁. The Parameters 𝛽0 = 1 and 𝛾 ∈
[0, ∞). 

• The movement of fireflies denoted 

 

𝑥𝑣
(𝑡+1)

= 𝑥𝑣
(𝑡)

+ 𝛽(𝑟)(𝑥𝑤
(𝑡)

− 𝑥𝑣
(𝑡)

) (3) 

                +𝛼⨂ (𝑍~𝑈(0,1) −
1

2
) 

 

 

where 𝛼 is a vector represents controlling step-

size parameter and it has a value 𝛼 = (0,1); 𝑍 

is random variables whose uniformly 

distribution (0,1); the operator ⨂ is vector-

scalar multiplication. 

 

The pseudo-code FA formulate as Algorithm 1. 
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Algorithm 1: Pseudo-code continuous FA. 

Input: Objective Function 𝑓(𝐱); number of 

population 𝑁; FA parameters: 𝛼, 𝛽0, and 𝛾; 

and maximum iteration MAXITER. 

Output: Best 𝐼𝑁. 

1. Generate the initial population 𝐱𝑣, 𝑣 =
1,2, . . , 𝑁 

2. Evaluate 𝐼𝑣 = 𝑓(𝐱𝑣) 

3. while (𝑡 < MAXITER) do 
4. for𝑣 = 1 to 𝑁do 
5. for𝑤 = 1 to 𝑁do 
6. if𝐼𝑣 > 𝐼𝑤then 

7. Calculate the attractiveness 

with distance 𝑟 using (1). 

8. Move firefly 𝑣 to 𝑤 using 

(2). 

9. end if 

10. Evaluate the objective function 

11. end for 

12. end for 

13. Rank the fireflies and find the current 

best. 

14. end while 

 

In Algorithm 1 starts with input FA parameters, 

maximum iteration MAXITER, number of firefly 

population 𝑁, and define the objective function 𝑓. If 

we will find maximum of the objective function then 

set 𝐼𝑣 < 𝐼𝑤 in step 6. Otherwise, if we find minimum 

of objective function then set 𝐼𝑣 > 𝐼𝑤 . 

4 OUR PROPOSED ALGORITHM 

The JSSP belongs to the combinatorial optimization 

problem where the decision variable is positive 

integer. Therefore, the Algorithm 1 should be 

adapted in order to solve the JSSP problem. To 

change continuous decision variables into discrete 

variables in Algorithm 1, we use SPV which firstly 

introduced by (Tasgetiren et al., 2004). The pseudo-

code SPV has shown as follows: 

Algorithm 2: Pseudo-code SPV. 

Input: 𝑌, 𝑟, 𝑠. 

Output: 𝑋. 

1. 𝑚 = 𝑟 × 𝑠 

2. 𝑌′ = {𝑦𝑖 ∈ 𝑌| 𝑦𝑖
′ = 𝑠𝑜𝑟𝑡(𝑦𝑖)} 

3. 𝑋 ′ = 𝑖𝑛𝑑𝑒𝑥_𝑠𝑜𝑟𝑡(𝑌) 

4. 𝑋 = {𝑥𝑖
′ ∈ 𝑋 ′|𝑥𝑖 = (𝑥𝑖

′  𝑚𝑜𝑑 𝑠) + 1}  

 
On Algorithm 2, input 𝑌 is a set of random 

numbers which have 𝑚 elements. The input 𝑟 is the 
number of machine and 𝑠 is the number of job. In 

Step 2 Algorithm 2, sort the elements of 𝑌 
ascendingly. Then in Step 3, 𝑋′ contains the index of 
elements of 𝑌 that has been sorted. 

On problem example in section II we have 𝑠 = 2 
and 𝑟 = 3, so based on Algorithm 2 in Step 2 we get 
𝑚 = 3 × 2 = 6. Let we generated the values of  

𝑌 = {0.9755, 0.4326, 0.0397, 0.1821, 0.7702, 0.6918}. 

Based on Algorithm 2 in Step 2, obtain the sorted 
elements of 𝑌 that stored in 

𝑌′ = {0.0397, 0.1821, 0.4326, 0.6918, 0.7702, 0.9755 }. 

In Step 3, 𝑋′ is set that contains the indices of sorted 
elements of 𝑌, i.e. 

𝑋′ = {3, 4, 6, 5, 2, 1}. 

On Algorithm 2 in Step 4, each of elements of 𝑋′  
the modular operation and depend on the number of 
job 𝑠 = 2, we get 

𝑋 = {2, 1, 1, 1, 2, 2}. 

Set 𝑋 is feasible solution of the problem example in 
section II which represents the order of operations  

𝑂21 → 𝑂11 → 𝑂12 → 𝑂13 → 𝑂22 → 𝑂23. 

In Figure 2, node (1/1) is predecessor from 
(3/2), because the operation 𝑂11 is executed before 
the operation 𝑂23. The successor from (1/2) 
is(2/1), because 𝑂12 is executed after 𝑂21 finished. 
Thus, longest path of its disjunctive graph is 

0 → (1/2) → (2/1) → (3/1) → (2/2) → (2/3) → 1 

whose total weight is 0 + 38 + 2 + 20 + 14 + 25 =
99. 

 

Figure2: Disjunctive graph for the feasible solution in 

Problem Example in Section II. 
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5 EXPERIMENTAL RESULTS 

The result from our proposed algorithm called 
MFASPV. Compared to the previous results from 
Bidir and TS (Dell’Amico & Trubian, 1993), DFA 
(Udaiyakumar & Chandrasekaran, 2014) on the 
same benchmark Lawrence data provided by OR-
Library (Beasley, 1990). The summary of 
benchmark data can be seen in Table 1. All 
experiments were performed on Notebook Intel 
Celeron N2840 @2.16 GHz with 4 GB RAM, and 
the code was compiled using Microsoft Visual C++. 
We use the number population 𝑁 = 50 and 
maximum iteration MAXITER = 100 for all 
benchmark data. The FA Parameters which used in 
this experiment i.e. 𝛼 = 0.5, 𝛾 = 0.1, 𝛽0 = 1, and 
𝛿 = 0.97. To measure the performance of each 
algorithm, we use the formula 

𝑃𝐹 = 100% − (|
𝑐max (𝑏)−𝑐max (𝑎)

𝑐max (𝑏)
| × 100%)   (4) 

where 𝐶max (𝑎) is the results from each algorithms  
and  𝐶max (𝑏) is the optimal value for Lawrence data 
that provided by Taillard (Taillard, 1993).  

Table 1: Summary of benchmark data. 

Job Machine Problem Names 

10 5 La05 

15 5 La09, La10 

20 5 La11, La14 

 

The best makespan results obtained using 

MFASPV, Bidir, TS, and DFA are shown in Table 

2. From Table 2 can be seen the comparison of the 

best makespan results from the Bidir, TS, DFA, and 

MDFA-SPV algorithms. Referring to Opt, the TS 

and MFASPV algorithms on JSSP is able to produce 

the best makespan for all benchmark, while DFA is 

able to produce the best makespan in four problems 

and the Bidir algorithm is able to produce the best 

makespan only in two problems. 

Table 2: Summary of benchmark data. 

Problem 

Name 
Opt Bidir TS DFA 

MFA

SPV 

La05 593 593 593 593 593 

La09 951 1017 951 951 951 

La10 958 958 958 958 958 

La11 1222 1259 1222 1222 1222 

La14 1292 1294 1292 1295 1292 

 

To evaluate the performance of the four 

algorithms, we used (4). The percentage of 

performance is presented in Table 3. From Table 3 

seen that the average performance of the Bidir and 

DFA algorithms is less than 100%, it means that the 

makespan results obtained using both algorithms 

have not been able to achieve Opt. While the 

average performance for TS and MDFA-SPV 

algorithms is 100%, which means the results of 

makespan obtained using both algorithms are able to 

achieve the Opt. 

Table 3: Summary of benchmark data. 

Problem 

Name 
Bidir TS DFA MFASPV 

La05 100 100 100 100 

La09 93.059 100 100 100 

La10 100 100 100 100 

La11 96.972 100 100 100 

La14 99.845 100 99.767 100 

Mean 𝟗𝟕. 𝟗𝟕𝟓 𝟏𝟎𝟎 𝟗𝟗. 𝟗𝟓𝟑 𝟏𝟎𝟎 

6 CONCLUSIONS 

In this paper, our proposed algorithm which named 

as MFASPV is tested using Taillard benchmark 

problem available in the literature. MFASPV 

compared with previous results Bidir, TS, and DFA 

to find minimum value of makespan from the data 

benchmark that provided by OR-Library. The 

performance of MFASPV is found to be good and 

able to achieve the best for five Lawrence problems. 
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