6  CONCLUSIONS 
A  chaotic  initialized  particle  swarm  optimization 
(CIPSO)  algorithm  was  applied  to  parameter 
estimation of a DC motor. The DC motor was 
modelled using transfer function. Five parameters of 
the  DC  motor  namely  moment  of  inertia,  viscous 
friction, electromotive force constant, resistance and 
inductance  were  estimated  optimally  using  the 
CIPSO. The initial population swarm was generated 
by using a chaotic tent map. The estimated parameters 
were  compared  with  the  actual  parameters  and  the 
parameters  estimated  by  the  standard  PSO.  The 
CIPSO  was  accurate  in  estimating  the  parameters 
with less mean square error, comparatively. 
REFERENCES 
Bosco, M.C., Guedes, J.J., Castoldi, M.F., Goedtel, A., 
Ravazzi,  E.,  Francisco,  L.  &  Buzachero,  S.  2017, 
'Estimation of Parameters and Tuning of a Speed PI 
of Permanent Magnet DC Motor Using Differential 
Evolution',  Electric Machines and Drives 
Conference (IEMDC). 
Cirrincione,  M.,  Pucci,  M.,  Cirrincione,  G.  &  Capolino, 
G.A. 2003, 'A new experimental application of least-
squares  techniques  for  the  estimation  of  the 
induction motor parameters', IEEE Transactions on 
Industry Applications, vol. 39, no. 5, pp. 1247–56. 
DC Motor Speed: System Modeling  n.d.,  viewed  1 
December  2017, 
<http://ctms.engin.umich.edu/CTMS/index.php?exa
mple=MotorSpeed§ion=SystemModeling>. 
Dub,  M.  &  Jalovecký,  R.  2010,  'DC  motor  experimental 
parameter  identification  using  the  Nelder-Mead 
simplex method', Proceedings of EPE-PEMC 2010 - 
14th International Power Electronics and Motion 
Control Conference, pp. 9–11. 
Hadef,  M.  &  Mekideche,  M.R.  2009,  'Inverse  problem 
methodology  for  parameter  identification  of  a 
separately excited DC motor', Journal of Electrical 
Engineering and Technology, vol. 4, no. 3, pp. 365–
9. 
Kumpanya,  D.,  Thaiparnat,  S.  &  Puangdownreong,  D. 
2015,  'Parameter  Identification  of  BLDC  Motor 
Model Via Metaheuristic Optimization Techniques', 
Procedia Manufacturing, vol. 4, no. Iess, pp. 322–7. 
Mohammadi,  H.R.,  Akhavan,  A.,  Mohammadi,  H.R.  & 
Akhavan, A. 2014, 'Parameter Estimation of Three-
Phase  Induction  Motor  Using  Hybrid  of  Genetic 
Algorithm  and  Particle  Swarm  Optimization', 
Journal of Engineering, vol. 2014, pp. 1–6. 
Mughal, M.A., Ma, Q. & Xiao, C. 2017, 'Photovoltaic cell 
parameter  estimation  using  hybrid  particle  swarm 
optimization  and  simulated  annealing',  Energies, 
vol. 10, no. 8, pp. 1–14. 
Petrovas, A., Pitrenas, A. & Savickiene, Z. 2017, 'DC motor 
parameter  identification  using  equation  error 
method', Electrical Engineering, no. 1, pp. 1–9. 
Puangdownreong,  D.  2017,  Application of Flower 
Pollination Algorithm to Parameter Identification of 
DC Motor Model, no. March, pp. 8–10. 
Tian, D. 2017, 'Particle Swarm Optimization with Chaos-
based  Initialization  for  Numerical  Optimization 
Particle  Swarm  Optimization  with  Chaos-based 
Initialization for Numerical', Intelligent Automation 
& Soft Computing, vol. 8587, no. March, pp. 1–12. 
Udomsuk, S.,  Areerak, K.-L.,  Areerak, K.-N.  &  Srikaew, 
A.  2010,  'Parameters  identification  of  separately 
excited  DC  motor  using  adaptive  tabu  search 
technique',  2010 International Conference on 
Advances in Energy Engineering, no. 2, pp. 48–51. 
Zhang, Y., Wang, S., Ji, G., Zhang, Y., Wang, S. & Ji, G. 
2015, 'A Comprehensive Survey on Particle Swarm 
Optimization  Algorithm  and  Its  Applications', 
Mathematical Problems in Engineering, vol.  2015, 
pp. 1–38.