
Nature 540 pp 354–362 
[5]  Zeng  J  B,  Li  K A and  Du  A  K  2015 Compatibilization strategies  in  poly(lactic  acid)-based 
blends RSC Adv. 5 pp 32546-65 
[6]  Joanna R, Wanda S, Mariya K and Darinka C 2015 Polyester-based (bio)degradable polymers 
as environmentally  friendly  materials  for sustainable  development  Int.  J. Mol. Sci. 16  pp 
564–596 
[7]  Astrid  L,  Guillermo  M,  Betânia  H  L  and  AndréL  J,  Rubens  M  F  2012  Poly-lactic  acid 
synthesis for application  in biomedical  devices - A review Biotechnol. Adv 30 pp 321-328 
[8]  Mauck S C,Wang S, Ding W, Rohde B J, Fortune C K, Yang G, Ahn S K and Robertson M L 
2016  Biorenewable  tough  blends  of  polylactide  and  acrylated  epoxidized  soybean  oil 
compatibilized  by a polylactide  star polymer  Macromolecules 49 pp 1605–15 
[9]  BagóJ R, Pegna G J, Okolie O, Mohiti-Asli M, Loboa E G and Hingtgen S D 2016 Electrospun 
nanofibrous  scaffolds  increase  the  efficacy  of  stem  cell-mediated  therapy  of  surgically 
resected glioblastoma  Biomaterials 90 pp 116–125 
[10]  Cifuentes S C, Gavilán R, Lieblich M, Benavente R and González-Carrasco J L 2016 In vitro 
degradation  of  biodegradable  polylactic  acid/magnesium  composites:  Relevance  of  Mg 
particle shape Acta Biomater. 32 pp 348–357 
[11]  Tsuji H 2016 Poly (lactic acid) stereocomplexes: A decade of progress Adv. Drug Deliv. Rev. 
107 pp 97–135 
[12]  Saeidlou  S, Huneault M A,  Li H and Park C B 2012 Poly (lactic acid) crystallization, Prog. 
Polym. Sci. 37 pp 1657-77 
[13]  Peng  L C,  Chai  Y,  Liu  Y  and  Zhang  P  Y  2008  Progress  in fully  biodegradable  polylactice 
blends China Plastics. 22 pp 1-8 
[14]  Spinella  S,  Cai J,    Samuel  C,  Zhu  J,  McCallum  S  A,  Habibi  Y,  Raquez  J M,  Dubois  P  and 
Gross R A 2015 Polylactide/Poly (ω-hydroxytetradecanoic acid) reactive blending: A green 
renewable  approach  to  improving  polylactide  properties  Biomacromolecules 16  pp  1818–
26 
[15]  Xu  H,  Yang  X,  Xie  L  and  Hakkarainen  M  2016  Conformational  footprint  in  hydrolysis-
induced nanofibrillation and crystallization  of poly (lactic acid) Biomacromolecules 17  pp 
985–995 
[16]  Yao  Q,  Cosme  J  L,  Xu  T,  Miszuk  J  M,  Picciani  P  S,  Fong  H  and  Sun  H  2017  Three 
dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved 
stem cells osteogenic differentiation and cranial bone formation Biomaterials 115 pp 115–
127 
[17]  Han L, Xie Q, Bao J, Shan G, Bao Y and Pan P 2017 Click chemistry synthesis, stereocomplex 
formation, and enhanced thermal properties of well-defined poly (L-lactic acid)-b-poly (D-
lactic acid) stereo diblock  copolymers Polym Chem. 8 pp 1006–16 
[18]  Zhang  K,  Jr C  S,  Washburn  N  R,  Antonucci  J  M, Lin-Gibson  S  2005  In  situ  formation of 
blends  by  photopolymerization  of  poly  (ethylene  glycol)  dimethacrylate  and  polylactide 
Biomacromolecules 6 pp 1615-22 
[19]  Guo  J,  Qiao  J  and  Zhang  X  2016  Effect  of  an  alkalized-modified  halloysite  on  PLA 
crystallization,  morphology,  mechanical,  and  thermal  properties  of  PLA/halloysite 
nanocomposites J. Appl. Polym. Sci. 133 44272 
[20]  Zhao  X,  Luo  J,  Fang  C  and  Xiong  J  2015  Investigation  of  polylactide/poly(ε-
caprolactone)/multi-walled  carbon  nanotubes  electrospun  nanofibers  with  surface  texture 
RSC Adv. 5 pp 99179–87 
[21]  McDonald P F, Geever L M, Lyons J G and Higginbotham C L 2010 In vitro degradation and 
drug release from polymer blends based on poly(DL-lactide), poly(L-lactide-glycolide) and 
poly(ε-caprolactone)  J. Mater. Sci. 45 pp 1284-92 
Effects of Hydrogen Bond Interaction on the Miscibility of Poly (D, L-lactide) Composites Materials
423