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Abstract: The collapse of infrastructures is very often a complicating factor for the early emergency actuations after a 
disaster. A proper plan to better cover the needs of the affected people within the disaster area while 
maintaining life-saving relief operations is mandatory hence. In this paper, we use a drone for flying over a 
set of difficult-to-access locations for imaging issues to get information to build a risk assessment as the 
earliest stage of the emergency operations. While the drone provides the flexibility required to visit 
subsequently a sort of isolated locations, it needs a commando vehicle in ground for (i) monitoring the 
deployment of operations and (ii) being a recharging station where the drone gets fresh batteries. This work 
proposes a decision-making process to plan the mission, which is composed by the ground vehicle stopping 
points and the sequence of locations visited for each drone route. We propose a Genetic Algorithm (GA) 
which has proven to be helpful in finding good solutions in short computing times. We provide experimental 
analysis on the factors effecting the performance of the output solutions, around an illustrative test instance. 
Results show the applicability of these techniques for providing proper solutions to the studied problem. 

1 INTRODUCTION 

The collapse of infrastructures is very often a 
complicating factor for the emergency actuations 
after a disaster. In the case of developing countries, 
this leads to the appearance of isolated areas to be 
provided with first healthcare aid. For instance, it is 
sometimes necessary to send blood supplies to the 
injured in their spots instead of bringing them to the 
hospitals for blood infusions (Wen et al., 2016). In 
view of the lack of trained pilots as well as helicopters 
and land-based local personnel in the disaster areas 
(Rabta et al., 2018), humanitarian organizations are 
more and more incorporating Unmanned Aerial 
Vehicles (UAVs) or drones in their supply of life-
saving commodities such as blood (Wen et al., 2016) 
or pharmaceuticals.  

By using UAVs, they can also get a quick and 
flexible access to certain locations of interest, aiming 
at collecting crucial information for the ulterior 
efficient development of the emergency mission 
itself. Aside from overcoming the accessibility issues, 
UAVs can be useful for reducing the worker exposure 

to danger (e.g. in structural integrity assessment after 
an earthquake or in gauging radiation levels in a 
nuclear accident (Greenwood, 2015)). 

The maximal operation time or endurance for an 
UAV depends on a variety of factors, such as the type 
of drone (fixed wing vs. rotorcraft), the flying altitude 
(e.g., propellers of rotor-crafts must rotate faster at 
higher altitudes because of lower air density), the 
weather conditions and obviously, the weight of the 
UAV. 

In this work, we propose using a UAV consisting 
of a multirotor system that will be operated with 
battery swaps to overcome the endurance limitation. 
The UAV will fly over a set of challenging locations 
for imaging them with the purpose of collecting 
information to make a risk assessment as the earliest 
stage of the emergency operations. We will suppose 
the UAV is equipped to acquire the needed images of 
the difficult-to-access locations, although this 
research focuses not in the imagery itself, but in the 
optimization of the completion time for the quick 
recognisee of the target locations. This differs from 
other reported studies in the emergency literature 
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where the challenge is in getting the consecutive 
overlapping of aerial images to build an up-to-date 
map of a wide area (Qi et al., 2016). We are more 
interested in analysing the combination of UAVs and 
alternative means of transport in difficult-to-access 
areas, which with certain exceptions (Mosterman et 
al., 2014), (Chowdhury et al., 2017), remains 
relatively unexplored. 

2 PROBLEM DESCRIPTION 

The UAV provides us with the flexibility required to 
visit subsequently a subset of locations (namely, a 
route), although for practical convenience, an 
individual would be on charge of monitoring and 
controlling the flight operations. Thus, we assume 
that a ground vehicle (GV) will act as a commando 
vehicle. 

The number of target locations to visit on each 
flight is clearly limited to the capacity (power) of the 
batteries in the UAV. Our assumption is that the GV 
will further play the role of recharging station, so that 
at the end of each of its sorties the UAV will land on 
it for battery swaps. Aside from being conditioned by 
the total weight on board (see Figure 1 for an example 
of an energy consumption pattern), it is noticeable 
that the number of locations that the UAV is able to 
visit on each sortie is also limited because of the 
capacity of the data storage device used for recording 
the imagery task. 

Our problem can shortly be described as how best 
defining the routing planning for the tandem UAV-
GV used to deploy the recognisee task. 

 

 

Figure 1: Power pattern in an hexacopter UAV, 
approximately linear with the total load on board (Source: 
(Dorling et al.,2017)). 

In Figure 2, we sketch one of the flight routes of 
our  UAV  in the studied scenario. As  a first approxi- 

mation to the constrained freedom of movements of 
the GV in the disaster area, our assumption is that the 
GV just moves along a straight line between two 
points. 

Observe that the route consists of the UAV’s take-
off from the GV, its visit to a subset of the planned 
locations (circles) and its flight to intercept the GV 
trip with the purpose of landing on it and swapping its 
batteries. In the while, the GV has been moving along 
the practical road (between rectangles). 

 

 

Figure 2: Target Scenario: UAV and GV moves separately. 
The dashed lines represent fly paths for UAV. 

In spite of the sketched example, it is possible that 
a launch and a rendezvous of the UAV occurs at the 
same point. Namely, the GV is allowed to stay at a 
position for a time while the UAV complete a route 
visiting a variety of sites, if the optimization analysis 
found it convenient for the general objective of 
minimizing the time to accomplish the whole task. 
This differs from many of the tandem UAV-GV 
approaches in the literature, which mainly turn 
around the commercial supply chain context with a 
last-mile delivery based on UAVs. There are very few 
works considering UAV load capacity greater than 
one (Luo, et al., 2017), (Rahman, 2017), thereby more 
than one parcel allowed for serving a certain 
customer. The fact that the GV can move the UAV 
between two deployment locations such that it does 
not spend any energy is a feature that is sometimes 
considered in such a literature. For instance, (Mathew 
et al., 2015) assume the UAV travelling through a 
street network joint to a truck as GV till the tandem 
gets nearby a customer’s doorstep, when the UAV fly 
to deliver parcels one customer at a time. Differently, 
(Ha et al., 2018) allows UAV’s route comprised of 
several customers, excluding the possibility to have a 
launch and rendezvous in the same point though. The 
latter is allowed in (Mathew et al., 2015) and in the 

IJCCI 2018 - 10th International Joint Conference on Computational Intelligence

290



 

closely related work by (Bin Othman et al., 2017), 
although none of them considers that the UAV can 
visit a set of customers in a single flight mission, as is 
required in our scenario. Nevertheless, the last three 
referenced works apply a Travelling Salesman 
Problem with Drone (TSP-D) approach that is 
relevant to our research. The name TSP with drone is 
first used in (Agatz et al., 2016) referring to the 
problem in which a drone helps a traditional transport 
system like a truck or a van in the delivery of goods. 

3 PLANNING DECISIONS 

The proposed decision-making process to plan our 
imagery mission covering all the difficult-to-access 
locations would provide the following: 
 The GV stopping points, with the arriving time 

and for how long the GV stays at it.  
 The sequence of locations visited for each UAV’s 

route, the start point for every route –i.e. the point 
in take-off- and its landing point.  

 The details of the hitch and ride of the UAV over 
the GV (namely, when the UAV travels carried on 
the GV while it moves from a position to another). 

We approach it using a multiple travelling salesman 
problem (mTSP) baseline: the target locations 
(henceforth referred to as “customers”) which have to 
be visited by a number of routes. According to the 
mTSP terminology (Bektas, 2006), our case study 
concerns to the ‘nonfixed destination case within the 
multiple depot variation of mTSP’, since the UAV 
can either return to the starting GV position (at which 
the UAV taken off) or to a different ending position.  

3.1 Assumptions 

We first introduce the notation for the input 
parameters used within our planning problem: 
 ݉	: Customers to visit; 
 ݀: Euclidean distance between two positions; 

 ܪ: Maximum number of customers that can be 
‘mapped’ before running out of the storage 
memory;  

 ݒ: UAV flight speed; 
 ܸ: GV moving speed; 
 ܧ: Endurance or maximum flight time; 

Then, we list certain assumptions we make to 
simplify our analysis.  

Firstly, that the road travels of GV and the UAV 
flight between locations occur both at constant speed. 
The latter comes from our assumption that the energy 

consumed during the emergency mission is 
approximately the same as that consumed during 
hover (Dorling et al., 2017). 

Secondly, that the extreme points for each route 
are taken from stopping positions for the GV (which 
moves only along the straight road depicted in Figure 
2).  

Thirdly, that we have to manage the 
synchronisation of GV and UAV. Specifically, we 
assume that the GV opening time at a certain position 
occurs always before than the arrival of the UAV 
planned for landing on this position. Namely, that the 
UAV’s end of route is planned so that it does not have 
to wait for the arrival of the GV.  

Finally, notice that the minimum number of routes 
that may arise is ۀܪ/݉ڿ. However, depending on the 
distance of flight paths, the limited endurance ܧ could 
force a route to be serving to less than H customers. 
From it, the worst case is that every route was only 
serving one customer, and hence the valid set of route 
indices are: 

ݎ ∈ Թ ൌ ሼቒ
݉
ܪ
ቓ ,… ,݉ሽ (1)

Although the assumptions considered in this work 
have been considered individually in the literature, it 
is noteworthy the novelty of considering them in a 
joint way in the same problem. 

3.2 Variables 

Let ݔ be a binary variable indicating that the 

route	ݎ visits node ݆ immediately after node ݅. 
Besides, assume that the visiting sequence order of 
the customers served by a certain route is μ. As we 
explain below, these ordering variables are used for 
subtour eliminations. 

Let ݐ be the time at the take-off of the UAV on 
its route ݎ, and ݈ݐ	 the land time for the UAV flight 
from the customer ݅ as the last flight of route ݎ. In 
order to be ready to check endurance, let us consider 
the cumulative flight time of the UAV when arrive at 
the node ݅, denoted  ܶ	, and the total flight time for 
the whole route ݎ accounting for the final flight from 
the last customer ݅ to the GV, denoted ܶ ܶ	. Let 
  be the arrival time for the GV at the	ݐ݊ܫݏ
interception point at which the route ݎ is terminating. 
Finally let	ܩܣܮሺݐ݊ܫݏ	ሻ be the time the GV stay at this 
stopping point. 

3.3 Constraints 

 A route cannot terminate at a customer. 
 Each customer ݅  must be visited just once, belong- 

A Tandem Drone-ground Vehicle for Accessing Isolated Locations for First Aid Emergency Response in Case of Disaster

291



 

ing to only one route. 
 There is exactly one input flight and exactly one 

output flight from every customer visited by a 
route.  

 The endurance ܧ is an upper bound for the 
cumulative flight time variables ܶ	and ܶ ܶ	.  

 The early arrival time for the UAV is treated as a 
hard constraint. Thus, if ݈ݐ	    , then nodeݐ݊ܫݏ
݅ cannot be part of the route ݎ, since the GV is not 
ready at time. 

 The early leave time for the GV from the take-off 
point under study is treated as a hard constraint. If 
ݐ  	ݐ݊ܫݏ   ൯, then the GV is not	ݐ݊ܫݏ൫ܩܣܮ
ready to be the take-off point for the UAV on its 
route	ݎ, since the GV has left. 

 The subtour elimination constraint, which can be 
written using ܪ as follows: 

μ െ μ  ݔܪ  ܪ െ 1,				 
݅, ݆ ∈ ,ܥ ݅ ൏ ݆, ݎ ∈ Թ

(2)

3.4 Methodological Proposal 

Deriving from the previous discussed issues, the 
planning for covering the set of challenging locations 
will emerge from solving a MILP formulation with 
similarities to the non-fixed destination multiple 
depot m-TSP minimizing the Total Mission Time 
(TMT).  

We recall here that the mTSP is a relaxation of the 
Vehicle Routing Problem (VRP), being well-known 
that this problem is NP-Hard (Bektas, 2006). In the 
VRP literature there are many solution approaches 
initially valid for the mTSP, but they may not be 
efficient to the mTSP. 

Precisely, we have focused our research in getting 
quick good solutions to the practical decision problem 
studied. To this aim, we have developed a Genetic 
Algorithm (GA) tailored for our case study. 

4 GA 

A Genetic Algorithm (GA), as proposed by Holland 
(1975), is a population-based metaheuristic inspired 
by the evolution of species. The algorithm starts with 
a population of randomly generated solutions (each 
solution represented by a chromosome), and then 
continues with a procedure to improve the candidate 
solutions obtained generation after generation, by 
using selection, crossing and mutation operators. The 
improvement of the solutions occurs when a lower 
value for a fitness function arises. The variable TMT 
is the fitness to evaluate a solution in our problem, 

evaluated by finding the time when the UAV-GV 
tandem arrives to the end of the road, after all 
customers have been visited. 

In general, a GA is an unconstrained method, 
which usually handles constraints by penalizing the 
objective function. In our case, the constraints not 
included in the calculation of TMT are those relating 
to: 
 The maximum number of customers per route 
 The maximum flight time or endurance, ܧ  
 The time that the UAV is waiting for the GV 

arrival at the rendezvous location. 
 The total moving time of the UAV-GV tandem. 
Next, we detail our GA implementation, where the 
objective function is to minimize the TMT, defined as 
the summation of the cumulative flight time of the 
UAV and cumulative moving time of the UAV-GV 
tandem. 

4.1 Coding Scheme 

The chromosomes in our study are comprised of 3݉ 
genes.  

The first ݉ components are devoted to code the 
position of the take-off point for each route (which 
would be contained in the straight road in Figure 2), 
measured from the origin, ݐݔ. Next ݉ components 
are the distance specification of the selected landing 
points,	ݎݔ. The last ݉ components define the route 
assigned to serve each customer, ݑ. Thus, we code 
each solution according to the following structure: 

 

.݈ݏ ൌ ሼݐݔଵ,… ,ݐݔ ,ଵݎݔ … ,ݎݔ	 ,ଵݑ ሽݑ	… (3)
 

Thus, each chromosome is explicitly representing the 
take-off and rendezvous points for routes and the 
assignment of routes to each customer. Nevertheless, 
other performance details such as the number of 
routes, the time at which the GV arrive at a point and 
the lapse time spent there, implicitly are also 
contained into it.  

4.2 Pseudo-code 

The pseudo-code for the GA can be resumed in 
pseudocode (algorithm 1): 
 

1: generate population of candidate solutions 
2: compute fitness of candidate solutions 
3: while termination criterion is false 
4:   generate children solutions by crossover 
5:   mutate children solutions 
6:   compute fitness of new candidate solutions 
7:   replace parent solutions 
8: return best solution 

Algorithm 1: Pseudo-code of the Genetic Algorithm. 

IJCCI 2018 - 10th International Joint Conference on Computational Intelligence

292



 

At line 1, the candidate solutions are randomly 
initialized over the entire search space. Prior to the 
first iteration of the GA, the algorithm evaluates the 
candidate solutions of the generated population, at 
line 2. After a fixed number of iterations (that were 
experimentally determined to get good solutions 
within reasonable computing time), a termination 
criterion is applied at line 3.  

The crossover operation is the first step at every 
iteration of the GA, involving two parent solutions 
and generating two child solutions (at line 4). In fact, 
three variants of this two-point crossover have been 
implemented in our algorithm: a crossover variant for 
the take-off points of the flights, a crossover variant 
for the rendezvous locations of the flights, and a 
crossover variant for the assignments of the 
customers to the UAV flights. Then, the algorithm 
proceeds with the application of a mutation operator 
on the children solutions (at line 5), by inverting a 
subsection of the mutating solution. Again, three 
different mutation operations have been implemented 
depending on whether we were mutating the take-off 
points of the flights, the rendezvous locations of the 
flights, or the assignments of the customers to the 
UAV flight missions. Once done the evaluation of the 
new candidate solutions generated at the concerned 
iterations (at line 6), the algorithm proceeds to replace 
the parent solutions by the children solutions (at line 
7). We apply elitism, where the n best solutions of the 
parents’ generation replace the worst solutions of the 
children’s generation. 

4.3 Implementation 

We have implemented this algorithm with Python 3 
programming language with the help of the 
evolutionary algorithm toolkit DEAP (Fortin et al., 
2012), an abbreviation for ‘Distributed Evolutionary 
Algorithms in Python’. DEAP is an evolutionary 
computation framework that allows rapid prototyping 
of diverse genetic algorithms, including genetic 
algorithms, genetic programming, evolution 
strategies, covariance matrix adaptation evolution 
strategy, particle swarm optimisation, and many 
more. 

In our GA, the data set obtained after assessing a 
particular solution consists of (a) the best visiting 
sequence of the customers assigned to each flight, (b) 
the flight time of the UAV for each flight, (c) the 
waiting time of the GV for each flight, and (d) the 
total moving time of the UAV-GV tandem. 

In order to test our solution approach, we have 
used clouds of spread locations taken from the 
clients’ position within Capacitated VRP benchmark 

instances. For example, the CVRPLIB - Capacitated 
Vehicle Routing Problem Library.  

In what follows, we present the performance 
obtained when tackling with the A-n32-k5 instance 
proposed by Uchoa et al., (2014).  

We have studied the possible influence of three 
factors. To study the influence of the customers 
layout, two different roads have been included in the 
first factor, (see Figure 3). As the second factor, two 
different UAV speeds have been studied, (a) 20=ݒ 
km/h and (b) 30=ݒ km/h. In both cases, the GV and 
UAV-GV tandem moves at same speed, which is 
ܸ=60 km/h. As the third factor, we have studied three 
different values for the maximum number of visits in 
each route: H=3,4,5. The endurance of the UAV is in 
all the cases limited to E=1.2 hours.  

 

Figure 3: Problem layout. 

The GA implemented in this study starts with an 
initial population of 100 solutions randomly 
generated, and it stops after 100 generations. We have 
repeated this for 30 runs, and written down the 
average times of best solution over the 30 runs. Each 
of the formerly described mutation operator is applied 
to each of the three components with a probability of 
a 2%. Similarly, each of the mentioned crossover 
operators is applied with a 50% probability. 

5 COMPUTATIONAL RESULTS 

This section presents the results obtained by the 
proposed GA. 

Table 1 contains the averages of 30 runs of the 
algorithm for each combination of problem 
parameters, namely, road configuration, UAV flying 
speed and maximum number of visits in each route. 
This makes 360 runs. The ‘Mission time’ caption 
refers to the TMT, expressed as the hours passed 
between the depart from the origin of the road and the  
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Table 1: Summary of experimental average results. 

Road 
UAV speed 

(km/h) 
H 

Mission time 
(hours) 

Tandem time UAV flight time GV waiting time 

(hours) % (hours) % (hours) %

1 

20 
3 11.60 0.64 5.54 10.96 94.46 10.78 92.89
4 11.41 0.66 5.81 10.74 94.19 10.56 92.60
5 11.34 0.67 5.89 10.68 94.11 10.47 92.30

30 
3 7.43 0.54 7.33 6.88 92.67 6.69 90.00
4 7.14 0.48 6.77 6.65 93.23 6.46 90.49
5 7.02 0.50 7.11 6.52 92.89 6.32 90.06

2 

20 
3 12.49 0.63 5.01 11.86 94.99 11.68 93.57
4 12.00 0.55 4.58 11.45 95.42 11.27 93.91
5 11.82 0.58 4.90 11.24 95.10 11.07 93.65

30 
3 7.95 0.48 6.04 7.47 93.96 7.29 91.77
4 7.57 0.40 5.30 7.17 94.70 7.01 92.63
5 7.49 0.40 5.35 7.09 94.65 6.94 92.66

 
arrival of the GV carrying the UAV to the end of the 
road. The ‘Tandem time’ caption refers to the total 
average traveling time of the GV carrying the UAV 
and the percentage it weights in total mission time. 
The ‘UAV flight time’ caption presents the average 
total flying time of the UAV. The ‘GV waiting time’ 
caption shows the average total time that the GV 
spends waiting for the UAV. Observe we have 
included the percentage referred to the TMT value, 
thereby allowing for quickly reading the weights of 
Tandem time, UAV flight time and GV waiting time. 

We further include illustrations for the four time 
columns in Table 1. 

Figure 4 shows total mission time for each 
scenario. Figure 5 shows the average UAV flight time 
vs ܪ. Figure 6 shows variability in the time spent by 
the GV-UAV tandem, in their short travels between 
flights. 

 

 

Figure 4: Average total mission time vs ܪ. 

 

 

Figure 5: UAV average total flying time vs ܪ. 

 

Figure 6: GV-UAV tandem average total traveling time. 
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Finally, Figure 7 shows the total time that the GV 
spends waiting for the UAV return (once deployed 
the recognisee route). Noticeably, the GV is most of 
time in the status ‘stopped’. 

 

Figure 7: GV average total waiting time. 

As shown in the results, the factors (a) the UAV 
speed and (b) the maximum number of visits in each 
route influence the planning, and therefore the 
resulting TMT. Thus, as the UAV speed increases 
and/or the number of visits is less restricted, the value 
TMT is reduced. 

In these scenarios, the moving time of the UAV-
GV tandem is significantly low, between 5% and 7% 
of the total mission time, so the moving speed of the 
GV is not the most influential issue on the total 
mission time. This implies that the UAV flight speed 
is the most relevant factor on the total mission time, 
which ranges from 93% to 95% of the mission time. 
The relevance of the UAV speed justifies the need to 
continue the research line of planning optimization of 
these missions. 

As a final remark, we notice that the studied 
scenarios exhibit long waiting times for the GV at 
rendezvous locations, which ranges from 90% to 94% 
of the total mission time.  

6 CONCLUSIONS 

In this work, we propose using an UAV to visit a set 
of challenging locations in a humanitarian mission, in 
tandem with a GV for monitoring and controlling the 
flight operations, which is used as well as a 
recharging station for restoring the endurance of the 

UAV. To solve the problem of planning the tandem’s 
operations, we have implemented a GA algorithm 
able to find good quality solutions in reasonable 
computing times. The algorithm has been 
programmed using Python 3 and DEAP library. 

This work has considered a set of practical 
considerations: (1) the limitations of the GV to access 
the locations to visit, and (2) the different limitations 
imposed by the drone in this type of missions. This 
set of limitations does not allow us for comparing the 
results obtained in this work with other nearby 
approaches proposed in the literature. 

Although the results are promising, we need to 
improve different aspects to incorporate more 
constraints that bring the problem closer to reality, 
such as considering the aerodynamics. The obtained 
results highlight the high relevance of the UAV flight 
speed in this mission type, which justifies the need to 
continue the research line of planning optimization of 
these missions. Next step in this research consists in 
employing other methods, such as PSO, which results 
could be compare with the current results. 
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