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Abstract: The Jurassic formation in the Fengcheng area of Junggar Basin has complicated lithofacies because of its 
depositional environment supported the rapid deposition of sediment from a nearby provenance. The main 
lithofacies of this formation are mudstone, fine-grained sandstone, medium-grained sandstone and 
conglomeratic sandstone. Based on core and well logging data from the study area, this paper summarizes 
the characteristics of the rock and analyzes the logging response characteristics of the lithology. We use 
acoustic(AC), compensated neutron(CNL), density(DEN), gamma ray(GR) and resistivity(RT)logging data 
as training and test samples to establish a lithofacies recognition model by using a support vector 
machine(SVM). Additionally, we use a genetic algorithm to optimize the kernel parameter σ and penalty 
factor C. The results show that the model predicts that the overall coincidence rate is 85.1%, which is better 
than that predicted from a back-propagation(BP) neural network, and the model clearly improves the 
lithofacies recognition accuracy and efficiency. 

1    INTRODUCTION 

The sandy conglomerate bodies of the Lower 
Jurassic Badaowan Formation and Sangonghe 
Formation in the Fengcheng area are mostly rapid 
deposits, with features such as large vertical and 
horizontal lithological changes, low compositional 
maturity, and strong heterogeneity in various 
lithologies (Bai et al., 2012). The logging response 
characteristics are not significantly apparent in these 
bodies. In the Fengcheng area, the formation 
generally contains mud, ash, and pebbles, 
representing a complex lithofacies formation that 
complicates lithologic identification of the 
conglomeratic sandstone (Liu et al., 2013). 
However, considering the cost of the exploration 
and development process, obtaining considerably 
more core data is not possible and cutting logging 
requires large sampling intervals. Therefore, it is 
impossible to completely and accurately restore the 
true lithology of the entire formation (Sebtosheikh et 
al., 2015). Compared with core data, well logging 
data are detailed, comprehensive and generally 
continuous and are highly accurate in the 
longitudinal direction, more comprehensively 
reflecting the characteristics of the formation (Rider, 
2002). So, in the field of lithology identification, it 

is particularly important to determine the 
interdependence of core data and logging data and to 
integrate geological core data and logging data. At 
present, conventional lithology identification 
methods include several mathematical statistical 
methods such as cross-plot methods (Fan et al., 
1999), principal component analysis, artificial neural 
networks (Liu et al., 2007) and clustering methods 
(Ghosh et al., 2016). However, the two-parameter 
cross-plot method can effectively identify only the 
well-characterized lithology from well logging data, 
and it is difficult to recognize the lithology of an 
entire well section or interpreted well section. When 
we use the clustering method to identify lithology, 
selecting different numbers of cluster centers has a 
greater impact on the recognition accuracy. The 
artificial neural network method is challenging 
because of its network topology, and it is easy to fall 
into a local minimum, resulting in a poor 
performance of lithologic identification (Yu et al., 
2005). Although the principal component analysis 
method can effectively reduce the logging data 
dimensions and improve the recognition accuracy, it 
is easy to ignore the well log attributes that have a 
small value but have a great impact on the lithology 
identification (Zhong and Li, 2009). 
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Support vector machines is a machine learning 
algorithm for both classification and regression 
tasks. Based on the SVM method, the genetic 
algorithm is used to optimize the parameters of the 
SVM. In the case of limited core data, the logging 
data are used to identify the lithology of the complex 
conglomeratic sandstone in the Fengcheng area 
(Mohammad and Ali, 2015; Mou et al., 2015). The 
results of back-propagation (BP) neural network 
prediction and SVM prediction are compared to 
demonstrate the efficiency and feasibility of 
lithography identification by using SVM. 

2    METHODOLOGY 

2.1    Support Vector Machine 

SVM is a kind of machine learning method 
developed on the basis of statistical learning theory. 
SVM searches for the best trade-off between the 
complexity and learning ability of the model 
according to the limited sample information. SVM is 
advantageous for solving problems with small 
sample sizes, and nonlinear and high-dimensional 
data recognition; additionally, SVM can find global 
optimal solutions (Suykens and Vandewalle, 2000; 
Vapnik, 1995). The main idea of SVM is to establish 
a classification hyperplane as the decision-making 
curve, which maximizes the isolation margin 
between positive and negative examples (Gholam-
Norouzi et al., 2012). Its basic structure is shown in 
Figure 1. 

 
Figure 1: Support vectors and margin.  

SVM evolves from the optimal separation 
hyperplane in the case of linear separability. For a 
second-class classification problem, given a training 
data set on the feature space D={( ,ଵݔ ଵݕ ) ，
ଶݔ) ,ேݔ),…,(ଶݕ, ேݕ )}, where 	ݔ௜ ∈ ܺ ൌ ܴ௡ ௜ݕ, ∈ ܻ ൌ

ሼ൅1	 െ 1ሽ , i=1,2,…,N, N is the total number of 
training samples and n is the dimension of the input 
features. In sample spaces, the linear equation to 
divide the hyperplanes is given as follows: ω୘x+b=0   (1) 

where ω is a normal vector that determines the 
direction of the hyperplanes and b is a displacement 
term that determines the distance between the origin 
point and hyperplanes. Therefore, the distance 
between any point (in the space) and the optimal 
hyperplane can be written as follows: r ൌ |ω୘x ൅ b|ห|ω|ห 																														(2) 

If the hyperplane can correctly separate training 
samples, for(ݔ௜, ϵ D, it satisfies Eqs(3). ൜ω୘x୧	௜)ݕ ൅ b ൒ ൅1,					ݕ௜ ൌ ൅1;ω୘x୧ ൅ b ൑ െ1,				ݕ௜ ൌ െ1. 													 (3) 

Figure 1 shows several learning samples, and the 
nearby hyperplanes are called “support vectors”. 
The sum of the distances between the two 
heterogeneous support vectors to the hyperplane are 
satisfy Eq. (4). γ= ଶ‖ன‖                                             (4) 

To move the positive and negative samples of 
the training data set as far as possible from the 
hyperplane, the maximum classification interval has 
to satisfy Equation (5).  

min  ଵଶ ||ω||ଶ                 (5) 

	
Figure 2: Two-category and Nonlinear classification. 

In the nonlinear classification problem, no 
hyperplanes in the original sample can correctly 
classify the two types of samples (Figure 2) (Cheng 
and Guo, 2010). For such a problem, we can add a 
slack variable and a penalty factor into the SVM to 
solve the problem, while using the Lagrange 
multiplier method to transform the hyperplane 
problem by dividing it into a dual problem. (Figure 
2). This process satisfies Equation (6): 

Lithology Identification by Support Vector Machine Using Well Logging Data

401



 
 
 
 
 
 

L(w,b,α)= ଵଶ ‖w‖ଶ-∑ α୧y୧୒୧ୀଵ (w·x୧+b)+∑ α୧୒୧ୀଵ     (6) 
where α୧  are Lagrange multipliers .() Equation 

(6) can be changed into Equation (7):  min஑ ଵଶ∑ ∑ α୧୒୨ୀଵ୒୧ୀଵ α୨y୧y୨(x୧ · x୨)-	∑ α୧୒୧ୀଵ          (7) 

	
Solving the above equation to obtain the 

classification decision function Eq.(8). 
f (x)=∑ α୧y୧୬୧ୀଵ k(x୧，x୨)+b                (8) 

This paper introduces the "kernel function" 
method to solve the problem of nonlinear 
classification. The original sample space data can be 
transformed into a high-dimensional feature space 
through nonlinear conversion to obtain the optimal 
hyperplane. The most commonly used kernel 
functions are the polynomial kernel, radial basis 
kernel (RBF) and Sigmoid kernel. The RBF is used 
as the kernel function in this paper. 

K(ݔ௜,  - )௝) = expݔ
‖௫೔	ି	௫ೕ‖	ଶఙమ 	)                        (9) 

2.2    Genetic Algorithm 

A genetic algorithm randomly searches for the 
optimal solution, simulating the natural process of 
evolution and the genetic mechanism in nature (De, 
1975). It is a self-organizing and adaptive artificial 
intelligence technology (Goldberg and Holland, 
1988; Holland, 1975). The establishment of a SVM 
model is essentially performed to identify two key 
parameters: the kernel function parameter σ and 
penalty factor C (Wu et al., 2009). The 
determination of these two parameters has a great 
influence on the accuracy and generalization ability 
of this model. Here, we mainly introduce how to use 
a genetic algorithm to realize the optimization of the 
lithology recognition parameters of SVMs(Han et 
al.,2012): 

Input standardized lithology samples as training 
samples. 

Randomly generate a set of SVM parameters, 
each parameter is encoded by using a binary coding 
scheme to construct an initial population. 

Calculate the cost function to determine fitness, 
A greater cost function result indicates a lower 
fitness. 

Select a number of individuals with high fitness, 
and determine the next generation with direct 
genetic. 

Using the crossover, mutation and other genetic 
operators to address the current generation of 
groups, generate the next generation of groups. 

Repeat step b, evolving a set of initially 
determined SVM parameters until the training 
objective satisfies the condition. 

3    DATA PREPARATION 

The Fengcheng area is located in the northwestern 
part of the Junggar Basin (Figure 3). The strata in 
the basin are thin in the north but thick in the south, 
creating wedge shape that thickens into the basin. 
Among the formations in the basin, the Lower 
Jurassic Badaowan Formation is dominated by 
braided river deposits and developed lithologies 
such as mudstone, siltstone, fine-grained sandstone, 
medium-grained sandstone and conglomeratic 
sandstone (Wang et al., 2012). The Sangonghe 
Formation is generally composed of braided river-
delta deposits. The lithologies of the Sangonghe 
Formation are mudstone, silty mudstone, siltstone, 
fine-grained sandstone, medium to coarse-grained 
sandstone and conglomeratic sandstone (Zhu et al., 
2017). This paper combines the lithologies and 
logging data and takes the Jurassic formation as an 
example, analyzing the logging response 
characteristics under different lithologies, and 
extracting the logging response parameters that are 
sensitive to lithology to establish a GA-SVM 
lithology model, to study a method for the 
conglomeratic sandstone lithology identification and 
its application (Feng et al., 2002). 

 
Figure 3: The location of study area. 
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Due to the complexity of the lithology in the 
study area, four major lithologies were identified 
based on the available data: mudstone, fine-grained 
sandstone, medium-grained sandstone and 
conglomeratic sandstone. In this paper, 274 
representative lithological samples were selected 
from 20 wells with accurate core identification data 
in the study area. The samples included 75 
mudstone, 62 fine-grained sandstone, 47 medium-
grained sandstone, 90 conglomeratic sandstone 
samples. We extract density (DEN), neutron 
porosity (CNL), acoustic (AC), true formation 
resistivity (Rt), and gamma ray (GR) response 

characteristics from conventional logging data to 
establish a sample space of 5 dimensions and 4 
types. Table 1 shows the logging response 
characteristics of four lithologies in the study area. 
Table 1 shows that many differences exist among 
the different logging parameters for each lithology 
and provides the initial conditions for the lithology 
identification. Additionally, to eliminate the 
influence of the different dimension of the features, 
the logging parameters of the samples were 
normalized and uniformly included in the range of 
(0,1). 

Table 1: Logging response of sandy conglomerate in Fengcheng area. 

lithology AC/(μs·mିଵ)CNL/(%)DEN/(g·cmିଵ)GR/(API)RXO/(Ω·m) Logging response 

mudstone 108~145 30~42 1.7~2.2 74~104 4~9 low RXO medium-low DEN

Fine-grained sandstone 112~129 29~41 2.0~2.2 50~78 21~96 low GR medium-high RXO

medium-grained sandstone 104~117 29~36 2.0~2.3 55~67 13~28 low RXO low GR 

conglomeratic sandstone 65~110 18~31 2.1~2.4 56~103 36~91 low AC low CNL high RXO

 

Table 2: Learning samples. 

Depth/m 
AC 

(μs·mିଵ) 

CNL 

(%) 

DEN(g·cmିଵ) GR 

(API) 

RXO(Ω·m) 
lithology 

386 120.0022 33.14312 2.245676 85.88315 7.251 1 

439 131.3215 34.71169 2.256805 101.3727 4.984 1 

440 120.5571 32.04662 2.29659 92.85284 9.829 1 

462 129.7608 38.39526 2.176265 93.98495 4.984 1 

252 134.9082 32.97143 2.265457 92.06599 4.305 1 

661 110.3771 29.9864 2.245051 56.77773 38.888 2 

628 94.20476 31.01351 2.244652 69.63533 45.213 2 

621 100.1302 28.73366 2.228544 61.22003 66.728 2 

392 104.1054 29.8592 2.22488 65.2195 49.2 2 

426 89.4013 29.24075 2.28078 81.11826 39.253 2 

391 115.2215 29.44463 2.193363 67.0258 24.766 3 

534 129.3597 40.09695 2.143977 71.84998 68.099 3 

619 127.3185 33.00572 2.105721 55.42553 52.74 3 

352 127.3506 33.68263 2.104538 72.79697 23.696 3 

354 125.9028 33.70022 2.083479 77.45229 26.639 3 

638 107.1057 29.46306 2.247549 58.19688 15.851 4 

639 101.8406 36.56046 2.260366 58.03394 19.848 4 

632 107.1129 32.45584 2.244591 55.58301 28.541 4 

636 108.4648 33.97344 2.210082 63.91458 18.279 4 

606 116.9149 32.27015 2.152229 64.24762 16.201 4 

Notes: 1- mudstone;2- conglomeratic sandstone;3- Fine-grained sandstone; 4- medium-grained sandstone 
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Table 3: Test samples. 

Depth/m 

Logging response 
lithology 

actual 

GA-SVM 

predict 

BPNN 

predict 
AC 

(μs·mିଵ) 

CNL 

(%) 

DEN(g·cmିଵ) GR 

(API) 

RXO(Ω·m) 

465 147.3778 34.18616 2.169473 90.90363 7.037 1 1 1 

351 108.135 33.05614 2.24345 75.90002 7.415 1 2 3 

352 117.9064 34.04599 2.253468 91.61892 8.069 1 1 2 

386 121.4397 33.79903 2.221189 87.09536 7.416 1 1 1 

428 69.20372 18.59011 2.404825 102.4146 67.4 2 2 2 

426 72.99623 18.92969 2.369991 96.1902 57.358 2 2 1 

358 125.9543 35.29397 2.103536 76.91651 25.319 3 3 4 

350 127.6563 34.53033 2.066431 70.86774 20.841 3 3 3 

606 117.9348 34.07982 2.171098 73.35375 14.199 4 4 4 

634 116.7718 33.65931 2.160615 78.34065 18.599 4 3 1 

604 104.3699 33.76941 2.263324 61.09675 18.379 4 4 2 

608 109.3916 33.06219 2.285016 73.96328 18.728 4 2 4 

4    RESULTS AND DISCUSSION 

The quality of the SVM classification largely 
depends on the choice of the parameter σ and 
penalty factor C of the kernel function. Choosing 
unreasonable parameters will directly affect the 
prediction accuracy. Therefore, in this paper, based 
on the selection of a radial basis kernel function as 
the kernel function used by the SVM, the optimal 
parameter value (23.679, 4.4169) is calculated by 
the genetic algorithm. 

After obtaining the optimized kernel function 
parameter σ and penalty factor C, 200 lithologic 
samples are trained as learning sets (Table 2) to 
obtain a corresponding SVM model, while 74 
lithologic samples are used as test sets to test the 
lithologic identification model, the results of which 
are compared with the BP neural network method. 
Table 3 lists the input parameters and identification 
results of some of the test samples. Table 4 shows 
the classification of all the test samples. 

Table 3 and Table 4 show that the GA-SVM 
method provides good lithologic identification 
results. Compared with the BP neural network 
model, which trained with the same samples, the 
accuracy of the GA-SVM result is higher. The GA-
SVM method correctly identified 63 samples from 
all the test samples, for an accuracy rate of 85.1%, 

while the identification accuracy of the BP neural 
network was only 60.8%. 

Table 4: Accuracy of SVM lithology identification. 

Lithologysamples GA-

SVM

BPNN GA-SVM 

accuracy 

/% 

BPNN 

accuracy 

/% 

1 15 12 10 80 66.6 

2 22 18 13 81.8 59 

3 20 19 14 95 70 

4 17 14 8 82.3 47 

total 74 63 45 85.1 60.8 

5    CONCLUSIONS 

The formation environment of conglomeratic 
sandstone is complex: major structural and 
compositional changes occur, and the heterogeneity 
is strong. This environment creates challenges for 
the identification conglomeratic sandstone lithology. 
To reduce the multiplicity of corresponding relations 
between logging responses and lithologiesy, we 
identify the correlation between conventional 
logging data and the lithology of a conglomeratic 
sandstone.  
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By using the classification advantage of support 
vector machines for nonlinear problems with small 
samples sizes, we can precisely categorize the 
lithology of the conglomeratic sandstone . 

The genetic algorithm can effectively search for 
the optimal parameters of support vector machines. 
Using the genetic algorithm to build the support 
vector machine lithology identification model, the 
overall prediction rate of the test samples is 85.1%, 
which is better than that using the BP neural 
network.  
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