
DEMO based Dynamic Information System Modeller and Executer

Magno Andrade1, David Aveiro1,2 and Duarte Pinto1
1Madeira Interactive Technologies Institute, Caminho da Penteada, 9020-105 Funchal, Portugal

2Faculty of Exact Sciences and Engineering, University of Madeira, Caminho da Penteada 9020-105 Funchal, Portugal

Keywords: Enterprise Engineering, Workflow, EMEaaS, DISME.

Abstract: This paper presents a different approach to information systems named as Enterprise Modelling and Execution

as a Service (EMEaaS). This approach, based on the DEMO methodology, has as objective to solve some of

the issues found on other approaches such as software as a service or business processes as a service like the

dependency from an outside third party to the organization. As a concrete implementation of this EMEaaS

approach, we present a DEMO Based prototype called Dynamic Information System Modeller and Executer

(DISME). DISME is a dynamic information system modeller that aims to serve at the same time as: (1) an

organization modeller, (2) an information system and (3) a workflow management system that can be adapted

to most organizational realities with no need for coding, just the understanding of some basics about the

DEMO methodology.

1 INTRODUCTION

In modern days software is everywhere in our lives.

The same concept applies to organizations, where to

survive an ever more competitive market one needs

tools to support the everyday processes and decision-

making.

The field of Enterprise Engineering can help to

create a strategic and global vision of the business and

its specificities that, later, allow a systematic

requirements elicitation and implementation that

more effectively supports the management and

information needs of an organization.

Size and complexity of organizations make it

difficult to manage their processes hindering their

efficiency and productivity. The information systems

complexity grows hand in hand with the organization

complexity increasing the challenges in properly

capturing its essence and making it difficult for the

information systems to fulfil the expectations on the

organizational issues they were built to solve.

The particular need for the DEMO Based

Dynamic Information System Modeller and Executer

(DB DISME) derives from the lack of anything that

is at the same time a DEMO based information

system, a workflow manager and a modeller in a

properly integrated fashion.

The development of this software tool and its

conceptualization is, simultaneously, being tested

with concrete processes of two organizations in

different fields, one in cargo transportation and

another being a government entity with their

specificities in order to create a robust program

capable of adapting to most organizational realities.

In the second section of the paper, we present the

basic notions needed to understand the basic concepts

and inner workings of the system as well as the need

and motivation for DISME, the approach behind it

and other tools that serve a similar objective. In the

third section, we present the Dynamic Information

System Modeller and Executer tool; explain how it

works followed by a discussion and some remarks

regarding current and future work on the fourth

section. Lastly, on the fifth section we have the

conclusions and main contributions.

2 CONTEXTUALIZATION

To a further understanding of the tool currently under

development, we first need to understand some basics

of the DEMO methodology. DEMO, allows one to

specify a concise but comprehensive view of the

organization, giving the perfect foundation to build

the presented prototype.

The stability of its ontological models, highly

abstracted from the human and technological means

that implement and operate an organization also was

Andrade, M., Aveiro, D. and Pinto, D.
DEMO based Dynamic Information System Modeller and Executer.
DOI: 10.5220/0007230003830390
In Proceedings of the 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2018) - Volume 2: KEOD, pages 383-390
ISBN: 978-989-758-330-8
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

383

also taken into consideration thinking of the other

main part of this project that involves the

development of a diagram editor to visually represent

(using DEMO models) the organization and its

processes.

Another basic notion is the type square pattern

widely used in the developed database which allows

the use of the system both as modeller of the

organization’s reality and it’s respective production

(and testing) information system.

Having the background notions, we also explain

the reasoning behind the necessity of an Enterprise

Modelling and Execution as a Service (EMEaaS)

approach, and what makes it different from the

multiple other approaches such as Automatic Code

Generation, Software as a Service (SaaS) or Business

Process as a Service (BPaaS).

Finally, in this section, we also present some

related software and approaches that have similar

functionalities of those implemented in DISME, and

how our software differs from these tools.

Figure 1: Actors Interaction with Production and

Coordination Worlds.

Figure 2: Basic Transaction Pattern.

2.1 DEMO - Operation, Transaction
and Distinction Axioms

In the Ψ-theory (Dietz, 2009) – on which DEMO is

based – the operation axiom (Dietz 2006) states that,

in organizations, subjects perform two kinds of acts:

production acts that have an effect in the production

world or P-world and coordination acts that have an

effect on the coordination world or C-world. Subjects

are actors performing an actor role responsible for the

execution of these acts. At any moment, these worlds

are in a particular state specified by the C-facts and P-

facts respectively occurred until that moment in time.

When active, actors take the current state of the P-

world and the C-world into account. C-facts serve as

agenda for actors, which they constantly try to deal

with. In other words, actors interact by means of

creating and dealing with C-facts. This interaction

between the actors and the worlds is illustrated in

Figure 1. It depicts the operational principle of

organizations where actors are committed to deal

adequately with their agenda. The production acts

contribute towards the organization's objectives by

bringing about or delivering products and/or services

to the organization's environment and coordination

acts are the way actors enter into and comply with

commitments towards achieving a certain production

fact (Dietz, 2011).

According to the Ψ-theory's transaction axiom the

coordination acts follow a certain path along a generic

universal pattern called transaction (Dietz, 2006). The

transaction pattern has three phases: (1) the order

phase, were the initiating actor role of the transaction

expresses his wishes in the shape of a request, and the

executing actor role promises to produce the desired

result; (2) the execution phase where the executing

actor role produces in fact the desired result; and (3)

the result phase, where the executing actor role states

the produced result and the initiating actor role

accepts that result, thus effectively concluding the

transaction. This sequence is known as the basic

transaction pattern, illustrated in Figure 2, and only

considers the “happy case” where everything happens

according to the expected outcomes. All these five

mandatory steps must happen so that a new

production fact is realized. In (Dietz, 2011). we find

the universal transaction pattern that also considers

many other coordination acts, including cancellations

and rejections that may happen at every step of the

“happy path”.

Even though all transactions go through the four –

social commitment – coordination acts of request,

promise, state and accept, these may be performed

tacitly, i.e. without any kind of explicit

communication happening. This may happen due to

the traditional “no news is good news” rule or pure

forgetfulness, which can lead to severe business

breakdown. Thus the importance of always

considering the full transaction pattern and the

initiator and executor roles when designing

organizations (Dietz, 2011).

The distinction axiom from the Ψ-theory states

that three human abilities play a significant role in an

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

384

organization's operation: (1) the forma ability that

concerns datalogical actions; (2) the informa that

concerns infological actions; and (3) the performa

that concerns ontological actions (Dietz, 2006).

Regarding coordination acts, the performa ability

may be considered the essential human ability for

doing any kind of business as it concerns being able

to engage into commitments either as a performer or

as an addressee of a coordination act (Dietz, 2011).

When it comes to production, the performa ability

concerns the business actors. Those are the actors

who perform production acts like deciding or judging

or producing new and original (non derivable) things,

thus realizing the organization's production facts. The

informa ability on the other hand concerns the

intellectual actors, the ones who perform infological

acts like deriving or computing already existing facts.

Finally, the forma ability concerns the datalogical

actors, the ones who perform datalogical acts like

gathering, distributing or storing documents and or

data. The organization theorem states that actors in

each of these abilities form three kinds of systems

whereas the D-organization supports the I-

organization with datalogical services and the I-

organization supports the B-organization (from

Business=Ontological) with informational services

(Dietz and Albani, 2005). By applying these axioms,

DEMO is claimed to be able to produce concise,

coherent and complete models with a reduction of

around 90% in complexity, compared to traditional

approaches like flowcharts and BPMN (Dietz, 2008)

(Aveiro and Pinto, 2013a).

2.2 Type Square Pattern

Figure 3: Type Square Pattern.

The type square pattern (Yoder et al., 2001), depicted

in Figure 3, derives from the type-object pattern

applied twice. The first time to separate the entities

from their entity types and the second to separate

attributes from their attribute types. This separation

has as advantages: the possibility of creating new

entity types and property types in run time, a great

reduction in the number of subclasses - having

multiple type instances instead – and the possibility

to, in a dynamic fashion, change the type classes by

changing the main class from where they derive from.

2.3 Automatic Code Generation

Automatic code generators, generate source code

from a designed model, and can be very helpful tools

depending on the task. There are some known

advantages to it, like the time-saving it offers from

not having to code everything from scratch, as long

as the model was well specified (Kornecki and Johri,

2006).

However, there are also some shortcomings of

using an automatic code generator, starting with the

difficulty to maintain it. Because it usually generates

an abstract solution that fits one or more problems, it

may have many unnecessary code lines (for your

needs) that you need to consider when doing any

changes. This leads to another usual shortcoming, the

low flexibility and the complexity in the

customizations. These need to be very precisely

introduced on the generator to fit one’s particular

needs, because the process of later editing might

present itself as quite challenging (Etheredge, 2009).

There is also a high level of dependency on the

code generator for any new version of the system,

because of difficulties derived from the complexity of

the code. The most cost-effective solution might be to

generate the code again with different parameters

rather than modifying the existing one.

Code generators are still very useful tools, and

they are particular efficient when applied to

something that hardly need change, menial coding

tasks like writing pages which are nothing more than

containers for data from the database.

2.4 Software as a Service

Software as a Service (SaaS) has a subscription

service as its model, where the software is licensed

from a proprietary organization and delivered based

on a centralized host usually being accessed through

the usage of a web browser (Gil, 2018).

The main reasons for the adoption of SaaS models

are usual the implementation time and cost savings

associated as well as being somehow easy to use since

it is made for multiple customers. Other advantages

are the scalability and accessibility. Because it caters

to multiple organizations, it is likely that the solution

one is looking for has been already implemented and

can be acquired ready to be used. (Turco, 2013).

SaaS also has some disadvantages, for one its

applications usually focuses on a specific field (e.g.

DEMO based Dynamic Information System Modeller and Executer

385

invoicing, CRM, etc). It is also not the most flexible

solution, because it is rarely developed thinking about

one organization in particular. The solution is generic,

and some particularities of one’s organization may

not fit and therefore have to be dealt with in another

fashion.

Besides these there are also some disadvantages

derived from being a service accessed elsewhere such

as response times, availability or, the most

concerning, data security since an organization’s

information is being stored in the provider’s server.

Other disadvantages include sometimes being

forced to upgrade to a new version of the software or

suffer from lack of support from the provider or even

be faced with the provider going out of business and

losing access (even if temporary) to the

organization’s data.

2.5 Business Process as a Service

Same as SaaS Business Process as a Service (BPaaS)

is also a subscription model of software cloud based

that automates the business process (task or set of

tasks) of an organization designed in a way to be

service oriented. The BPaaS is the top layer on top of

the other cloud services, the System as a Service but

also Platform as a Service as well as Infrastructure as

a Service (Duipmans, 2012), , (Hurwitz et al., 2012).

These specific solutions, inherited most of the

advantages from SaaS’s such as the cost and time

efficiency, scalability, accessibility, standardization

or specialized staff on the server end dealing with

every problem that may arise (Duipmans, 2012).

But, likewise, it also inherited most of the

disadvantages from being dependent on an external

provider like availability or data security concerns as

well as lack of flexibility or an dependence of the

remaining service stacks (SaaS, PaaS and IaaS)

(Duipmans, 2012).

2.6 Enterprise Modelling and
Execution as a Service

What we propose in this paper is a different approach,

the Enterprise Modelling and Execution as a Service

(EMEaaS).

Our vision of EMEaaS is that any worker can

design enterprise processes based on DEMO

language with no need for any specific programming

knowledge.

These designed models can then be executed

instantly after being designed.

We also aim for the inclusion of available pre-

designed models (for specific businesses and/or other

institutions) and fully customizable interfaces

generated automatically based on model elements.

This service can be provided locally in an internal

enterprise server or cloud based, thus solving one of

the issues of the other approaches and cutting or

heavily reducing the dependence of a service provider

since all the process modelling and updating can be

done “in house”.

With these aims we propose our DISME vision

and prototype as an EMEaaS solution.

2.7 Similar Platforms

If only considering the overall goal alone DISME can

be compared with solutions such as Mendix (“Mendix

Platform,” 2018) and Appgyver (“AppGyver,” 2018).

Mendix is an application that provides users with

the power to build and continuously improve custom

applications at an unprecedented scale and speed. The

application gives the possibility to build mobile and

internet applications. It provides a set of tools for the

entire life cycle of an application (“Mendix

Platform,” 2018).

The AppGyver solution allows the creation of

visually advanced logical applications; building

business rules; automating technologies for the

universe of email notifications and emails without the

use of code; creating application interfaces with

predefined libraries and with drag-and-drop

components; defining and structuring page structures

and navigation graphically. It also allows one to

perform dynamic searches and combine multiple data

sources (“AppGyver,” 2018).

The two main features of Mendix and AppGyver

are present in DISME but with two distinctions.

The first is that Mendix and AppGyver have a

graphical drag-and-drop feature where you drop each

element in the place where it is intended to be placed.

In DISME the properties of a form are inserted

through a form, however the generation of these fields

inserted in the control panel is generated

automatically and dynamically as it happens in

Mendix and AppGyver. However our DISME

solution will soon include these drag-and-drop

functionalities.

The second functionality is the construction of the

application logic. A microflow / process can perform

various actions such as creating and updating objects,

presenting pages, making choices, and defining what

employees have to do.

It is a visual way of expressing what is normally

done in programming code. The notation used in the

microflows is based on BPMN (“Microflows -

Mendix Documentation,” 2018, p. 7).

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

386

Figure 4: OFD drawn using the DISME Diagram Editor.

The main difference between the platforms in this

functionality is that DISME is governed by the

DEMO modelling notation and every transaction

flow of a process follows the rules described and

specified by its modelling. The data flow and

execution order of the transactions are a set of rules

defined using the DEMO methodology.

Another related solution is the DEMO Processor

(Van Kervel, 2012) but is limited in the sense that it

focuses only on the coordiation aspects of

transactions, leaving out the infological and

datalogical actions to be implemented by external

systems.

3 REALIZING THE EMEaaS

VISION WITH DISME

The DISME solution has three main functionalities:

1) the Diagram Editor to create and view DEMO

models 2) the System Modeller to adapt and

parametrize in more detail the information system to

the needs of the organization; and the System

Executer that runs in production mode the modelled

information system.

In the System Modeller, one of more users take

upon their selves the administrator role, and are able

to shape each process of an organization creating and

editing transactions, their relations as well as

associating input forms to these transactions, or in

specific transactions steps. These forms are

dinamically generated by the System Executer when

users are fulfilling their organizational tasks The

users that model the system, have no need for any

specific programing skill only some basic knowledge

of enterprise engineering modelling which is close to

the "language / representation" used within

organizations.

In the System Executer, users that have acquired

permissions to take part in the transactions do so

according to their roles following DEMO’s

transaction pattern.

The development of the database behind the

DISME solution was heavily influenced by the

DEMO way of thinking, trying to capture the essence

of an organization’s workflow, but without

abstracting from their infological and datalogical

implementations.

The goal was to keep the platform as flexible as

possible in terms of the editing possibilities available.

3.1 Diagram Editor

The diagram editor of DISME was inspired in the

Universal Enterprise Adaptive Object Model (Aveiro

and Pinto, 2013b) and uses GraphEditor (“mxgraph,”

2018) as a starting point. The main objective of that

tool is to present the visual representation of the

implemented diagrams in DISME while being a fully

functional editor, but also to facilitate the design of

new processes in a visual fashion and automate some

of the steps in their implementation if so is desired.

This component is still in an early stage of

development when concerning the interactions with

the System Modeller of DISME. Still it’s already a

functional diagram editor with the ability to create

DEMO models as shown in figure 4.

3.2 Conceptual Structure

In the following paragraphs, we have the object fact

diagram (OFD) of DISME’s conceptual model

divided into its relevant parts. The darker object

classes represent the tables responsible for storing the

organization's processes specified in the DEMO

diagrams whereas the light coloured object classes

represent the tables that store instances of all types

(processes, transactions, entities, values, etc.) as the

System Executer is run in the day-to-day operation of

the enterprise.

3.3 System Modeller

The System Modeller has many components, which

are briefly explained next using examples from a car

dealership for better understanding.

DEMO based Dynamic Information System Modeller and Executer

387

Users Management – creating new users, changing

user data, or associating users with roles. Users are

real individuals that interact with the system.

Roles Management – creating/editing roles, and

associate them with users and actors. A role can fulfil

various actors and an actor can be fulfilled by several

roles. Roles are the traditional job title the individuals

on the organization have, for example front desk

clerk.

Figure 5: Actors, Roles and Users - DISME OFD.

Actors Management – creating/editing actors and

associating them with roles. An actor may be

associated with several roles and these actors are

responsible for starting and executing transactions.

Actors are the DEMO actor roles, for example Renter

that could in turn be portrayed by the front desk clerk

Role.

Process Management – defining process types. These

process types make up the set of processes that a

particular organization covers in its business area.

The purpose of the process type is to define the

structure that the System Execution part of the

platform uses to create the instances of processes that

occur within a company. Car Rental could be an

example of a process.

Figure 6: Processes and Transactions - DISME OFD.

Transaction Management – This area is divided in

two parts, the transaction types and the transaction

acts.

The first part is for defining the types of

transactions that are captured by applying the DEMO

methodology. A transaction type is always associated

with a process type and an executing actor. To a

process type, because a transaction can only belong to

one of the existing sets of process types so that the

generated transaction can be associated with a process

instance. And to an executing actor because following

the DEMO paradigm models a transaction has one

and only one executor who is responsible for the

transaction acts standardized by the theories and

models. For example a Car Delivery transaction type

would belong to the Car Rental Process and executed

by a Car Deliverer Actor.

The second part is for placing the transactions acts

existing in the DEMO methodology that may require

some action, in concrete, request, promise, execution,

declaration and acceptance.

The transaction acts are extremely important

because they are later used to define where

relationship between various transactions take place

as well as what needs to happen in the workflow to

continue the process.

Figure 7: Entities and Transactions - DISME OFD.

Entities Management – Defining what could be

compared to the definition of the table in a database

that will be responsible for saving the corresponding

records / data.

An entity type corresponds here to each OFD class

that would exist in the organization model. Note that

the entity type is nothing more than the structural

definition of what should be stored in the database

such as the functionality of a table. Car, would be an

example of an Entity Type in this scenario.

Properties Management – Specifying, defining and

associating property types to entity type or

relationship type, namely specifying its name, value

type (text, int, enum, etc.) and field type (to be output

in the automatically generated forms of the interface),

etc. A property type example for the Entity Type Car

could be Licence Plate Number.

Allowed Value Management – Here happens the

specification of values allowed for the properties of

type ENUM. Car Manufacturer for example.

Relations Management – Defining many-to-many

situations. The function of one type of relation is the

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

388

same as multiplicity in a database. Properties can also

be associated to relationships.

Units Management – Denoting a certain unit of

measure in unit symbol format, such as kg

(kilograms), l (liters). For example horsepower in a

Power property.

Causal Links – Connection between transactional acts

that originate the beginning of other transactions

dependent on the first automatically. With these rules,

the users do not need to manually start the

transactions that follows in the process flow. These

rules after being set are automatically applied by the

dashboard. For example, a Car Renting transaction

type would have a causal link at the promise step to a

Rental Payment transaction type.

Figure 8: Transactions and Links - DISME OFD.

Waiting Links – Connections between transactions

that are only allowed to continue to the next defined

act, if and only if the transaction act of another

transaction have already been performed by the user.

In these links the transaction that "waits" for the other

necessarily needs information from that previous one

to proceed. As an example the Car Renting

transaction type would have a waiting link at the

execution step where it would have to wait for the

execution of the Rental Payment transaction Type.

3.4 System Execution

Figure 9: Working environment Classes - DISME OFD.

All users when logged in DISME are directed to the

Dashboard where a list of the tasks they are allowed

to perform is shown.

A user can execute a request act to start some

specific process or react to a certain process state to

which he or she were given authority and

responsibility to do so – if some property/entity is

associated to that act the user will have to fill out a

form, automatically generated based on the specified

parameters.

The Dashboard automatically controls the flow

and state of all process instances and data, thanks to

both the causal and waiting links that were specified

in the respective modelling functions and the data

submitted by the users.

Using the Car Rental example, a concrete

customer paying, picking up and delivering a car

would all be part of the System Execution creating

instances of transactions of the defined transaction

types and respecting the previously defined flow of

events, this is, the parameters of the System Modeller.

4 DISCUSSION AND FUTURE

WORK

DISME follows DEMO principles and as such,

nothing is erased, an historic is kept of all changes in

all concepts, both at type/model level and at

runtime/instance level.

This leads to one of the points in the future work,

the introduction of non-relational database. This has

to be an alternative taken into consideration knowing

the high number of relationships between tables and

the costs of erasing nothing, probably even the

implementation of a hybrid solution.

DISME’s conceptual model follows in many parts

the type square pattern and the principle of Adaptive

Object Model and this is key to the ability of the

system to immediately change its runtime behaviour

according to the change in the specification of some

concept at type/model level.

If a change is made at type/model level, it

immediately reflects on the system’s behaviour. For

example, adding a new property to an existing entity

type will result that the form generated in the

respective transaction step will now show the

respective field. For example, adding a weight

property type to a driver Entity Type.

DISME currently only contemplates the four

major types of DEMO acts; request, promise,

execute, state and accept, in the future, there is the

DEMO based Dynamic Information System Modeller and Executer

389

need to contemplate the full transaction pattern and

include the cancelations, rejections, etc.

The interconnection of processes is another

fundamental point to be implemented.

And also the forms behaviour that currently is

mixed in the properties in the future should also lead

to multiple interfaces for the same properties

depending on the contexts.

5 CONCLUSION

The EMEaaS approach could solve some of the

existing issues of the BPaaS most particularly the

third party involvement and the derived security

concerns. This is achieved offering as an alternative

to outsourcing, the tools to facilitate the whole

modelling process in house in a way that requires as

little training and specific knowledge as possible.

Now this does not come without some trade-offs,

although the tools are available, there is still the need

for customization, and so the implementation times

cannot be as fast as an out of the box solution, but still

should be incomparably faster than developing an

organization specific system.

Concerning DISME, it is an ongoing effort to

validate the EMEaaS approach, and still has a long

road to travel. Going down that path having

partnerships with real large enterprises, as it is our

case is invaluable as it is possible to foresee many

problems that would not present themselves in a

theoretical standpoint. This allied with the refinement

over time, will lead to the production of a fully usable

DISME prototype and large scale validation.

ACKNOWLEDGMENTS

This work was partially funded by FCT/MCTES

LARSyS (UID/EEA/50009/2013 (2015-2018))

REFERENCES

AppGyver: Low-Code Enterprise-Grade App Creation
[WWW Document], 2018. URL https://
www.appgyver.com/ (accessed 3.12.18).

Aveiro, D., Pinto, D., 2013a. An e-Government Project
Case Study: Validation of DEMO’s Qualities and
Method/Tool Improvements, in: Harmsen, F., Proper,
H.A. (Eds.), Practice-Driven Research on Enterprise
Transformation, Lecture Notes in Business Information
Processing. Springer Berlin Heidelberg, Utrecht, The
Netherlands, pp. 1–15.

Aveiro, D., Pinto, D., 2013b. Universal Enterprise Adaptive
Object Model. Presented at the 5th International
Conference on Knowledge Engineering and Ontology
Development (KEOD), Vilamoura, Portugal.

Dietz, J.L.G., 2011. Architecture – building strategy into
design., in: Advances in Enterprise Engineering V.
Springer.

Dietz, J.L.G., 2009. Is it PHI TAO PSI or Bullshit?, in: The
Enterprise Engineering Series. Presented at the
Methodologies for Enterprise Engineering symposium,
TU Delft, Faculteit Elektrotechniek, Wiskunde en
Informatica, Delft.

Dietz, J.L.G., 2008. On the Nature of Business Rules, in:
Dietz, J.L.G., Albani, A., Barjis, J. (Eds.), Advances in
Enterprise Engineering I, Lecture Notes in Business
Information Processing. Springer Berlin Heidelberg,
pp. 1–15.

Dietz, J.L.G., 2006. Enterprise Ontology: Theory and
Methodology. Springer.

Dietz, J.L.G., Albani, A., 2005. Basic notions regarding
business processes and supporting information systems.
Requir. Eng. 10, 175–183. https://doi.org/10.1007/
s00766-005-0002-9

Duipmans, E., 2012. Business process management in the
cloud: business process as a service (BPaaS).
University of Twente.

Etheredge, J., 2009. Code Generation Should be the
Nuclear Option [WWW Document]. Simple Thread.
URL https://www.simplethread.com/code-generation-
should-be-the-nuclear-option/ (accessed 8.10.18).

Gil, P., 2018. “SaaS”: What Is “Software as a Service”?
[WWW Document]. Lifewire. URL https://
www.lifewire.com/what-is-saas-software-2483600
(accessed 3.28.18).

Hurwitz, J., Kaufman, M., Halper, F., Kirsch, D., 2012.
What Is Business Process as a Service (BPaaS) in Cloud
Computing? dummies.

Kornecki, A., Johri, S., 2006. Automatic Code Generation:
Model-Code Semantic Consistency. pp. 191–197.

Mendix Platform [WWW Document], 2018. . Mendix.
URL https://www.mendix.com/ (accessed 3.12.18).

Microflows - Mendix Documentation [WWW Document],
2018. URL https://docs.mendix.com/refguide/
microflows (accessed 3.15.18).

mxgraph: mxGraph is a fully client side JavaScript
diagramming library [WWW Document], 2018. URL
https://github.com/jgraph/mxgraph (accessed 3.12.18).

Turco, K., 2013. Four Advantages of Software as a Service
(SaaS) [WWW Document]. TechnologyAdvice. URL
https://technologyadvice.com/blog/information-
technology/four-advantages-of-software-as-a-service-
saas-2/ (accessed 3.28.18).

Van Kervel, S.J.H., 2012. Ontology driven Enterprise
Information Systems Engineering.

What is Business Process as a Service (BPaaS)? -
Definition from Techopedia [WWW Document], 2018.
. Techopedia.com. URL https://www.techopedia.com/
definition/29543/business-process-as-a-service-bpaas
(accessed 3.28.18).

Yoder, J.W., Balaguer, F., Johnson, R., 2001. Architecture
and design of adaptive object-models. SIGPLAN Not
36, 50–60. https://doi.org/10.1145/583960.583966

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

390

