occurring. It indicated that the fatigue cracks can be 
more accurately predicted in the path of thermal 
fatigue crack propagation and the position of crack 
occurring.Therefore, it will provide guidance for the 
prevention of die casting mold’s failure in the actual 
production. 
5 CONCLUSION 
The thermal fatigue experiment indicated that with 
the increase of the thermal fatigue cycles, after the 
thermal fatigue crack has initiated, the rate of the 
primitively crack propagation is very high, and then 
the speed decreases gradually and tends to be stable 
at last. 
The finite element simulation results indicated 
that the thermal fatigue crack easily appears at the 
area of maximum concentration of thermal stress 
and also easily to be produced at the position with 
larger difference of temperature. Besides, at the tip 
of the thermal fatigue crack, it is easier to expand at 
the position of the largest mises equivalent stress 
and strain. 
Compared with the results of the experiment and 
the simulation, it can be found that the results of the 
experiment is in accord with the ones of numerical 
simulation analysis in the path of thermal fatigue 
crack propagation and the position of crack 
occurring. Therefore, it will provide guidance for the 
prevention of die casting mold’s failure in the actual 
production. 
REFERENCES 
1.  Wang RB. Research on failure analysis and selection 
andstrengthen treatment of die-casting die of the 
aluminum alloy [J]. Die Mold Manufacturing, 2008. 
2.  Leo B. Prediction of life to thermal fatigue crack 
initiation of die casting dies[J].International 
Conference on Tooling, 1999, 5:225-234. 
3.  Chemvavsk A. Method of analysis of development of 
a network of thermal cracks[J]. Strength of Materials, 
1990, 22:404-412.  
4.  Zhu RC, Li YD, Wang CY, et al Thermal fatigue 
analysis of aluminum alloy die casting mold[J]. 
Special Casting Nonferrous Alloys, 2010, 30:224-226. 
5.  Fu MW, Lu J,Chan WL. Die fatigue life improve-ment 
through the rational design of metal-forming 
system.Journal of Materials Processing Technology, 
2009, 209:1074-1084. 
6.  Tian GH. Analysis of the factors affecting thedie-
casting die life[J]. Die Mould Industry, 2005, 1:54-
58. 
7.  Fu M W, Yong M S, Muramatsu T. Die fatigue 
lifedesign and assessment via CAE simulation[J]. 
International Journal of Advanced Manufacturing 
Technology, 2008, 35(9-10):843-851.  
8.  Zhang H, Lu Z. Thermal deformation of die casting 
die and its counter-measures[J]. Special Casting & 
Nonferrous Alloys, 2006, 26:229-230. 
9.  Srivastava A, Joshi V, Shivpuri R. Computer 
modeling and prediction of thermal fatigue cracking in 
die-casting tooling[J]. Wear, 2004, 256(1):38-43. 
10. Damjan Klobčar, Janez Tušek. Thermal stresses in 
aluminium alloy die casting dies[J]. Computational 
Materials Science, 2008, 43(4):1147-1154. 
11. Long A, Thornhill D, Armstrong C, et al. Predicting 
die life from die temperature for high pressure dies 
casting aluminium alloy[J]. Applied Thermal 
Engineering, 2012, 44(2):100-107. 
12. Ming Y, Sun Z L, Qiang Y, et al. FEM Simulation of 
Initial Cracking Process Due to Thermal Fatigue[J]. 
Journal of Northeastern University, 2007, 
28(12):1741-1744.. 
13. Paffumi E, Nilsson K F, Taylor N G. Simulation of 
thermal fatigue damage in a 316L model pipe 
component[J]. International Journal of Pressure 
Vessels & Piping, 2008, 85(11):798-813.  
14. Fajdiga G, Sraml M. Fatigue crack initiation and 
propagation under cyclic contact loading[J]. 
Engineering Fracture Mechanics, 2009, 76(9):1320-
1335. 
15. Remes H, Varsta P, Romanoff J. Continuum approach 
to fatigue crack initiation and propagation in welded 
steel joints[J]. International Journal of Fatigue, 2012, 
40(40):16-26. 
16. 
Shang D G, Yao W X, Wang D J. A new approach to 
the determination of fatigue crack initiation size[J]. 
International Journal of Fatigue, 1998, 20(9):683-687.