
ABC Repair System for Datalog-like Theories

Xue Li, Alan Bundy and Alan Smaill
CISA, School of Informatics, University of Edinburgh, 10 Crichton St, Edinburgh, U.K.

Keywords: Theory Repair, Automated Reasoning, Knowledge Representation, Abduction, Belief Revision, Conceptual
Change, Datalog.

Abstract: This paper aims to develop a domain-independent system for repairing faulty Datalog-like theories by combi-
ning three existing techniques: abduction, belief revision and conceptual change. Accordingly, the proposed
system is named the ABC repair system. Given an observed assertion and a current theory, abduction adds
axioms which represent the simplest and most likely explanation. Belief revision incorporates a new piece of
information which conflicts with the input theory by deleting axioms. Conceptual change uses the reformation
algorithm for blocking unwanted proofs or unblocking wanted proofs. The former two techniques change
an axiom as a whole, while reformation changes the language in which the theory is written. These three
techniques are complementary: abduction adds new axioms, belief revision deletes conflicting axioms, while
reformation changes the language of the theory. But they have not previously been combined into one system.
We are working on aligning these three techniques in the ABC repair system, which is capable of repairing lo-
gical theories with better quality than individual techniques. Datalog is used as the underlying logic of theories
in this paper, but the proposed system has the potential to be adapted to theories in other logics.

PRELIMINARY

In this paper, a Datalog-like theory is represented as
T, and T′ is a corresponding repaired theory. α and
β are Datalog-like axioms written in the language of
T. All constants and predicates start with an upper-
case letter, while variables start with a lower-case one.
The unary function N calculates the number of the
elements in its argument. The argument of N is a set,
e.g. N (T) is the number of the axioms in T.

1 INTRODUCTION

In a knowledge base, logical theories need to evolve
to keep up with a changing environment and to correct
faulty representations. The need for evolution could
be formalised as the conflicts between what the user
knows and what the logical theories derive. By repai-
ring logical theories, these conflicts can be fixed, and
then the logical theories evolve for absorbing users’
knowledge. A user could be an automated agent or a
human.

Datalog is a declarative logic programming lan-
guage in FOL, which has resurged in the database
community in recent years (Bellomarini et al., 2018).

In comparison with first-order logic (FOL), Datalog
excludes negations, function symbols, and existen-
tial quantification. Assertions and rules in Datalog
are formalised as Horn Clauses, which should satisfy
conditions that each assertion does not contain any va-
riables, and each variable which occurs in the head of
a rule also occurs in the body of the same rule (Ceri
et al., 1989). There are different variants of Datalog.
This paper restricts to the basic Datalog introduced
above. For a uniform representation in this paper, we
use the implication symbol =⇒ rather than the tradi-
tional symbol, :- in a Datalog-like theory.

Definition 1 (Datalog Language).

Although the restriction of Datalog reduces the
expressive power of the logic, it brings significant ad-
vantages including that deduction is decidable (Pfen-
ning, 2006); Prolog unification is sufficient, and the
reformation algorithm is greatly simplified, as will be
introduced in §2.2.1.

An example of a Datalog-like theory is the Swan

Li, X., Bundy, A. and Smaill, A.
ABC Repair System for Datalog-like Theories.
DOI: 10.5220/0006959703350342
In Proceedings of the 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2018) - Volume 2: KEOD, pages 335-342
ISBN: 978-989-758-330-8
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

335



theory as below. It has four axioms saying that Ger-
man is part of Europe, all European swans are white,
and the swan named Bruce is a German swan. One
theorem is that Bruce is white. Imagine the user ob-
serves the fact that Bruce is black. In this scenario,
the theory is faulty so that it needs to be repaired.
A1. German(x) ⇒ European(x).
A2. European(x) ∧ Swan(x) ⇒ White(x).
A3. German(Bruce).
A4. Swan(Bruce).

2 ABC REPAIR SYSTEM

The ABC system repairs faulty Datalog-like theories
automatically or partially automatically. Figure 1 gi-
ves the main components of the system. The inputs
given by the user are a Datalog-like theory (T) and
a preferred structure (PS) which will be defined in
§2.1.1. The output is a set of repaired theories. Be-
cause each original repair technique could have multi-
ple repairs to one fault, it is also normal that the com-
bination repair mechanism generates more than one
repair solution and then outputs a set of repaired the-
ories rather than single repaired theory.

Figure 1: The components (C1-C4) of the ABC repair sy-
stem: T is a Datalog-like theory; PS is a preferred structure
defined in §2.1.1; The output is a set of repaired theories.

C1 calculates a minimal set of axioms by pruning
redundancy, which reduces the search space of both
fault detection and repair generation. C2 and C3 are
central parts, which will be discussed in details in §2.1
and §2.2. Generally speaking, when a fault is detected
by C2, its proof/proofs will be provided to C3, ba-
sed on which, C3 generates repairs by combining ab-
duction, belief revision and reformation. This process
will repeat until there are no faults left. In the end, all
repaired theories will be ranked by C4. Ideally, best-
repaired theories could be highlighted for users. As
a part of future work, C4 is denoted in the imaginary
line in Figure 1.

2.1 Fault to be Repaired

This section discusses what faults are to be repaired
and how to detect them based on automated reaso-
ning.

2.1.1 Fault Definition

Common faults of a logical theory are inconsistency
and incompleteness. Although a Datalog-like theory
is guaranteed to be consistent by never proving a ne-
gative statement, consistency is an underlying requi-
rement of a repaired theory in our system. However,
completeness, which requires a theory to prove all the
possible sentences or their negations in the signature,
may be too strong a requirement. Instead of incom-
pleteness, we are going to focus on the propositions
which the user insists an object theory to prove or not
to prove. The preferred structure is defined as below.

Definition 2 (Preferred Structure). A preferred
structure (PS) is a structure over the language of a
logical theory (T); PS describes the user’s intention
that a faithful T should follow by giving preferred
base sets:

True Set (T (PS)): Set of the ground propositions
which should be provable by T. These proposi-
tions are called the preferred propositions.

False Set (F (PS)): Set of the ground propositions
which should not be proved by T. These propo-
sitions are called the violative propositions

Obscure Set (O(PS)): Set of the ground propositi-
ons which are neither in T (PS) nor F (PS).

Contradictory Set (C (PS)): Set of the ground pro-
positions which are both in T (PS) and F (PS).

PS is a guideline for determining the faithfulness of a
theory T according to user’s view. As shown in Figure
1, PS is a required input for the ABC system.

Based on the definition, the last two sets are deci-
ded by the first two. Therefore, in the implementation,
only T (PS) and F (PS) need to be given explicitly. In
the swan example, the PS for formalising the user’s
knowledge that Bruce is black so that it cannot also
be white is:

The true set: {Black(Bruce)}
The false set: {White(Bruce)}

An object theory should follow its PS by proving
the preferred propositions, while not proving the vio-
lative propositions. This makes the theory correct and
useful to the user.

∀α, α ∈ T (PS), T ` α (1)
∀β, β ∈ F (PS), T 0 β (2)

Notice that C (PS) should be empty. Otherwise, the
preferred structure is self-contradictory, to which no
consistent theory could be faithful. If there is a pro-
position in C (PS), a warning would be given and the
process of our system has to stop. In this case, the

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

336



user has to empty C (PS) before giving the PS as the
input of the ABC system.

Given a preferred structure with empty C (PS), the
possible faults of a logical theory are incompatibility
and insufficiency.
Definition 3 (Incompatible and Insufficient).
• An incompatible theory with respect to the prefer-

red structure is one which has a theorem that is in
the false set: ∃β, β ∈ F (PS), T ` β.

• An insufficient theory with respect to the preferred
structure is one in which a proposition that is in
the true set, but is not a theorem of the theory:
∃α, α ∈ T (PS), T 0 α.

The defined faults represent the conflicts between the
input theory and the user’s intention. One of the ap-
plications is when the user verifies a theory by ex-
periments. For example, a professor of medicine is
studying how a medicine affects a human. At first, he
investigated relevant materials, so he had built a set
of axioms in his theory. Then he ran a series of ex-
periments to evaluate his theory. In this scenario, the
result of his experiments could be formalised as a pre-
ferred structure, based on which the conflicts between
his theory and his experimental results correspond to
incompatibility and insufficiency as defined above.

In the swan example, the original theory proves
that Bruce is white, which is an incompatibility, and
not prove that Bruce is black, which is an insuffi-
ciency. The definition of the preferred structure and
the faults defined based on it can reflect the conflicts
between a theory and empirical evidence correctly.

In conclusion, the faults of an object theory to be
repaired in this paper are insufficiency and incompa-
tibility, defined based on a preferred structure repre-
senting the user’s opinion.

2.1.2 Fault Detection

This section shows how to detect the faults of a
Datalog-like theory by employing selected literal (SL)
resolution.

Detecting insufficiency or incompatibility is to
check the provability of a target proposition from a
Datalog-like theory. The inference rule, SL resolution
(Kowalski and Kuehner, 1971) can do this detection,
which follows the principles:
• Select one of the most recently introduced literals

to be resolved upon.

• Resolve the selected literal with an input clause.
SL resolution is not only sound and complete (Gal-
lier, 2003), but also decidable for Datalog-like the-
ories (Pfenning, 2006) so that proofs can always be
detected if there are any.

For reducing the search space, proof discovery
process starts with resolving a goal, with an input
clause whose head is complementary to the goal. As
an axiom in Datalog-like theory is a Horn clause,
which has at most one positive literal, the most re-
cently introduced literals of a nonempty resolvent
could only be a disjunction of negative literals, cal-
led sub-goals here. Then we continually resolve the
first sub-goal, with an input clause. Again, either an
empty clause or a clause of a disjunction of negative
literals would be the result. Repeat this process until
no resolution step is available. If it ends up with an
empty clause, refutation occurs, which means that the
input theory proves the goal clause.

For detecting incompatibility, the negation of a vi-
olative proposition in F (PS) is set as the initial goal
for refutation based on the input theory. Every viola-
tive proposition, in turn, is checked in the same way.
Incompatibility is detected if the input theory proves
a violative proposition. ⊥ will represent false.

T is incompatible wrt β, iff T′ ` ⊥,
where T′ = T∪{¬β}, β ∈ F (PS). (3)

For example, Figure 2 shows how the Swan the-
ory proves the violative proposition of the PS,
White(Bruce). There are four proof steps in total. In
proof step 1, the initial goal is the negation of the vio-
lative proposition, White(Bruce)⇒, which is resolved
with the head of axiom A2, White(x), by substituting
Bruce for x. In the same way, European and German
are resolved in proof step 2 and 3 respectively. In
proof step 4, the empty clause is derived, which me-
ans that the input Swan theory proves White(Bruce),
so the Swan theory is incompatible.

As for a sufficient theory, all the preferred propo-
sitions should be logical consequences of the object
theory. Similar to detecting incompatibility, preferred
propositions need to be checked one by one. By nega-
ting a preferred proposition into a goal, the theory can
be concluded to be sufficient concerning the preferred
proposition if and only if resolving the goal with the
input theory results in an empty clause. Otherwise,
the object theory is insufficient. Repeat the process
until all the preferred propositions are checked.

T is insufficient wrt α, iff T′ 0⊥,
where T′ = T∪{¬α}, α ∈ T (PS) (4)

At each resolution in the proof, there is always
one parent being an input clause. When generating
repairs, we can directly change the parent which is an
input clause with no traceback needed.

ABC Repair System for Datalog-like Theories

337



Swan Theory: A1. German(x) ⇒ European(x). A3. German(Bruce).
A2. European(x) ∧ Swan(x) ⇒ White(x). A4. Swan(Bruce).

Preferred Structure: The false set F (PS): {White(Bruce)}
The true set T (PS): {Black(Bruce)}

Inference (goal):
Proof Step 1:

Proof Step 2:

Proof Step 3:

Proof Step 4 (the empty clause):

White(Bruce) =⇒
European(Bruce)∧Swan(Bruce) =⇒

European(x)∧Swan(x) =⇒ White(x)

German(Bruce)∧Swan(Bruce) =⇒
German(x) =⇒ European(x)

Swan(Bruce) =⇒ =⇒ German(Bruce)
=⇒ =⇒ Swan(Bruce)

Figure 2: Proving White(Bruce): proof steps of the incompatibility of the Swan theory.

2.2 Repair Generation

In the ABC repair system, repairs are generated ba-
sed on the proofs of faults: incompatibility and in-
sufficiency. The desired repairs for each fault are
shown in Table 1: incompatibility could be repaired
by blocking all unwanted proofs of each violative pro-
position, and insufficiency could be repaired by un-
blocking a wanted proof of each preferred proposi-
tion. Blocking a proof could be done by breaking any
proof step of it, while unblocking a proof requires to
build all necessary proof steps. As the decision of
which axiom(s) or predicate(s) to be changed is not
unique, usually, the core task here is to avoid unne-
cessary information loss by making minimal changes
(Gärdenfors, 1992).

Table 1: The target of repairing a faulty theory T.

Incompatibility Insufficiency

Fault ∃β,β ∈ F (PS),T `
β

∃α,α ∈ T (PS),T 0
α

Target T′ 0 β T′ ` α

Core
Task

Blocking all proofs
of β.

Unblocking one
proof of α.

Method Break one proof
step in each proof.

Build all necessary
proof steps.

Abduction, belief revision and reformation are
three technical candidates for generating repairs. Dif-
ferent techniques work in different scenarios.

2.2.1 Repair Techniques in the ABC System

Original Abduction. The underlying reasoning of
abduction is the inference to the best explanation. Gi-
ven an observation, abduction seeks for its explana-
tion (Cox and Pietrzykowski, 1986). If the observa-
tion is not a logical consequence of the original the-
ory, abduction will add the explanation as an axiom,
which could be an assertion or a rule. With no extra

information, the solution of abduction is not unique
because there could be different ways of proving the
observation.
Abduction in the ABC System. Regarding a pre-
ferred proposition in T (PS) as the observation, ab-
duction repairs insufficiencies by adding axioms.
Abduction could directly add a preferred proposi-
tion. However, directly adding everything that is true
would result in a clumsy theory with lower quality,
e.g., a theory of gases that just added all observations
of gas pressure and volume is inferior to one that in-
cludes Boyle’s law. Therefore, it is better to add a rule
which proves not only the targeted preferred proposi-
tion but also several other axioms and/or other prefer-
red proposition, while not proving any proposition in
F (PS).
Original Belief Revision. The underlying reasoning
of belief revision is deduction. Belief revision works
on incorporating new information which is inconsis-
tent with the original knowledge base (Gärdenfors,
1992). The inconsistent new information is usually
represented as a new belief, e.g. β. Then revision
function adds the new belief and deletes old ones to
make the revised theory consistent, which is blocking
all proofs of ¬β. From the view of proofs, the task
of a revision function is to break the unwanted proofs
with minimal changes.
Belief Revision in the ABC System. To repair the
incompatibility, the ABC system uses belief revision
to block the proofs of the propositions in F (PS). For
blocking these unwanted proofs, belief revision dele-
tes axioms while making minimal changes.
Original Conceptual Change. Conceptual change
uses the reformation algorithm, which is triggered by
the reasoning failure that T proves an unwanted as-
sertion or fails in proving a wanted one (Bundy and
Mitrovic, 2016). The underlying reasoning of refor-
mation is deduction, and originally in FOL. By chan-
ging the language of a theory, reformation inverts the
outcome of the targeted unification, which contributes
to blocking or unblocking proofs. The repair types of
reformation include changing the name or the arity of
a predicate, changing the name of a constant or chan-

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

338



ging a constant into a term containing a variable.
Conceptual Change in the ABC System. Because
the ABC system is based on Datalog, reformation is
much simpler than that for FOL. For example, diffe-
ring arity of a predicate overloads the predicate, and
changing a constant into a term containing a varia-
ble would introduce a function. These two kinds of
repairs are illegal in the circumstance of Datalog so
that they are abandoned in the ABC system. In this
paper, we use the left-hand side term of each reso-
lution to represent a goal/sub-goal, while the right is
the input clause side. Table 2 gives reformation re-
pairs on different types of resolution problems in the
ABC system, in which the changes are underlined.
R1 replaces P2(

−→u m) by P1(
−→t n) for making the origi-

nally failed proof step between P1(
−→t n) and P2(

−→u m)
successful. The remaining repairs are about making
the originally successful proof steps fail: R2 renames
a predicate on the input clause side, R3 changes one
argument of the predicate from the input clause side,
and R4 increases arity by 1, and then adds distinguis-
hed constants as arguments to predicates on both si-
des. Because R4 changes the arity of a predicate, it
needs to be propagated to all instances of the modi-
fied predicate. When the resolution is between a con-
stant goal and a variable from input clause side, it can
always succeed unless the variable is instantiated by
another constant as in R5.

Considering the definition of the preferred struc-
ture, reformation is capable of repairing both insuffi-

Table 2: Repairs of reformation for inverting the outcome
of proof step in the ABC system. P is a predicate; t and u
are either constants or a variables; n ≥ 0,m ≥ 0; 1 ≤ i ≤
n; P refers to a constant when its arity is 0; ’=’ represents
unifying, of which goal/sub-goal is on the left-hand side,
and input clause on the right.

Resolution Pro-
blem

Reformation Repair

P1(
−→t n) 6=

P2(
−→u m)

R1. Replace input side by the
other: P1(

−→t n) = P1(
−→t n).

P(−→t n) = P(−→u n)

R2. Rename input side P:
P(−→t n) 6= P′(−→u n).

R3. Rename one argument in−→u n,
e.g., let ti 6= u′i : P(−→t n) 6=
P(
−→
u′ n).

R4. Add distinguished arguments
C,C′: P(−→t n,C) 6= P(−→u n,C′).

C = x R5. Instantiate x to C′: C 6=C′.

ciency (R1) and incompatibility (R2-R5) by changing
the language in which the theory is written.
All Repair Candidates in the ABC System. Apart
from changing language by reformation, or adding or
deleting an axiom as a whole by abduction and belief
revision respectively, a rule can be changed by ad-
ding or deleting a precondition (McNeill and Bundy,
2007). A precondition needs to be deleted when a pre-
ferred proposition should be derived based on a rule,
but it is not because of the improperly strict precondi-
tion. In this case, the repair of deleting the precondi-
tion could be classified as a variant abduction, which
unblocks a wanted proof. Similarly, the precondition
which can block a rule from proving a violative pro-
position could be added to the rule, which could be
classified as a variant of belief revision that blocks
unwanted proofs. In conclusion, all repair candidates
in the ABC system are summarised in Table 3.

Table 3: Technique candidates for repairing faults.

Incompatibility Insufficiency

Tech.
Belief revision:
deletes axioms;
adds unprovable
preconditions to a
rule.

Abduction: adds
an assertion/ rule;
deletes unprovable
preconditions from
a rule.

Reformation: changes the language of T.

2.2.2 Combination of Techniques

The candidate techniques discussed in the last section
are complementary. Combining them allows us to fix
faults with new repairs. Due to the minimal change
principle, we do not combine techniques in repairing
a single proof step, because each original technique
alone is sufficient already. Now, we can list all pos-
sible repairs for one proof step when tackling incom-
patibility in Table 4, and Table 5 gives all possible
repairs for insufficiency.

It is fairly common that several faults are involved
in one theory (McNeill and Bundy, 2007). The ABC
system combines different techniques when there are
multiple problematic proof steps. These problema-
tic proof steps are detected in turn as errors: after
repairing one error, a new one is detected. Here er-
rors could be the faults: insufficiency and incompa-
tibility based on a preferred structure; or the issues
against the restriction of Datalog, or some heuristics,
e.g., prefer not to change the equality predicate. Ex-
cept for the original existing errors, there could be two
kinds of introduced errors during a repair process:
1. New introduced errors. A repair may introduce a
error which did not exist previously. For example, a

ABC Repair System for Datalog-like Theories

339



Table 4: Incompatibility repairs: block a proof by breaking
one proof step of it in the ABC system. All symbols mean
the same as in Table 2.

Resolution Problem (Technique Abbr.) Repair

P(−→t n) = P(−→u n)

(R) P(−→t n) 6= P′(−→u n).

(R) P(−→t n) 6= P(
−→
u′ n).

(R) P(−→t n,C) 6= P(−→u n,C′).

(B) Delete the axiom where
+P(−→u n) came from.

(B) Add an unprovable precon-
dition−Q(

−→t n) to the axiom at
either side.

C = x (R) Instantiate x to C′.

Table 5: Insufficiency repairs: unblock a proof by building
all necessary proof steps in the ABC system. All symbols
mean the same as in Table 2.

Resolution Problem (Technique Abbr.) Repair

P1(
−→t n) 6= P2(

−→u m)

(R) P1(
−→t n) = P1(

−→t n).

(A) Delete −P1(
−→t n), a

precondition from its axiom.

(A) Add a rule which
proves +P1(

−→t n).

(A) Add the assertion:
P1(
−→t n).

predicate in an unwanted proof is changed, if it is also
necessary for proving a preferred proposition, then
this repair causes newly introduced insufficiency.
2. Recurred errors. A repair may affect a previous
one, especially when these two repairs are provided
by different algorithms, which could be difficult to
avoid. For example, an axiom is added by abduction,
and it could be changed by reformation later on. In
this case, developing a set of heuristics is necessary,
which is a part of future work.

We need to continue repairing until no error re-
mains, and then a final solution could be generated
completely. By applying three candidate techniques
in parallel for each error, we can get all possible repair
combinations, as shown in Figure 3. For example, if
belief revision deletes an axiom, after which reforma-
tion changes the language of the theory to tackle anot-
her error, then the final repaired theory is generated by
combining belief revision and reformation.

Figure 3: Combining repairs when repairing multiple er-
rors. T′1,T

′
2 refer to repaired theories.

2.2.3 Repair Postulates

Resembling the idea of the AGM postulates for be-
lief revision (Gärdenfors, 1992), several postulates
are formulated in this section. The ABC repair sy-
stem should generate repairs which satisfy these pos-
tulates. The underlying motivation is that we want
to generate reasonable combination repairs and make
a minimal change. All the information conveyed by
axioms are seen as not gratuitous so that we do not
want any unnecessary informational loss. On the ot-
her hand, we do not want to add extra axioms unless
it is necessary.

1. ∃T′, iff T (PS)∩F (PS) = /0
An input theory can be repaired, if and only if the
preferred structure is not self-contradictory. In ot-
her words, for achieving a faithful theory, the pre-
ferred structure must not be self-contradictory.

2. T′ = T, iff
∀α, α ∈ T (PS), T ` α;∀β, β ∈ F (PS), T 0 β
Do nothing if the input theory already satisfies
preferred structure.

3. If T is a Datalog-like theory, then T′ is also a
Datalog-like theory.
This postulate guarantees that the repaired theory
also follows the restrictions of Datalog if the input
theory is a Datalog-like theory. We assume that
no matter working in which logic, repairs should
not break the restriction of the logical format con-
vention. Otherwise, it would come up with so-
mething that the system cannot understand, and
cause unexpected problems.

4. N (T′)≤ {N (T)+N (T (PS))}
N is the function giving the size of a set. This
postulate means that the number of the axioms in
a repaired theory should not be greater than the
total number of the original theory and the true

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

340



set of the preferred structuren (T (PS)).
In table 4, no repairs of incompatibility would in-
crease the size of the theory. In table 5, the first
two repairs do not change N (T). As for adding a
rule, N (T′) should not be bigger than N (T). Be-
cause if a rule can only prove the current preferred
proposition, it is more reliable for us to add the
proposition directly as an assertion. We assume a
rule should be able to derive two assumptions at
least; otherwise, it is not effective and should not
be considered. The last repair in table 5, which di-
rectly adds a preferred proposition as an assertion,
increases the size of the theory by one for each
preferred proposition. It is not a wise decision ob-
viously if you add more than one axiom for deri-
ving a preferred proposition, in which case, why
not just add the preferred one?
Therefore, when repairing a theory based on its
preferred structure, we should not result in a new
theory containing more axioms than the original
theory and the true set of the preferred structure
in total.

2.2.4 Repairs for Swan Theory by ABC System

This section will discuss the current repairs of the afo-
rementioned Swan theory. The given theory and its
preferred structure can be found in Figure 2. The pro-
blem could be caused by the fact that European swan
is ambiguous: it may mean ’the European variety of
swans’ or ’swans resident in Europe’. In the scenario
that all European variety swans are white, but Bruce
is resident in Europe, the target theory is as below,
where the desired repairs are underlined.

TA1. German(x, y) ⇒ European(x, y).
TA2. European(x, Variety) ∧ Swan(x) ⇒ White(x).
TA3. German(Bruce, Resident).
TA4. Swan(Bruce).
TA5. Black(Bruce).

In the rest of this section, we are going to discuss how
the ABC system repairs the Swan theory and whet-
her it can generate the targeted theory as we proposed.
The order of solving incompatibility and insufficiency
is immaterial. The ABC system tackles incompatibi-
lity firstly in multiple ways:

1. Delete A4: Swan(Bruce).
2. Rename European in A1:

German(x) ⇒ Europeandash(x).
3. Add a constant argument to European in A2:

European(x, Dummy1) ∧ Swan(x) ⇒ White(x).

The first repair, which deletes A1, blocks proof step 4
in Figure 2, which is proper in the scenario that Bruce
is another kind of a bird rather than a swan. The se-
cond repair blocks proof step 2, which does not make

sense in this scenario, although it solves the incom-
patibility. It is possible that some repairs are difficult
to explain from the perspective of semantics in some
scenarios. The last one is quite close to the desired
repairs. As this repair changes the arity of a predi-
cate, it has to be propagated to all instances of the
predicate. Here European in A2 is seen as the trigger
literal, which is assigned a unique constant Dummy1,
while the other instances are assigned the common
constant DummyDefault or a variable for rules. After
propagation, the partially repaired theory is:
Repairs:
add argument(European).
add argument(German).

Repaired Theory:
A1’. German(x, y) ⇒ European(x, y).
A2’. European(x, Dummy1) ∧ Swan(x) ⇒ White(x).
A3’. German(Bruce, DummyDefault).
A4 . Swan(Bruce).

For aligning with changed European in rule A1’, the
arity of German in the rule is also changed from one
to two by adding the new variable y, because Data-
log requires that each variable in the head of a rule
must also exist in its body. However, the changing of
the arity is not triggered by German, so that the new
arguments of all its instances are either variables for
rules or DummyDefault for facts, e.g., DummyDefault
in A3’.

For the current theory, the new proof step 3 failed
because its sub-goal German(Bruce, Dummy1) can-
not unify the input literal German(Bruce, DummyDe-
faut), neither other input literals. Here Dummy1 is
inherited from European(x, Dummy1) in A2’ during
resolution. Now the incompatibility has been solved.
The ABC system will continue to repair insufficiency.
The best repair in our scenario is adding the preferred
proposition as an axiom directly.
Repairs:
add argument(European).
add argument(German).
add axiom: Black(Bruce).

Repaired Theory:
A1’. German(x, y) ⇒ European(x, y).
A2’. European(x, Dummy1) ∧ Swan(x) ⇒ White(x).
A3’. German(Bruce, DummyDefault).
A4 . Swan(Bruce).
A5 . Black(Bruce).

Now the theory is faithful concerning the preferred
structure. The repair solution is generated by com-
bining reformation and abduction, and the solution
satisfies the postulates of the ABC system. By in-
terpreting Dummy1 as variety and DummyDefault as
resident, the produced theory is the desired one gi-
ven at the beginning of this section. The current

ABC Repair System for Datalog-like Theories

341



ABC system does not deal with semantic interpreta-
tion, which is something worthwhile to research in the
future.

In this section, it can be seen that a single techni-
que is not enough for generating the best repairs for a
theory in some scenarios. Therefore, the ABC repair
system works better than the individual techniques it
combines.

3 FUTURE WORK

1. Give semantic meaning to dummy term introdu-
ced by reformation, which can make repaired theories
more readable and understandable.
2. Investigate how to change sub-goals in a rule by re-
formation where trace-back will be needed, because it
is possible that a condition in a rule is not represented
properly, where reforming a sub-goal is necessary.
3. We are going to investigate more combination me-
chanisms for increasing the performance of the ABC
repair system.
4. More heuristics are going to be built for guiding
our system.
5. Epistemic entrenchment (Gärdenfors, 1988) will
be evaluated for ranking all of the repair solutions for
the user.
6. A method will be developed allowing a user to inte-
ract with our system to choose which repairs to prefer
and to give meaning to new constants and predicates.
7. Evaluation will be based on comparing the repairs
generated by the ABC system with the ones given by
any of the techniques it combines, and see which can
give the best solutions. The gold standard of best so-
lutions could come from the repair history of an exis-
ting ontology, or be given by human users.

4 CONCLUSIONS

A preferred structure is defined for formalising the
user’s intention, and a faulty theory fails in follo-
wing its preferred structure in the way of being in-
sufficient or incompatible. For detecting these two
faults, SL resolution is used as the inference rule in
our system. Based on detected proofs, the ABC re-
pair system can repair Datalog-like theories by com-
bining abduction, belief revision and reformation, es-
pecially when tackling multiple faults. The combi-
nation technique operates at the levels of both axi-
oms and the language of the input theory. For gui-
ding the system generating reasonable repairs, a set
of postulates are developed. We have successfully ap-
plied the current ABC system to six faulty Datalog-

like theories, and our system can generate new repair
solutions with better representations for these theo-
ries. In a longer journal paper under development, we
are going to give a thorough treatment including the
systematic introduction of motivation, comprehensive
evaluation, extensive applications and so on. To ens-
ure the termination of inference, this paper restricts
the ABC repair system to Datalog. Our group’s prior
work was on full FOL, and with heuristic search li-
mits on inference, ABC repair system could readily
be extended to FOL. In conclusion, the ABC repair
system can significantly improve the quality of repai-
ring Datalog-like theories and fill the gap of the re-
pair using just belief change, just abduction or only
language change.

REFERENCES

Bellomarini, L., Sallinger, E., and Gottlob, G. (2018). The
vadalog system: datalog-based reasoning for know-
ledge graphs. Proceedings of the VLDB Endowment,
11(9):975–987.

Bundy, A. and Mitrovic, B. (2016). Reformation: A
domain-independent algorithm for theory repair. Wor-
king paper, university of edinburgh.

Ceri, S., Gottlob, G., and Tanca, L. (1989). What you al-
ways wanted to know about Datalog (and never dared
to ask). IEEE Transactions on Knowledge and Data
Engineering, 1(1):146–166.

Cox, P. T. and Pietrzykowski, T. (1986). Causes for events:
their computation and applications. In International
Conference on Automated Deduction, pages 608–621.
Springer.

Gallier, J. (2003). SLD-Resolution and Logic Programming.
chapter 9 of Logic for Computer Science: Foundati-
ons of Automatic Theorem Proving. originally pu-
blished by Wiley, 1986.

Gärdenfors, P. (1988). Knowledge in flux: Modeling the
dynamics of epistemic states. The MIT press.

Gärdenfors, P. (1992). Belief revision: An introduction.
In Gärdenfors, P., editor, Belief Revision, pages 1–
28. Cambridge University Press. Cambridge Tracts
in Theoretical Computer Science.

Kowalski, R. A. and Kuehner, D. (1971). Linear resolution
with selection function. Artificial Intelligence, 2:227–
60.

McNeill, F. and Bundy, A. (2007). Dynamic, automatic,
first-order ontology repair by diagnosis of failed plan
execution. International Journal on Semantic Web
and Information Systems (IJSWIS), 3(3):1–35.

Pfenning, F. (2006). Datalog. Lecture 26. 15-819K: Logic
Programming.

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

342


