
The Multi-Threaded Analysis of Multiscale Solver
for Viscoelastic Fluids Based on Open FOAM

Yi Liu1, XiaoWei Guo1*, Chao Li1, Cheng Kun Wu1, Xiang Zhang1and Canqun Yang1
1College of Computer, National University of Defense Technology, No. 109 Deya Street, Changsha, China

Keywords: Multi-threaded, Multiscale, Open FOAM.

Abstract: In this paper, we gave performanceanalysis of a multi-threaded multiscale numerical solver based on Open
FOAM. In the multiscale solver, we find that the matrix-vector multiplication is not the most compute-
intensive operations. The discretization of stochastic equation about the Brownian configuration fields
consumes nearly half the time for simulation. Our analysis result could provide valuable guidance for the
parallel performance improvement of multiscale solver based on Open FOAM.

1 INTRODUCTION

Multiscale modelling and simulations(Horstemeyer,
2009)are usually employed to capture important
features of complex fluids at multiple scales of time
or space. In the multiscale simulation of complex
fluids, the macroscopic flow behaviours are
intrinsically governed by the dynamics of
microscopic molecules.And the micro-
macromultiscale methods(Keunings, 2004)couple
the coarse-grained molecular scale kinetic theory
into the macroscopiccontinuum mechanics.A
macroscopic computational model is fast and simple.
Nevertheless, it fails to reproduce many complex
phenomena observed in experiments since the
macroscopic model ignores microscopic details of
molecular dynamics. As a microscopic approach, the
atomistic modelling could provide the most detailed
descriptionof the fluids dynamics, thus leading to
enormous calculations(Guo et al., 2016).However,
the micro-macro multiscale methods directly employ
kinetic theory models in flow simulations, avoiding
potentially inaccurate closure approximations
involved in macroscopic computational model. In
addition, these techniques consume less computing
resources than microscopic approaches.Therefore,
the micro-macro methods for multiscale simulations
have attracted great attention in recent years.

The Brownian configuration fields (BCF)(Hulsen
et al., 1997) is one of the multiscale methods to
model viscoelastic fluids, which made a
breakthrough via the use of correlated local

ensembles. The BCF method uses a uniform number
of configuration fields at fixed spatial positions to
model the dynamics of molecular chains. Not only
does this method ensure a homogeneous polymeric
density in physical space, but also avoids tracking
discrete particles. In a BCF simulation, the motion
of viscoelastic fluids is still governed by the Naiver-
Stocks equation on the macro-scale while the
viscoelastic stress is calculated through solving a
large number of stochastic equations on the micro-
scale and taking the ensemble average as the
macroscopic result. We implemented a multiscale
numerical solver using the BCF methods to
exploring the molecular distributions based on Open
FOAM(Open Source Field Operation and
Manipulation)(Liu et al., 2018).

Open FOAM is an open source toolbox for
solving particle differential equations through the
Finite Volume Method (FVM)(Christopher and
Greenshields, 2015).It is written in C++ and offers a
flexible framework for users to customize and
extend its existing functionality freely. The users
could focus on the mathematical models without
considering the underlying implementation in detail
because of the sufficient abstraction provided by
Open FOAM. Therefore, Open FOAM is widely
accepted in both academic and industrial CFD
(Computational Fluid Dynamics) communities.

Open FOAM is parallelized with general parallel
protocol MPI (Message Passing Interface). To
increase the parallel performance of the Open
FOAM solvers on the high-performance
systems(Yang et al., 2017;Wang et al., 2017), a

hybrid multi-threaded solution was introducedby
Liu(2011), which usesMPI between nodes and
OpenMP directives inside the node.This method is
intended to reduce MPI communications.

However, nearly all the previous studies of the
parallel performance mainly focused on the existing
solvers and seldom mentioned applications extended
from Open FOAM. In this work, we apply this
hybrid multi-threaded strategy on our multiscale
BCF solver to improve the parallel performance on
the high-performance systems. In the remaining of
this paper, we first present the model and the
environment in Section 2. Then, Section 3
introduced the optimization strategies and made
numerical validation. At last, we concluded this
work and draw our conclusions in Section 4.

2 MODEL AND EXPERIMENTAL
CONFIGURATION

2.1 Mathematic Model

From the macroscopic perspective, the motion of the
isothermal and incompressible fluid with density ρ
could be described by the dimensionless momentum
balance equation

and the continuity equation

where ࢛, ,࢖ ௣࣎ represent the velocity, the pressure,
and the viscoelastic stress of the polymer fluid.

From the microscopic viewpoint, the viscoelastic
stress is calculated by solving a large number of
stochastic equations and the ensemble average is
taken as the macroscopic result. The stochastic
equations is given by

and the viscoelastic stress ࣎௣ can be calculated by

where ࡽ is a stochastic process representing the
dumbbell’s configuration vector and ࡲሺࡽሻ indicates
the spring force.The 3-dimensional Gaussian Wiener
processࢃis used to model Brownian forces and ࡵis a
unity matrix. In Equation (4),ߙ௕,ௗspecifies a spring
dependent constant and ஻ܰ஼ிindicates the number of
Brownian configuration fields.

From Equation (1) to (4), the dimensionless
parameters ݁ܦ (Deborah number), ܴ݁ (Reynolds
number) and β(viscosity ratio)are defined as

where ߩ௖, ௖ܷ, ܮ௖represent the characteristic density,
velocity and length in macroscopic flow. And ߟ௦,ߟ௣
indicate solvent and polymeric viscosity,
respectively.

2.2 Experimental Configuration

The simulation domain of thedesigned solveris a
two-dimensional rectangular box. The viscoelastic
fluid flows into the left boundaries and out of the
right boundaries. The flow geometry is shown as
Figure 1.

x

y

0.1

1.0

Figure 1: Flow geometry of viscoelastic fluids flow.

In this paper, we solve the BCF model with
modified PISO algorithm in OpenFOAM. Gauss
MINMOD and Gauss linear scheme are applied to
discretize the spatial terms of the equation while
Euler scheme is used for temporal discretization
terms. After the partial differential equation is
discretized using FVM, it can be transformed into a
linear equation. Then we can use the iterative solvers
provided byOpenFOAM to get the solutions at every
time step. Preconditioned conjugate gradient (PCG)
method is used to solve the pressure equation, and
preconditioned biconjugate gradient (PBICG)
method is for other equations(Liu et al., 2018).

ݐ߲࢛߲ ൅ ࢛ ∙ સ࢛ = െસ݌ ൅ 1ܴ݁ ࢛∆ߚ ൅ 1ܴ݁ સ ∙ ௣ (1)࣎

׏ ∙ ࢛ = 0 (2)

ࡽ݀ = ቆെ࢛ ∙ સࡽ ൅ ሺસ࢛ሻࢀ ∙ ࡽ െ ݁ܦ12 ሻቇࡽሺࡲ ݐ݀

 ൅ඨ ݁ܦ1 ࢃ݀
(3)

௣࣎ ൎ ௕,ௗሺ1ߙ െ ݁ܦሻߚ ቌ 1஻ܰ஼ி ቌ ෍ ࡽ ⊗ ሻேಳ಴ಷࡽሺࡲ
௜ୀଵ ቍ െ ቍ (4)ࡵ

ܴ݁ = ఘ೎௎೎௅೎ఎೞାఎ೛ , ݁ܦ = ఒ௎೎௅೎ ߚ , = ఎೞఎೞାఎ೛ (5)

3 OPTIMIZATION
STRATEGIESAND
VALIDATION

3.1 Optimization Strategies

The Open FOAM-based viscoelastic solver is
parallelized with MPI parallel communication
interface.The flow chart of MPI programming model
in Open FOAM is shown in Figure 2.

Mesh

MPI Message passing

Subdomain 1 …… Subdomain n
Figure 2: Flow chart of MPI programming in OpenFOAM.

In this model, one global mesh domain is
decomposed into multiple load-balanced
subdomains with the domain partition toolkit
decompose Par in Open FOAM, which solved a big
problem of MPI program. However, each MPI
processjust handles the subdomain on their local
processor. They have to rely on the point-to-point
communication to update boundary field and the
MPI_Allreduce()global communication to calculate
residuals when solving the local linear systems in
PISO algorithm.The communication traffic is
proportional to the number and the area of
subdomains for a specific simulation. Therefore, the
pure MPI-based viscoelastic solver would be easily
jammed by sending and receiving large number of
messages(Culpo, 2011). In such case, a multi-level
parallelism modelincorporating MPI and OpenMP as
in Figure 3 is introduced to exploit more potential
data parallelism in local MPI process(Zou et al.,
2014).

Mesh

MPI Message passing

Subdomain 1 …… Subdomain n

OpenMP directives

Thread 1 …… Thread 1

decomposePar

fvMatrix::solve

CG type
linear solvers

Figure 3: Flow chart of the hybrid parallelism model.

InFigure 3, each MPI process is assigned to an
exclusive compute node to execute. Inside the
compute node, the OpenMP threads are introduced
to optimize the compute-intensive operations in
conjugate gradient type linear solvers, such as cell-
based loops and matrix-vector multiplication of
Amul() and Tmul()(Paride Dagnaa, 2013). We
added OpenMP directives “#pragma omp parallel
for” into these operations without data dependency
and distributed onto cores as independent threads
inside the compute node. However, there is data race
in original matrix-vector multiplication in
OpenFOAM. To eliminate the inevitable data race,
we reorganized the face-based loop to the cell-based
loop as in Algorithm 1 for OpenMP multi-
threading(Zou et al., 2014). The reorganized
fvMatrix::Amul() function is given in Algorithm 1:

3.2 Numerical Validation

We first test our numerical solver on the mesh
(800 × 80) with the number of Brownian
configuration fields ஻ܰ஼ி = 800 for 1 process with
different number of threads.Each test has been run
for 5000 time steps. All the tests are executed on a
high-performance cluster with 390 nodes, each with

initMatrixInterfaces(…, psi ,…);
#pragma omp parallel for
for(label cell=0;cell<nCells;cell++)do

scalar res=0;
res=diagPtr[cell]∗psiPtr[cell];
for(face owned by current cell)do
res+=lowerPtr[face]∗psiPtr[uPtr[face]];

end for
for(face owned by neighbour cells)do
res+=upperPtr[face]∗psiPtr[lPtr[face]];

end for
ApsiPtr[cell]=res;

end for
updateMatrixInterfaces(..., Apsi, ...);

24 Intel Xeon E5-2692 CPU and 64GB of memory.
The version of Open FOAM on the high-
performance cluster is v4.0 and complied with GNU
5.4.0 compiler.

We reorganized the face-based loop to the cell-
based loop and tested the wall time for 1 process
with different number of threads of the multiscale
solver. The results are shown in Table 1.

In order to comp are whether multi-thread
method improves parallel performance more
intuitively, we made a bar chart in Figure 4 with the
data in Table 1 to show the speedup of different
number of threads.

Table 1: The wall time for different number of threads of
the multiscale solver.

Number of threads Wall time(s)
1 2401
2 2367
3 2349
4 2354
5 2369
6 2363
7 2345
8 2356

Figure 4: The total speedup of the multiscale solver with
optimized matrix-vector multiplication for different
number of threads.

As Figure 4 shows, the total speedup of the
multiscale solver with optimized matrix-vector
multiplication for different number of threads is
almost equal to 1. It can be concluded that matrix-
vector multiplication in conjugate gradient type
linear solvers is not the compute-intensive
operations in our multiscale BCF solver.

We test the average execution time for 5 main
code segments of the multiscale solver with only 1

process. Furthermore, we test the average execution
time of discretization and solving for ࡽ.The result of
wall time is shown in Table 2.

Table2: Theaverage execution time for 5 main code
segments in the multiscale solver run with only 1 process.

Code Segment Execution Time(s)
Initialization 673.863 Discretization Solveࡽ 1212.09 ࢁ ௣ 245.75࣎253.96 958.13 5.375
PISO LOOP 186.312
According to the data in Table 2, we draw a pie

chart in Figure 5showing the time percent of each
code segment in the multiscale solver. The time
percent of discretization and solving for ࡽ is also
drawn in Figure 5.As Figure 5 shows, half of the
average execution timeof the multiscale solver is
used to solve the Brownian configuration field ࡽ.
And the time percent of discretization for ࡽ is 79%
while solving for ࡽ 21%. The matrix-vector
multiplication would be only used when calling the
function fv Matrix::solve() to solve these variables.
Therefore, optimizing the matrix-vector
multiplication contributes little to the parallel
performance improvement.

Figure 5: The time percent of (a) each code segmentin the
multiscale solver; (b) discretization and solving for ࡽ.

4 CONCLUSIONS

Through the multi-threaded analysis of the
multiscale numerical solver implemented with BCF
method, we find that the compute-intensive part is
not the matrix-vector multiplicationin conjugate
gradient type linear solvers. The discretization of the
Brownian configuration equations consumes nearly
half the time for simulation. However, the large
number of stochastic equations corresponding to
Brownian configuration fields can be solved
independently. In further study, we consider to
distribute the stochastic equations onto multi-threads
after mesh decomposition to improve the
performance of the parallel algorithm.

ACKNOWLEDGEMENTS

This work was supported by the National Key
Research and Development Program ofChina (No.
2016YFB0200401).

REFERENCES

1. HORSTEMEYER, M. F. 2009. Multiscale Modeling:
A Review.

2. KEUNINGS, R. 2004. Micro-macro methods for the
multiscale simulation of viscoelastic flow using
molecular models of kinetic theory. Rheology
Reviews, 2004, 67-98.

3. GUO, X.-W., XU, X.-H., WANG, Q., LI, H., REN,
X.-G., XU, L. & YANG, X.-J. 2016. A Hybrid
Decomposition Parallel Algorithm for Multi-scale
Simulation of Viscoelastic Fluids. 2016 IEEE
International Parallel and Distributed Processing
Symposium (IPDPS).

4. HULSEN, M. A., HEEL, A. P. G. V. & BRULE, B. H.
A. A. V. D. 1997. Simulation of viscoelastic flows
using Brownian configuration fields. Journal of Non-
Newtonian Fluid Mechanics, 70, 79-101.

5. LIU, Y., YANG, C., WU, C. K., ZHANG, X.,
ZHANG, X. & GUO, X. W. 2018. Exploring the
Molecular Distributions in Dilute Polymer Solutions
Using a Multi-Scale Numerical Solver. Polymers.

6. CHRISTOPHER, J. & GREENSHIELDS. 2015.
OpenFOAM Programmer’s Guide [Online].
Available: http://foam.sourceforge.net/docs/Guides-
a4/ProgrammersGuide.pdf [Accessed 05.09 2018].

7. YANG, X., WU, C., LU, K., FANG, L., ZHANG, Y.,
LI, S., GUO, G. & DU, Y. 2017. An Interface for
Biomedical Big Data Processing on the Tianhe-2
Supercomputer. Molecules, 22, 2116.

8. WANG, W., YANG, X., YANG, C., GUO, X.,
ZHANG, X. & WU, C. 2017. Dependency-based long
short term memory network for drug-drug interaction
extraction. Bmc Bioinformatics, 18, 578.

9. LIU, Y. 2011. Hybrid Parallel Computation of
OpenFOAM Solver on Multi-Core Cluster Systems.
Computer & Information Science.

10. CULPO, M. 2011. Current Bottlenecks in the
Scalability of OpenFOAM on Massively Parallel
Clusters [Online]. Available: http://www.prace-ri.eu
[Accessed 05.09 2018].

11. ZOU, S., LIN, Y. F., CHEN, J., WANG, Q. & CAO,
Y. 2014. The Performance Analysis and Parallel
Optimization of the OpenFOAM-Based Viscoelastic
Solver for Heterogeneous HPC Platforms. Applied
Mechanics and Materials.

12. PARIDE DAGNAA, J. H. 2013. Evaluation of Multi-
threaded OpenFOAM Hybridization for Massively
Parallel Architectures [Online]. Available:
http://www.prace-ri.eu [Accessed 05.09 2018].

