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Abstract: In this paper, we gave performanceanalysis of a multi-threaded multiscale numerical solver based on Open 
FOAM. In the multiscale solver, we find that the matrix-vector multiplication is not the most compute-
intensive operations. The discretization of stochastic equation about the Brownian configuration fields 
consumes nearly half the time for simulation. Our analysis result could provide valuable guidance for the 
parallel performance improvement of multiscale solver based on Open FOAM. 

1 INTRODUCTION 

Multiscale modelling and simulations(Horstemeyer, 
2009)are usually employed to capture important 
features of complex fluids at multiple scales of time 
or space. In the multiscale simulation of complex 
fluids, the macroscopic flow behaviours are 
intrinsically governed by the dynamics of 
microscopic molecules.And the micro-
macromultiscale methods(Keunings, 2004)couple 
the coarse-grained molecular scale kinetic theory 
into the macroscopiccontinuum mechanics.A 
macroscopic computational model is fast and simple. 
Nevertheless, it fails to reproduce many complex 
phenomena observed in experiments since the 
macroscopic model ignores microscopic details of 
molecular dynamics. As a microscopic approach, the 
atomistic modelling could provide the most detailed 
descriptionof the fluids dynamics, thus leading to 
enormous calculations(Guo et al., 2016).However, 
the micro-macro multiscale methods directly employ 
kinetic theory models in flow simulations, avoiding 
potentially inaccurate closure approximations 
involved in macroscopic computational model. In 
addition, these techniques consume less computing 
resources than microscopic approaches.Therefore, 
the micro-macro methods for multiscale simulations 
have attracted great attention in recent years. 

The Brownian configuration fields (BCF)(Hulsen 
et al., 1997) is one of the multiscale methods to 
model viscoelastic fluids, which made a 
breakthrough via the use of correlated local 

ensembles. The BCF method uses a uniform number 
of configuration fields at fixed spatial positions to 
model the dynamics of molecular chains. Not only 
does this method ensure a homogeneous polymeric 
density in physical space, but also avoids tracking 
discrete particles. In a BCF simulation, the motion 
of viscoelastic fluids is still governed by the Naiver-
Stocks equation on the macro-scale while the 
viscoelastic stress is calculated through solving a 
large number of stochastic equations on the micro-
scale and taking the ensemble average as the 
macroscopic result. We implemented a multiscale 
numerical solver using the BCF methods to 
exploring the molecular distributions based on Open 
FOAM(Open Source Field Operation and 
Manipulation)(Liu et al., 2018). 

Open FOAM is an open source toolbox for 
solving particle differential equations through the 
Finite Volume Method (FVM)(Christopher and 
Greenshields, 2015).It is written in C++ and offers a 
flexible framework for users to customize and 
extend its existing functionality freely. The users 
could focus on the mathematical models without 
considering the underlying implementation in detail 
because of the sufficient abstraction provided by 
Open FOAM. Therefore, Open FOAM is widely 
accepted in both academic and industrial CFD 
(Computational Fluid Dynamics) communities. 

Open FOAM is parallelized with general parallel 
protocol MPI (Message Passing Interface). To 
increase the parallel performance of the Open 
FOAM solvers on the high-performance 
systems(Yang et al., 2017;Wang et al., 2017), a 



 

hybrid multi-threaded solution was introducedby 
Liu(2011), which usesMPI between nodes and 
OpenMP directives inside the node.This method is 
intended to reduce MPI communications. 

However, nearly all the previous studies of the 
parallel performance mainly focused on the existing 
solvers and seldom mentioned applications extended 
from Open FOAM. In this work, we apply this 
hybrid multi-threaded strategy on our multiscale 
BCF solver to improve the parallel performance on 
the high-performance systems. In the remaining of 
this paper, we first present the model and the 
environment in Section 2. Then, Section 3 
introduced the optimization strategies and made 
numerical validation. At last, we concluded this 
work and draw our conclusions in Section 4. 

2 MODEL AND EXPERIMENTAL 
CONFIGURATION 

2.1 Mathematic Model 

From the macroscopic perspective, the motion of the 
isothermal and incompressible fluid with density ρ 
could be described by the dimensionless momentum 
balance equation 

and the continuity equation 

where ࢛, ,࢖ ௣࣎ represent the velocity, the pressure, 
and the viscoelastic stress of the polymer fluid. 

From the microscopic viewpoint, the viscoelastic 
stress is calculated by solving a large number of 
stochastic equations and the ensemble average is 
taken as the macroscopic result. The stochastic 
equations is given by 

and the viscoelastic stress ࣎௣ can be calculated by 

where ࡽ is a stochastic process representing the 
dumbbell’s configuration vector and ࡲሺࡽሻ indicates 
the spring force.The 3-dimensional Gaussian Wiener 
processࢃis used to model Brownian forces and ࡵis a 
unity matrix. In Equation (4),ߙ௕,ௗspecifies a spring 
dependent constant and ஻ܰ஼ிindicates the number of 
Brownian configuration fields. 

From Equation (1) to (4), the dimensionless 
parameters ݁ܦ (Deborah number), ܴ݁ (Reynolds 
number) and β(viscosity ratio)are defined as 

where ߩ௖, ௖ܷ, ܮ௖represent the characteristic density, 
velocity and length in macroscopic flow. And ߟ௦,ߟ௣ 
indicate solvent and polymeric viscosity, 
respectively. 

2.2 Experimental Configuration 

The simulation domain of thedesigned solveris a 
two-dimensional rectangular box. The viscoelastic 
fluid flows into the left boundaries and out of the 
right boundaries. The flow geometry is shown as 
Figure 1. 
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Figure 1: Flow geometry of viscoelastic fluids flow. 

In this paper, we solve the BCF model with 
modified PISO algorithm in OpenFOAM. Gauss 
MINMOD and Gauss linear scheme are applied to 
discretize the spatial terms of the equation while 
Euler scheme is used for temporal discretization 
terms. After the partial differential equation is 
discretized using FVM, it can be transformed into a 
linear equation. Then we can use the iterative solvers 
provided byOpenFOAM to get the solutions at every 
time step. Preconditioned conjugate gradient (PCG) 
method is used to solve the pressure equation, and 
preconditioned biconjugate gradient (PBICG) 
method is for other equations(Liu et al., 2018). 

 

ݐ߲࢛߲ ൅ ࢛ ∙ સ࢛ = െસ݌ ൅ 1ܴ݁ ࢛∆ߚ ൅ 1ܴ݁ સ ∙  ௣ (1)࣎

׏ ∙ ࢛ = 0 (2) 
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௣࣎ ൎ ௕,ௗሺ1ߙ െ ݁ܦሻߚ ቌ 1஻ܰ஼ி ቌ ෍ ࡽ ⊗ ሻேಳ಴ಷࡽሺࡲ
௜ୀଵ ቍ െ ቍ (4)ࡵ

ܴ݁ = ఘ೎௎೎௅೎ఎೞାఎ೛ , ݁ܦ = ఒ௎೎௅೎ ߚ       , = ఎೞఎೞାఎ೛ (5) 



 

3 OPTIMIZATION 
STRATEGIESAND 
VALIDATION 

3.1 Optimization Strategies 

The Open FOAM-based viscoelastic solver is 
parallelized with MPI parallel communication 
interface.The flow chart of MPI programming model 
in Open FOAM is shown in Figure 2. 
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Figure 2: Flow chart of MPI programming in OpenFOAM. 

In this model, one global mesh domain is 
decomposed into multiple load-balanced 
subdomains with the domain partition toolkit 
decompose Par in Open FOAM, which solved a big 
problem of MPI program. However, each MPI 
processjust handles the subdomain on their local 
processor. They have to rely on the point-to-point 
communication to update boundary field and the 
MPI_Allreduce()global communication to calculate 
residuals when solving the local linear systems in 
PISO algorithm.The communication traffic is 
proportional to the number and the area of 
subdomains for a specific simulation. Therefore, the 
pure MPI-based viscoelastic solver would be easily 
jammed by sending and receiving large number of 
messages(Culpo, 2011). In such case, a multi-level 
parallelism modelincorporating MPI and OpenMP as 
in Figure 3 is introduced to exploit more potential 
data parallelism in local MPI process(Zou et al., 
2014). 
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Figure 3: Flow chart of the hybrid parallelism model. 

InFigure 3, each MPI process is assigned to an 
exclusive compute node to execute. Inside the 
compute node, the OpenMP threads are introduced 
to optimize the compute-intensive operations in 
conjugate gradient type linear solvers, such as cell-
based loops and matrix-vector multiplication of 
Amul() and Tmul()(Paride Dagnaa, 2013). We 
added OpenMP directives “#pragma omp parallel 
for” into these operations without data dependency 
and distributed onto cores as independent threads 
inside the compute node. However, there is data race 
in original matrix-vector multiplication in 
OpenFOAM. To eliminate the inevitable data race, 
we reorganized the face-based loop to the cell-based 
loop as in Algorithm 1 for OpenMP multi-
threading(Zou et al., 2014). The reorganized 
fvMatrix::Amul() function is given in Algorithm 1: 

3.2 Numerical Validation 

We first test our numerical solver on the mesh 
( 800 × 80 ) with the number of Brownian 
configuration fields ஻ܰ஼ி = 800 for 1 process with 
different number of threads.Each test has been run 
for 5000 time steps. All the tests are executed on a 
high-performance cluster with 390 nodes, each with 

initMatrixInterfaces(…, psi ,…); 
#pragma omp parallel for
for(label cell=0;cell<nCells;cell++)do 

scalar res=0;
res=diagPtr[cell]∗psiPtr[cell]; 
for(face owned by current cell)do 
res+=lowerPtr[face]∗psiPtr[uPtr[face]]; 

end for 
for(face owned by neighbour cells)do 
res+=upperPtr[face]∗psiPtr[lPtr[face]]; 

end for
ApsiPtr[cell]=res;

end for
updateMatrixInterfaces(..., Apsi, ...); 



 

24 Intel Xeon E5-2692 CPU and 64GB of memory. 
The version of Open FOAM on the high-
performance cluster is v4.0 and complied with GNU 
5.4.0 compiler. 

We reorganized the face-based loop to the cell-
based loop and tested the wall time for 1 process 
with different number of threads of the multiscale 
solver. The results are shown in Table 1. 

In order to comp are whether multi-thread 
method improves parallel performance more 
intuitively, we made a bar chart in Figure 4 with the 
data in Table 1 to show the speedup of different 
number of threads. 

Table 1: The wall time for different number of threads of 
the multiscale solver. 

Number of threads Wall time(s) 
1 2401 
2 2367 
3 2349 
4 2354 
5 2369 
6 2363 
7 2345 
8 2356 

 

 
Figure 4: The total speedup of the multiscale solver with 
optimized matrix-vector multiplication for different 
number of threads. 

As Figure 4 shows, the total speedup of the 
multiscale solver with optimized matrix-vector 
multiplication for different number of threads is 
almost equal to 1. It can be concluded that matrix-
vector multiplication in conjugate gradient type 
linear solvers is not the compute-intensive 
operations in our multiscale BCF solver. 

We test the average execution time for 5 main 
code segments of the multiscale solver with only 1 

process. Furthermore, we test the average execution 
time of discretization and solving for ࡽ.The result of 
wall time is shown in Table 2. 

Table2: Theaverage execution time for 5 main code 
segments in the multiscale solver run with only 1 process. 

Code Segment Execution Time(s) 
Initialization 673.863 Discretization Solveࡽ 1212.09 ࢁ ௣ 245.75࣎253.96 958.13 5.375 
PISO LOOP 186.312 
According to the data in Table 2, we draw a pie 

chart in Figure 5showing the time percent of each 
code segment in the multiscale solver. The time 
percent of discretization and solving for ࡽ  is also 
drawn in Figure 5.As Figure 5 shows, half of the 
average execution timeof the multiscale solver is 
used to solve the Brownian configuration field ࡽ. 
And the time percent of discretization for ࡽ is 79% 
while solving for ࡽ 21%. The matrix-vector 
multiplication would be only used when calling the 
function fv Matrix::solve() to solve these variables. 
Therefore, optimizing the matrix-vector 
multiplication contributes little to the parallel 
performance improvement. 

 
Figure 5: The time percent of (a) each code segmentin the 
multiscale solver; (b) discretization and solving for ࡽ. 

4 CONCLUSIONS 

Through the multi-threaded analysis of the 
multiscale numerical solver implemented with BCF 
method, we find that the compute-intensive part is 
not the matrix-vector multiplicationin conjugate 
gradient type linear solvers. The discretization of the 
Brownian configuration equations consumes nearly 
half the time for simulation. However, the large 
number of stochastic equations corresponding to 
Brownian configuration fields can be solved 
independently. In further study, we consider to 
distribute the stochastic equations onto multi-threads 
after mesh decomposition to improve the 
performance of the parallel algorithm. 
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