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Abstract: The use of NoSQL databases has recently been increasing, being Cassandra one of the most popular ones. In 
Cassandra, each table is created to satisfy one query, so, as the same information could be retrieved by several 
queries, this information may be found in several distinct tables. However, the lack of mechanisms to ensure 
the integrity of the data means that the integrity could be broken after a modification of data. In this paper, 
we propose a method for keeping the integrity of the data by using a conceptual model that is directly 
connected to the logical model that represents the Cassandra tables. Our proposal aims to keep the data 
integrity automatically by providing a process that will undertake such maintenance when there is a 
modification of the data in the database. The conceptual model will be used to identify the tables that could 
have inconsistencies and also assist in resolving them. We also apply this approach to a case study where, 
given several insertions of tuples in the conceptual model, we determine what is needed to keep the logical 
integrity. 

1 INTRODUCTION 

Recently, NoSQL databases have been growing in 
importance due to the advantages they provide in the 
processing of big data (Moniruzzaman and Hossain, 
2013). These databases are not meant to replace 
relational databases but instead they are intended as 
alternatives that could achieve better performance in 
some situations (Leavitt, 2010) such as writing and 
reading (Li and Manoharam, 2013). Other studies 
(Cattell, 2011) have claimed that these improved 
results are due to the abandonment of ACID 
constraints. Four types of NoSQL databases have 
been developed without these constraint (Tauro et al., 
2012): those based on key-values like Dynamo, those 
based on documents like MongoDB, those based on 
graphs like Neo4J and those based on columns like 
Cassandra.  

Cassandra is a distributed database developed by 
the Apache Software Foundation (Datastax, 2016). Its 
characteristics are (Han et al., 2011): 1) a very 
flexible scheme where the addition or deletion of 
fields is very convenient; 2) high scalability, so if a 
single element of the cluster fails, it does not affect 
the whole cluster; 3) a query-driven approach in 
which the queries are used to organize the data. This 

last characteristic means that, in general, each 
Cassandra table is designed to satisfy a single query 
(Datastax, 2015). This means that the same 
information could be retrieved in several queries, so 
in each table that satisfies these queries the 
information is repeated. This also implies that the 
model that represents the tables in Cassandra is a 
denormalized model, unlike in relational databases 
where it is a normalized model. 

Cassandra does not have mechanisms to ensure 
the logical integrity of the data, therefore it is needed 
to be kept by the developer (Thottuvaikkatumana, 
2015). This could lead to inconsistencies within the 
data. For example, consider the situation of a 
Cassandra database that stores data relating to authors 
and their books. This database has two tables, one 
created to accomplish the query “books that a given 
author has written” (books_by_author) and another 
one created to accomplish the query “find information 
of a book giving its identifier” (books). Note that the 
information pertaining to a specific book is repeated 
in both tables. Suppose that, during the development 
of a function to insert books in the database, the 
developer forgets to introduce a database statement to 
insert the book in “books_by_author”, producing an 
inconsistency. This example is illustrated in Figure 1: 
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Figure 1: Logical integrity broken. 

As the number of tables in a database increases, 
so too does the difficulty of maintaining the 
consistency. This article approaches this problem, 
proposing a solution based on a conceptual model 
connected to the Cassandra datamodel that 
automatically keeps the integrity of the data. The 
contributions of this paper are as follows: 

1. A method that automatically identifies the 
tables that need maintenance of the integrity 
and proposes how they may be maintained. 

2. An evaluation in a case study of the proposed 
method. 

This paper is organized as follows. In section 2, 
we review the current state of the art. In section 3, we 
describe our approach to keep the logical integrity of 
the data. In section 4, we evaluate the results of 
applying our method to keep the logical integrity in a 
case study. The article finishes in section 5 with the 
conclusions and the proposed future work. 

2 RELATED WORK 

Most works that study the integrity of the data are 
focused on the physical integrity of the data 
(Datastax, 2017). This integrity is related to the 
consistency of a row replicated throughout all of the 
replicas in the Cassandra cluster. However, in this 
paper we will treat the problem of the logical 
integrity, which is related to the integrity of the 
information repeated among several table. 

The official team of Cassandra has studied the 
problem of keeping the data integrity by developing 
the feature “Materialized views” (Datastax, 2015). 
The “Materialized views” are table-like structures 
where the denormalization is handled automatically 
on the server-side, ensuring the integrity. Usually, in 
Cassandra data modelling, a table is created to satisfy 
one specified query. However, using this feature, the 
created tables (named base tables) are meant to store 
data that will be queried in several ways through 
Materialized Views, which are query-only tables. 
Every modification of the data in a base table is 
reflected in the materialized views, it not being 
possible to write data directly in a materialized view. 
Each materialized view is synchronized with only one 
base table, not being possible to have information 

from more than one table, unlike what happens in the 
materialized views of the relational databases. This 
means that if there is a query that involves 
information stored in more than one base table, it is 
not possible to use Materialized Views to satisfy it, 
and the creation of a normal table is required. 

Related to the aforementioned problem is the 
absence of Join operations in Cassandra. A study 
(Peter, 2015) has researched the possibility of adding 
the Join operation in Cassandra. This work achieves 
its objective of implementing the join by modifying 
the source code of Cassandra 2.0 but it still has room 
for improvement regarding the performance of the 
implementation.  

There have also been studies (Chebotko et al., 
2015) that have given a great deal of importance to 
the conceptual model, such as where a new 
methodology for Cassandra data modelling is 
proposed that uses a conceptual model to create the 
Cassandra tables in addition to the queries. This is 
achieved by the definition of a set of data modelling 
principles, mapping rules, and mappings. Regarding 
our problem, the work in (Chebotko et al., 2015) 
introduces an interesting concept: the use of a 
conceptual model that is directly related to the tables 
of a Cassandra database, an idea that we will use for 
our approach. 

The conceptual model is the core of the previous 
work (Chebotko et al, 2015) but it is unusual to have 
such a model in NoSQL databases. Regarding this, 
there have been studies that propose the generation of 
a conceptual model based on the database tables. One 
of these works (Ruiz et al., 2015) is focused on 
generating schemas for document databases but 
claims that the research could be used for other types 
of NoSQL databases. These schemas are obtained 
through a process that, starting from the original 
database, generates a set of entities, each one 
representing the information stored in the database. 
The final product is a normalized schema that 
represents the different entities and relationships. 

3 KEEPING THE LOGICAL 
INTEGRITY 

In Cassandra there is no mechanism to ensure the 
integrity of the data, and therefore it must be 
controlled in the client application that works with the 
Cassandra database. We have identified two types of 
modifications that can break the logical integrity: 
 Modifications of the logical model:  When 

there is a modification regarding the tables, 
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such as the creation of a new table or the 
addition of columns to an existing table. In 
this case, the data integrity is broken because 
the information that the new columns must 
store may already be found in the database. 

 Modification of data: We define a 
modification of data as the change of the 
values stored in a row in the logical model or 
the change of the values of a tuple in the 
conceptual model. After a modification of 
data in a table, an inconsistency is produced 
if the modified data has functional depen-
dencies with other data stored in other tables. 

In this work we will focus on the modifications of 
data.  

3.1 Complete Approach 

Firstly, we intend to identify a way to detect the tables 
where the logical integrity can be broken with a given 
modification of data. To address this problem, we have 
decided to use a conceptual model that has a connec-
tion with the logical model (model of the Cassandra 
tables). This connection (Chebotko et al, 2015) 
provides us a mapping where each column of the 
logical model is mapped to one attribute of the concept-
ual model and one attribute is mapped from none to 
several columns. We will use this mapping for our 
work to determine in which tables an attribute is stored. 
This is done through a static analysis of both models.  

Our approach is divided in two: the top-down 
approach and the bottom-up approach. In the top-
down approach, given a modification of data in the 
conceptual model (insertion, update or deletion of a 
tuple), we identify in the logical model the insertions, 
updates and deletions of rows we must do to keep the 
data integrity and how they must be done. In the 
bottom-up approach, given a modification of data in 
the logical model (insertion, update or deletion of a 
row), we identify in the conceptual model, through 
the use of the mapping attribute-column, the 
attributes mapped to the columns of the row. Finally,  

we determine what modification of data are 
equivalent in the conceptual model (insertion, update 
or deletion of a tuple). Note that the result of the 
bottom-up approach, a modification of data in the 
conceptual model, is the entry of the top-down 
approach. Therefore we can combine both approaches 
to provide an automatization for keeping the data 
integrity after a modification of data in the logical 
model. This combination between both approaches is 
illustrated in Figure 2: 

Conceptual model 
(normalized)

Mapping

Logical model 
(denormalized)

Bottom-up 
after a 

modification of 
data in the 

logical model

Top-down after a 
modification of 

data in the 
conceptual 

model

 

Figure 2: Approaches top-down and bottom-up combined. 

In this work, we will detail the process of the top-
down approach in the next section through an 
example. 

3.2 Top-down Approach 

The case in Figure 1 is an example of this approach. 
In addition to the tables “books_by_author” and 
“books” we also have a conceptual model with the 
entities “Author” and “Book” where an author has 
written several books. Suppose that we insert a tuple 
with the information of a book and the author who 
wrote it (step 1). Then, we detect, by means of 
attribute-column mapping (step 2), that in both table 
there are columns that correspond with the attributes 
of the inserted tuple (step 3). In order to keep the data 
integrity, we determine (step 4) that we need to insert 
in each table a row containing the appropriate 
information from the tuple. Finally (step 5) in order 
to automate the approach, we translate these 
insertions to CQL statements (Apache Software 
Foundation, 2017). This is illustrated in Figure 3. 
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Figure 3: Top-down approach. 
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We have analysed this approach and in section 4 
we show the results of the experimentation of applying 
this approach for several insertions of tuples. 

4 EVALUATION 

This case study (Chebotko et al, 2015) is about a data 
library portal. Its conceptual model contains 4 entities 
and 5 relationships displayed in Figure 4. On the other 
hand, the logical model contains 9 tables and it is 
displayed in Figure 5. We have evaluated 126 
insertions of tuples in the different entities and 
relationships of this conceptual model with the 
objective of determining what CQL operations 

(INSERT, UPDATE or SELECT) are needed to keep 
the integrity. 

The tuples inserted always contain values 
assigned for the primary key of the entity or, in the 
case of the relationships, the primary keys of both 
entities related. Optionally, the tuples can also contain 
values assigned for the attributes that are not key. For 
each entity and relationship we have inserted several 
tuples, where each one contains different attributes 
with assigned value. In Table 1 a summary of these 
insertions is displayed: the number of insertions of 
tuples evaluated (in entities and relationships) and 
total, average and maximum number of operations 
INSERT, UPDATE and SELECT operations needed 
to keep the logical integrity in the database. 
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Figure 4: Conceptual model of the case study. 
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Figure 5: Logical model of the case study. 
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Table 1: Summary of the results for keeping the data integrity for the inserted tuples. 

  Operation INSERT Operation UPDATE Operation SELECT 
Entiity/Relationships Number of inserted tuples Total Average Maximum Total Average Maximum Total Average Maximum

Artifact  4 12 3 3 8 2 2 18 4,5 9 
Review 4 4 1 1 8 2 2 10 2,5 4 

User 4 0 0 0 0 0 0 0 0 0 
Venue  4 0 0 0 0 0 0 0 0 0 

Features 20 60 3 3 40 2 2 90 4.5 9 
LikeA 25 135 5.4 6 40 1.6 2 215 8.6 16 
LikeV 25 25 1 1 0 0 0 39 1.56 3 
Posts 20 20 1 1 40 2 2 50 2.5 4 
Rates 20 68 3.4 4 40 2 2 110 5.5 13 
Total 126 324 2.57 6 176 1.4 2 532 4.2 16 

 

Figure 6: Inverse Relationship between SELECT operations and the number of attribute with assigned value. 

The results displayed in Table 1 show that in 
general a denormalized datamodel requires to 
determine several operations to keep the logical 
integrity after a single insertion of a tuple in the 
conceptual model. For 126 insertions in the 
conceptual model, we needed 324 INSERT 
operations, 176 UPDATE operations and 532 
SELECT operations to keep the integrity in the 
logical model. The particular cases of the insertions 
of tuples of Venue and User, where there are no 
operations needed, is caused because we cannot insert 
the information of these tuples alone in any table of 
the logical model. In order to insert the information 
of a Venue or a User it needs to be inserted alongside 
the information of relationships such as LikesV or 
LikesA, respectively. 

We have also detected an inverse relationship 
between the number of SELECT operations and the 
number of attributes with assigned value in the tuple. 
The tuples with the information of entities can contain 
up to 3 non-key attributes with assigned values while 
the ones with information of relationships contain up 
to 6 non-key attributes with assigned values (the 
combination of the 3 attributes of each entity of the 
relationship). This inverse relationship is shown in 

Figure 6 where each bar represents the average of 
SELECT operations needed for the number of 
attributes with assigned value in the tuple. We 
observe how the average of SELECT operations 
decreases as the number of attributes with assigned 
value increases. 

5 CONCLUSIONS 

Nowadays, the use of NoSQL databases is increasing 
due to the advantages that they give to the processing 
of big data. When we work with NoSQL databases, 
we need to use models due to the complexity of the 
data. In this work we have used two models, the 
conceptual model and the logical model, for our 
objective of keeping the consistency in Cassandra. 
Although Cassandra lacks mechanisms to preserve 
the integrity of the data, we have proposed in this 
article a method that automatically keeps the integrity 
of the data using a conceptual model directly 
connected to the Cassandra data model (logical 
model). We have also observed through 
experimentation that, after an insertion of a tuple, in 
order to keep the integrity in a logical model with 9 
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tables we needed up to 6 INSERT operations and 16 
SELECT. This shows how complex keeping the 
integrity of the data can be and that if the number of 
tables that store the same information increases, the 
complexity of keeping its integrity also increases. 
With our automatized method we ensure the data 
integrity which helps the developer avoiding potential 
defects.  

As future work we want to deepen in the bottom-
up approach. We also want to study how to create 
conceptual models based just in the logical model in 
order that the systems that were not created with a 
conceptual model can also use our method.  
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