
Leveraging Conceptual Data Models for Keeping Cassandra
Database Integrity

Pablo Suárez-Otero, Maria José Suárez-Cabal and Javier Tuya
Computer Science Department, University of Oviedo, Campus de Viesques, Gijón, Spain

Keywords: NoSQL, Conceptual Model, Logical Model, Cassandra, Logical Integrity.

Abstract: The use of NoSQL databases has recently been increasing, being Cassandra one of the most popular ones. In
Cassandra, each table is created to satisfy one query, so, as the same information could be retrieved by several
queries, this information may be found in several distinct tables. However, the lack of mechanisms to ensure
the integrity of the data means that the integrity could be broken after a modification of data. In this paper,
we propose a method for keeping the integrity of the data by using a conceptual model that is directly
connected to the logical model that represents the Cassandra tables. Our proposal aims to keep the data
integrity automatically by providing a process that will undertake such maintenance when there is a
modification of the data in the database. The conceptual model will be used to identify the tables that could
have inconsistencies and also assist in resolving them. We also apply this approach to a case study where,
given several insertions of tuples in the conceptual model, we determine what is needed to keep the logical
integrity.

1 INTRODUCTION

Recently, NoSQL databases have been growing in
importance due to the advantages they provide in the
processing of big data (Moniruzzaman and Hossain,
2013). These databases are not meant to replace
relational databases but instead they are intended as
alternatives that could achieve better performance in
some situations (Leavitt, 2010) such as writing and
reading (Li and Manoharam, 2013). Other studies
(Cattell, 2011) have claimed that these improved
results are due to the abandonment of ACID
constraints. Four types of NoSQL databases have
been developed without these constraint (Tauro et al.,
2012): those based on key-values like Dynamo, those
based on documents like MongoDB, those based on
graphs like Neo4J and those based on columns like
Cassandra.

Cassandra is a distributed database developed by
the Apache Software Foundation (Datastax, 2016). Its
characteristics are (Han et al., 2011): 1) a very
flexible scheme where the addition or deletion of
fields is very convenient; 2) high scalability, so if a
single element of the cluster fails, it does not affect
the whole cluster; 3) a query-driven approach in
which the queries are used to organize the data. This

last characteristic means that, in general, each
Cassandra table is designed to satisfy a single query
(Datastax, 2015). This means that the same
information could be retrieved in several queries, so
in each table that satisfies these queries the
information is repeated. This also implies that the
model that represents the tables in Cassandra is a
denormalized model, unlike in relational databases
where it is a normalized model.

Cassandra does not have mechanisms to ensure
the logical integrity of the data, therefore it is needed
to be kept by the developer (Thottuvaikkatumana,
2015). This could lead to inconsistencies within the
data. For example, consider the situation of a
Cassandra database that stores data relating to authors
and their books. This database has two tables, one
created to accomplish the query “books that a given
author has written” (books_by_author) and another
one created to accomplish the query “find information
of a book giving its identifier” (books). Note that the
information pertaining to a specific book is repeated
in both tables. Suppose that, during the development
of a function to insert books in the database, the
developer forgets to introduce a database statement to
insert the book in “books_by_author”, producing an
inconsistency. This example is illustrated in Figure 1:

398
Suárez-Otero, P., Suárez-Cabal, M. and Tuya, J.
Leveraging Conceptual Data Models for Keeping Cassandra Database Integrity.
DOI: 10.5220/0007236303980403
In Proceedings of the 14th International Conference on Web Information Systems and Technologies (WEBIST 2018), pages 398-403
ISBN: 978-989-758-324-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Insert Book

Books
Book_Id
Book_Title

Books_by_author
Author_Id
Book_Id

1 Inconsistency
produced: Book was

not inserted in
Books_by_author

2

Figure 1: Logical integrity broken.

As the number of tables in a database increases,
so too does the difficulty of maintaining the
consistency. This article approaches this problem,
proposing a solution based on a conceptual model
connected to the Cassandra datamodel that
automatically keeps the integrity of the data. The
contributions of this paper are as follows:

1. A method that automatically identifies the
tables that need maintenance of the integrity
and proposes how they may be maintained.

2. An evaluation in a case study of the proposed
method.

This paper is organized as follows. In section 2,
we review the current state of the art. In section 3, we
describe our approach to keep the logical integrity of
the data. In section 4, we evaluate the results of
applying our method to keep the logical integrity in a
case study. The article finishes in section 5 with the
conclusions and the proposed future work.

2 RELATED WORK

Most works that study the integrity of the data are
focused on the physical integrity of the data
(Datastax, 2017). This integrity is related to the
consistency of a row replicated throughout all of the
replicas in the Cassandra cluster. However, in this
paper we will treat the problem of the logical
integrity, which is related to the integrity of the
information repeated among several table.

The official team of Cassandra has studied the
problem of keeping the data integrity by developing
the feature “Materialized views” (Datastax, 2015).
The “Materialized views” are table-like structures
where the denormalization is handled automatically
on the server-side, ensuring the integrity. Usually, in
Cassandra data modelling, a table is created to satisfy
one specified query. However, using this feature, the
created tables (named base tables) are meant to store
data that will be queried in several ways through
Materialized Views, which are query-only tables.
Every modification of the data in a base table is
reflected in the materialized views, it not being
possible to write data directly in a materialized view.
Each materialized view is synchronized with only one
base table, not being possible to have information

from more than one table, unlike what happens in the
materialized views of the relational databases. This
means that if there is a query that involves
information stored in more than one base table, it is
not possible to use Materialized Views to satisfy it,
and the creation of a normal table is required.

Related to the aforementioned problem is the
absence of Join operations in Cassandra. A study
(Peter, 2015) has researched the possibility of adding
the Join operation in Cassandra. This work achieves
its objective of implementing the join by modifying
the source code of Cassandra 2.0 but it still has room
for improvement regarding the performance of the
implementation.

There have also been studies (Chebotko et al.,
2015) that have given a great deal of importance to
the conceptual model, such as where a new
methodology for Cassandra data modelling is
proposed that uses a conceptual model to create the
Cassandra tables in addition to the queries. This is
achieved by the definition of a set of data modelling
principles, mapping rules, and mappings. Regarding
our problem, the work in (Chebotko et al., 2015)
introduces an interesting concept: the use of a
conceptual model that is directly related to the tables
of a Cassandra database, an idea that we will use for
our approach.

The conceptual model is the core of the previous
work (Chebotko et al, 2015) but it is unusual to have
such a model in NoSQL databases. Regarding this,
there have been studies that propose the generation of
a conceptual model based on the database tables. One
of these works (Ruiz et al., 2015) is focused on
generating schemas for document databases but
claims that the research could be used for other types
of NoSQL databases. These schemas are obtained
through a process that, starting from the original
database, generates a set of entities, each one
representing the information stored in the database.
The final product is a normalized schema that
represents the different entities and relationships.

3 KEEPING THE LOGICAL
INTEGRITY

In Cassandra there is no mechanism to ensure the
integrity of the data, and therefore it must be
controlled in the client application that works with the
Cassandra database. We have identified two types of
modifications that can break the logical integrity:
 Modifications of the logical model: When

there is a modification regarding the tables,

Leveraging Conceptual Data Models for Keeping Cassandra Database Integrity

399

such as the creation of a new table or the
addition of columns to an existing table. In
this case, the data integrity is broken because
the information that the new columns must
store may already be found in the database.

 Modification of data: We define a
modification of data as the change of the
values stored in a row in the logical model or
the change of the values of a tuple in the
conceptual model. After a modification of
data in a table, an inconsistency is produced
if the modified data has functional depen-
dencies with other data stored in other tables.

In this work we will focus on the modifications of
data.

3.1 Complete Approach

Firstly, we intend to identify a way to detect the tables
where the logical integrity can be broken with a given
modification of data. To address this problem, we have
decided to use a conceptual model that has a connec-
tion with the logical model (model of the Cassandra
tables). This connection (Chebotko et al, 2015)
provides us a mapping where each column of the
logical model is mapped to one attribute of the concept-
ual model and one attribute is mapped from none to
several columns. We will use this mapping for our
work to determine in which tables an attribute is stored.
This is done through a static analysis of both models.

Our approach is divided in two: the top-down
approach and the bottom-up approach. In the top-
down approach, given a modification of data in the
conceptual model (insertion, update or deletion of a
tuple), we identify in the logical model the insertions,
updates and deletions of rows we must do to keep the
data integrity and how they must be done. In the
bottom-up approach, given a modification of data in
the logical model (insertion, update or deletion of a
row), we identify in the conceptual model, through
the use of the mapping attribute-column, the
attributes mapped to the columns of the row. Finally,

we determine what modification of data are
equivalent in the conceptual model (insertion, update
or deletion of a tuple). Note that the result of the
bottom-up approach, a modification of data in the
conceptual model, is the entry of the top-down
approach. Therefore we can combine both approaches
to provide an automatization for keeping the data
integrity after a modification of data in the logical
model. This combination between both approaches is
illustrated in Figure 2:

Conceptual model
(normalized)

Mapping

Logical model
(denormalized)

Bottom-up
after a

modification of
data in the

logical model

Top-down after a
modification of

data in the
conceptual

model

Figure 2: Approaches top-down and bottom-up combined.

In this work, we will detail the process of the top-
down approach in the next section through an
example.

3.2 Top-down Approach

The case in Figure 1 is an example of this approach.
In addition to the tables “books_by_author” and
“books” we also have a conceptual model with the
entities “Author” and “Book” where an author has
written several books. Suppose that we insert a tuple
with the information of a book and the author who
wrote it (step 1). Then, we detect, by means of
attribute-column mapping (step 2), that in both table
there are columns that correspond with the attributes
of the inserted tuple (step 3). In order to keep the data
integrity, we determine (step 4) that we need to insert
in each table a row containing the appropriate
information from the tuple. Finally (step 5) in order
to automate the approach, we translate these
insertions to CQL statements (Apache Software
Foundation, 2017). This is illustrated in Figure 3.

3

Conceptual
Model

Logical
model

(Cassandra)

Author
Id
name

Book
Id
Title

Books_by_Author
Author_Id
Book_Id

Mapping
Attribute/

Column

Insert Book: Author.Id=’AU001', Book.Id=’LIB001', Book.Title=’TI001'

PK PK

Attribute Column
Book.Id
Book.Title

Book_Id
Book_Title

Author.Id
Author.name

Attribute Column
Author_Id
Author_name

2

3 INSERT INTO Books_by_Author (Author_Id,
Book_Id) VALUES (‘AU001’, ‘LIB001’);
INSERT INTO Books (Book_Id, Book_Title) VALUES
(‘LIB001’, ‘TI001’);

54

We need to insert the id and title of the
book in ‘Books’ and the id of the book and
its author in ‘Books_by_Author”

Writes1 n

2

3

Book_Id
Book_Title

Books

11

Figure 3: Top-down approach.

APMDWE 2018 - 3rd International Special Session on Advanced practices in Model-Driven Web Engineering

400

We have analysed this approach and in section 4
we show the results of the experimentation of applying
this approach for several insertions of tuples.

4 EVALUATION

This case study (Chebotko et al, 2015) is about a data
library portal. Its conceptual model contains 4 entities
and 5 relationships displayed in Figure 4. On the other
hand, the logical model contains 9 tables and it is
displayed in Figure 5. We have evaluated 126
insertions of tuples in the different entities and
relationships of this conceptual model with the
objective of determining what CQL operations

(INSERT, UPDATE or SELECT) are needed to keep
the integrity.

The tuples inserted always contain values
assigned for the primary key of the entity or, in the
case of the relationships, the primary keys of both
entities related. Optionally, the tuples can also contain
values assigned for the attributes that are not key. For
each entity and relationship we have inserted several
tuples, where each one contains different attributes
with assigned value. In Table 1 a summary of these
insertions is displayed: the number of insertions of
tuples evaluated (in entities and relationships) and
total, average and maximum number of operations
INSERT, UPDATE and SELECT operations needed
to keep the logical integrity in the database.

User

ID Name

Email

Areas_of_expertise

Review

ID Body

Title

Rating

1

n

Venue

Name Country Topics

Year

Artifact

ID Title

Keywords

Authors

1

n

Homepage

1n

LikesV

LikesA

n

m

n m

Posts

Rates

Features

Figure 4: Conceptual model of the case study.

Venue_name
Venue_year
Artifact_id
Artifact_title
Artifact_authors
Artifact_keywords

Artifact_authors
Venue_year
Artifact_id
Artifact_title
Artifact_keywords
Venue_name

Artifact_id
User_id
User_name
User_email
User_areas_of_expertise

Artifact_id
User_areas_of_expertise
User_id
User_name
User_email

Artifact_id
Num_ratings
Sum_ratings

User_id
Venue_name
Venue_year
Venue_country
Venue_homepage
Venue_topics

User_id
Venue_year
Artifact_id
Artifact_title
Artifact_authors
Venue_name

User_id
Review_rating
Review_id
Review_body
Artifact_id
Artifact_title

Artifact_id
Artifact_title
Artifact_authors
Artifact_keywords
Venue_name
Venue_year

K
K
C

K
C
C

K
C
C

K
C

K
C
C

K

K
C
C

K
C
C

K
++
++

Figure 5: Logical model of the case study.

Leveraging Conceptual Data Models for Keeping Cassandra Database Integrity

401

Table 1: Summary of the results for keeping the data integrity for the inserted tuples.

 Operation INSERT Operation UPDATE Operation SELECT
Entiity/Relationships Number of inserted tuples Total Average Maximum Total Average Maximum Total Average Maximum

Artifact 4 12 3 3 8 2 2 18 4,5 9
Review 4 4 1 1 8 2 2 10 2,5 4

User 4 0 0 0 0 0 0 0 0 0
Venue 4 0 0 0 0 0 0 0 0 0

Features 20 60 3 3 40 2 2 90 4.5 9
LikeA 25 135 5.4 6 40 1.6 2 215 8.6 16
LikeV 25 25 1 1 0 0 0 39 1.56 3
Posts 20 20 1 1 40 2 2 50 2.5 4
Rates 20 68 3.4 4 40 2 2 110 5.5 13
Total 126 324 2.57 6 176 1.4 2 532 4.2 16

Figure 6: Inverse Relationship between SELECT operations and the number of attribute with assigned value.

The results displayed in Table 1 show that in
general a denormalized datamodel requires to
determine several operations to keep the logical
integrity after a single insertion of a tuple in the
conceptual model. For 126 insertions in the
conceptual model, we needed 324 INSERT
operations, 176 UPDATE operations and 532
SELECT operations to keep the integrity in the
logical model. The particular cases of the insertions
of tuples of Venue and User, where there are no
operations needed, is caused because we cannot insert
the information of these tuples alone in any table of
the logical model. In order to insert the information
of a Venue or a User it needs to be inserted alongside
the information of relationships such as LikesV or
LikesA, respectively.

We have also detected an inverse relationship
between the number of SELECT operations and the
number of attributes with assigned value in the tuple.
The tuples with the information of entities can contain
up to 3 non-key attributes with assigned values while
the ones with information of relationships contain up
to 6 non-key attributes with assigned values (the
combination of the 3 attributes of each entity of the
relationship). This inverse relationship is shown in

Figure 6 where each bar represents the average of
SELECT operations needed for the number of
attributes with assigned value in the tuple. We
observe how the average of SELECT operations
decreases as the number of attributes with assigned
value increases.

5 CONCLUSIONS

Nowadays, the use of NoSQL databases is increasing
due to the advantages that they give to the processing
of big data. When we work with NoSQL databases,
we need to use models due to the complexity of the
data. In this work we have used two models, the
conceptual model and the logical model, for our
objective of keeping the consistency in Cassandra.
Although Cassandra lacks mechanisms to preserve
the integrity of the data, we have proposed in this
article a method that automatically keeps the integrity
of the data using a conceptual model directly
connected to the Cassandra data model (logical
model). We have also observed through
experimentation that, after an insertion of a tuple, in
order to keep the integrity in a logical model with 9

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6

Av
er

ag
e

of
 S

EL
EC

T
op

er
at

io
ns

Number of attributes with assigned value

Artifact
Features
LikeA
LikeV
Posts
Rates
Review

APMDWE 2018 - 3rd International Special Session on Advanced practices in Model-Driven Web Engineering

402

tables we needed up to 6 INSERT operations and 16
SELECT. This shows how complex keeping the
integrity of the data can be and that if the number of
tables that store the same information increases, the
complexity of keeping its integrity also increases.
With our automatized method we ensure the data
integrity which helps the developer avoiding potential
defects.

As future work we want to deepen in the bottom-
up approach. We also want to study how to create
conceptual models based just in the logical model in
order that the systems that were not created with a
conceptual model can also use our method.

ACKNOWLEDGMENTS

This work was supported by the projects
TESTEAMOS (TIN2016-76956-C3-1-R) and
PERTEST (TIN2013-46928-C3-1-R) of the Ministry
of Economy and Competitiveness, Spain. It has also
been supported by the project GRUPIN14-007 of the
Principality of Asturias and supported by the ERDF

REFERENCES

Apache Software Foundation. (2017) The Cassandra Query
Language (CQL). [online]. Available at:
http:// cassandra.apache.org/doc/latest/cql/ [Accessed
19-07-2018]

Cattell, R. (2011). Scalable SQL and NoSQL data stores.
ACM Sigmod Record, 39, 4 (December 2010)

Chebotko. A, Kashlev, A., Lu, S. (2015). A Big Data
Modeling Methodology for Apache Cassandra. In
IEEE International Congress on Big Data (BigData'15),
238-245, New York, USA, 2015.

Datastax. (2015) Basic Rules of Cassandra Data Modeling.
[online] Available at https://www.datastax.com/dev
/blog/basic-rules-of-cassandra-data-modeling [Acces-
sed 19-07-2018]

Datastax (2015). New in Cassandra: Materialized Views.
[online] Available at: https://www.datastax.com/dev/
blog/new-in-cassandra-3-0-materialized-views [Acces-
sed 19-07-2018]

Datastax. (2016). Apache Cassandra. [online]. Avialable
at: http://cassandra.apache.org/ [Accesed 19-07-2018]

Datastax. (2017) Data consistency [online]. Available at
https://docs.datastax.com/en/cassandra/3.0/cassandra/d
ml/dmlAboutDataConsistency.html [Accessed 19-07-
2018]

Han, J., Haihong, E., Le, G., Du, J. (2011). Survey on
NoSQL database. In Pervasive computing and
applications (ICPCA), 2011 6th international
conference on (pp. 363-366). IEEE.

Leavitt, N. (2010). Will NoSQL databases live up to their
promise?. Computer, (February 2010), 43, 2.

Li, Y. & Manoharan, S. (2013). A performance comparison
of SQL and NoSQL databases. In Communications,
computers and signal processing, 2013 IEEE pacific
rim conference on (PACRIM ‘13), IEEE, 2013. p. 15-
19

Moniruzzaman, A. B. M., Hossain, S. A. (2013). Nosql
database: New era of databases for big data analytics-
classification, characteristics and comparison.

Peter. C. (2015). Supporting the Join Operation in a NoSQL
System. Master’s thesis. Norwegian university of
Science and Technology, Norway

Rajanarayanan Thottuvaikkatumana. (2015). Cassandra
Design Patterns, second edition, ed. Packt Publishing
Ltd

Ruiz, D. S., Morales, S. F., Molina, J. G. (2015). Inferring
versioned schemas from NoSQL databases and its
applications. In International Conference on
Conceptual Modeling (ER 2015), 467-480. Springer,
Cham.

Tauro, C. J., Aravindh, S., Shreeharsha, A. B. (2012).
Comparative study of the new generation, agile,
scalable, high performance NOSQL databases.
International Journal of Computer Applications,
48(20), 1-4.

Leveraging Conceptual Data Models for Keeping Cassandra Database Integrity

403

