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Abstract. Compared to  the hydrostatic hydrodynamic model, the non -hydrostatic 

hydrodynamic model can accurately  simulate flows which  have obvious vertical accelerations. 

This paper proposes a non-hydrostatic hydrodynamic model. The horizontal momentum 

equation is obtained by integrating the Navier-Stokes equations from the bottom to the free 

surface. The vertical momentum equation is approximated by the Keller -box scheme. A non-

hydrostatic correction method is used to solve the model equations. The proposed model is 

verified using measurements from a solitary wave experiment, and good consistency is 

reported. The results show that the proposed model is an effective tool for simulat ion of 

coastal engineering. 

1. Introduction 
The propagation of sea waves over a slope involves a series of complex physical processes such as 
wave refraction, wave diffraction, and shoaling. Many mathematical models were used to analyze the 
prototype experiments of wave propagation and transformation, including the Boussinesq-type 
equation [1], potential flow model, and non-hydrostatic hydrodynamic model.  

Compared to hydrostatic models, non-hydrostatic models consider the effect of dynamic pressure, 
and are thus appropriate for situations with significant vertical acceleration. Thus non-hydrostatic 
models are particularly well-suited to grasping the discipline of complex flow movement. Managing 
the dynamic pressure variable is the key to successful non-hydrostatic modeling. In most non-
hydrostatic models, it is assumed that the pressure of the surface grid conforms to the hydrostatic 
distribution and the dynamic pressure variables are placed at the center of the surface grid [2, 3]. 
Thus these models don’t completely deviate from the hydrostatic assumption.  

To solve the problem, this paper proposes a novel non-hydrostatic hydrodynamic model. Based on 
a non-hydrostatic correction method, the horizontal momentum equation is obtained by integrating 
the Navier-Stokes equations from the bottom to the free surface. The vertical momentum equation is 
approximated by Keller-box scheme. The validity of the model was verified by a solitary wave 
experiment. 

2. Mathematical model 
To improve the hydrostatic hydrodynamic model, the pressure term in the 3D Navier-Stokes (N-S) 
equations is separated into hydrostatic and non-hydrostatic components. The horizental momentum 
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equations and the continuity equation are integrated from bottom to free surface. The vertical 
momentum equation only retains the dynamic pressure gradient term. Coupling with the kinematic 
boundary conditions at the water bottom and free surface, a plane 2D, depth-integrated non-
hydrostatic hydrodynamic model is obtained [4]. 
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Where Eq. (1) is the continuity equation; Eq. (2) is the free surface equation; Eqs. (3)-(4) are the 
horizental momentum equations (the Coriolis term is ignored); Eq. (5) is the vertical momentum 
equation (the convective term and viscosity term are ignored). t is time (s); U and V (m/s) are the 
depth-averaged velocity in the x and y directions, respectively; w is the velocity in the z direction 
(m/s); ρ is water density (kg/m

3
); q is the dynamic (non-hydrostatic) pressure; H is the total water 

depth (m), H=h+η; h is the still water depth (m); η is the surface elevation above the still-water level 
(m); Cs is the wind drag coefficient; ρα is air density (kg/m

3
); ws is the wind speed (m/s); α is the 

angle between the wind direction and the x direction; n is the roughness coefficient. 
In the solitary wave propagation experiments, the flow field of the experiments presents lateral 

uniformity of velocity; that is to say, the flow has significant velocity components only in the 
longitudinal direction and the changes in the lateral direction are effectually negligible. Thus, a 
longitudinal, 1D model is sufficient to simulate the flow motion accurately. Moreover, as opposed to 
the strong disturbance caused by the wave generator at the entrance, the water surface and the friction 
force at the bottom of the tank can be ignored as the indoor air velocity and the friction force of the 
bottom plate of the water tank are low in these prototype experiments. From the above, the variations 
in velocity in the lateral direction, the wind shear force and the bottom friction force can be ignored, 
and the 2D non-hydrostatic model equations can be simplified as follows: 
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The integration of the dynamic pressure gradient adopts an approximate expression: 

 
1 1 ( )

2 2

b
b

h

qq h
dz H q

x x x

 


  
 

                                                 (9) 

IWEMSE 2018 - International Workshop on Environmental Management, Science and Engineering

134



 
 
 
 

Where qb is the dynamic pressure at the bottom, substituting Eq. (9) into Eq. (8), we obtain: 
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Eqs. (6), (7), (10) and the vertical momentum equation Eq. (5) compose the governing equations 
of depth-integrated 1D non-hydrostatic hydrodynamic model. 

3. Numerical solution 
A structured C-grid scheme is used for discretization of the computational domain. The governing 
equations are solved by the finite difference method (FDM). Figure 1 shows the layout of variables. i 
denotes the cell grid centre in the x direction; U is defined at the centre of the grid faces (i ± 1/2); η, h, 
and H are located at the centre of the grid; The dynamic pressure q is located at the centre of the top 
and bottom surfaces; the dynamic pressure at the bottom qb is at the centre of the bottom surface; the 
dynamic pressure at the free surface is set to be zero in order to satisfy the zero dynamic pressure 
condition; WS and WB, which are the vertical velocity at the free surface and bottom, are located at the 
centre of the top and bottom surfaces, respectively. 

xx

Ui-1/2Ui-1/2

WS_iWS_i

ηi, hi, Hiηi, hi, Hi
zz

Ui+1/2Ui+1/2

WB_iWB_i

qb_iqb_i

 

Figure 1. Layout of variables. 
 

All the terms except the dynamic pressure gradient term in Eq. (10) are solved explicitly by 
central difference scheme. The dynamic pressure gradient term is solved by implicit scheme. Where 
superscript n and (n+1) denote the time levels n and (n+1), respectively; Δt and Δx denote the time 
step and the space step, respectively. The discrete form Eq. (10) can be written as: 
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A non-hydrostatic correction method is used for solving Eq. (11): 

 The hydrostatic step 
In the first step, Eq. (12) retain the convective term, the water level gradient term, the combination 

term of dynamic pressure and water level can be obtained. The intermediate value of the velocity 
(denoted as U

n+1/2
) can be calculated by solving Eq. (12). 
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 The  non-hydrostatic step 
Based on the calculated U

n+1/2
 in the hydrostatic step, Eq. (12) only retain the dynamic pressure 

gredient term and Eq. (13) can be obtained: 
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The Keller-box scheme is used to discretize the vertical momentum equation Eq. (5) [5]. This 
scheme has three steps. First, by the forward differencing scheme at the centre of the bottom face, the 
dynamic pressure gradient term can be approximated as: 

                                               (14) 

Second, the dynamic pressure gradient term is discretized at the centre of the upper face by the 
backward diff erencing scheme as follows: 

                                               (15) 

Finally, we take the average of Eqs. (14) and (15) as the final discrete form of Eq. (5) as follows: 

                                               (16) 

Where WB
n+1

 is evaluated in terms of the kinematic boundary condition at the bottom [6]: 
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The continuity equation Eq. (6) is discretized as: 

                                               (18) 

Substituting Eqs. (13), (16) and (17) into Eq. (18) gives Eq. (19): 

                                               (19) 

The coefficients of Eq. (19) could be known. They form a system of a linear tri-diagonal matrix 
equation, namely the Pressure Poisson Equations (PPEs). qb

n+1
 could be calculated by solving the 

PPEs using TMDA method. Substituting qb
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 into Eqs. (13) and (16) gives U
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 and WS
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. The free 
surface η can be updated from the discrete form of Eq. (20): 
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4. Model verification 
The process of wave propagation on an underwater submerged breakwater is very complex. It is 
commonly used to verify non-hydrostatic models. The proposed model was verified for solitary wave 
experiment by Madsen. 

Madsen and Mei made an experimental setup to study the solitary wave shoaling over a 
submerged bar, as shown in Figure 2 [7]. There was a slope which was 200cm far from the left side 
of the channel. The solitary wave propagates from a constant depth h1=7.62 cm to a smaller constant 
depth h2=3.81 cm through a slope. There were four stations, A, B, C, and D (x=159.36cm, 276.2 cm, 
365.1cm, 423.52cm), observing the free surface. The initial position of the wave crest was at x=-
80cm, and its amplitude was 0.9144cm. The size of the simulation region is 600cm and the 
simulation time is 10s; Δx=5cm; Δt=0.001s. 

 

 

Figure 2. Sketch of the experiment set-up of Madsen. 
 
Figure 3 presents the measured values and the simulated values of the non-hydrostatic and 

hydrostatic models at four monitoring stations: Station A, B, C, and D. Oscillation occurs in the 
hydrostatic simulated results at Stations B, C, and D. The main reason for dispersion is that solitary 
wave splits into a series of short waves when it is under dynamic pressure. After the short waves pass 
through these three monitoring stations, decreased dynamic pressure, declined dispersion, and 
disappeared oscillation occur. Clearly, then, the hydrostatic model cannot correctly reflect the short 
wave and its dispersion effect as the influence of the dynamic pressure is ignored. The simulated 
results of the non-hydrostatic model closely coincide with the measured data. In short, it effectively 
simulates the process of solitary wave propagation over a slope. 
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Figure 3. Simulated η/h1 by the non-hydrostatic (solid line) and hydrostatic model (dotted line); 
experimental data (circled) in Stations A, B, C and D. 

5. Conclusions 
This paper proposes a novel non-hydrostatic hydrodynamic model based on a non-hydrostatic 
correction method. With the pressure divided into hydrostatic and dynamic components, the 
horizontal momentum equation is obtained by integrating the Navier-Stokes equations from the 
bottom to the free surface. The vertical momentum equation is approximated by the Keller-box 
scheme. All the terms except the dynamic pressure gradient term in the horizontal momentum 
equation are solved explicitly by central difference scheme. The dynamic pressure gradient term is 
solved by implicit scheme. The validity of the model was verified by a solitary wave propagation 
experiment over a slope, and good consistency is reported. The model is suitable for application to 
lab experiment. However, the depth-averaged model should be expanded to 3D model if more 
detailed 3D flow field is required.  
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