
Exploring RDF Datasets with LDscout

Anna Goy, Diego Magro and Francesco Conforti
Dipartimento di Informatica, Università di Torino, C. Svizzera 185, Torino, Italy

Keywords: Semantic Web, Linked Data, RDF Dataset, Dataset Exploration.

Abstract: In this paper, we present the formal model underlying LDscout, a Java library enabling developers to query a
dataset specifying the vocabulary (ontology) they want to use and the instances they want to query about. The
model is based on the formal definition of the concepts of Exploration Task and Exploration Task Solution,
and is independent from the dataset. In this paper, we present the specific implementation that enables the
interaction with RDF triplestores using OWL ontologies. In order to assess our approach, we report the
usage of LDscout within PRiSMHA, a Digital Humanities project aimed at enhancing the access to historical
archives through Semantic Web technologies.

1 INTRODUCTION

The Linked Open Data (LOD) paradigm (Heath and
Bizer, 2011) has become a profitable approach in
many fields, in a twofold perspective: (a) for pu-
blishing data, to gain visibility for the large amount
of information otherwise buried in proprietary repo-
sitories; (b) for using data, to leverage the informa-
tion widely available in a structured and machine-
readable way. The number of available datasets in the
LOD cloud is constantly increasing (see https://lod-
cloud.net/). Among the fields that took up LOD
practices, ranging from e-government to healthcare,
cultural heritage has started playing a major role
(Alexiev, 2016) (Edelstein et al., 2013); see also the
ArCo project in Italy: http://dati.beniculturali.it.

According to the Linked Data paradigm, data are
expressed as RDF triples (W3C, 2014) and RDF data-
sets are accessed through SPARQL endpoints (W3C,
2013). This structure implies that, in order to query
LOD datasets and to ”understand” the query results,
clients – being either users or applications – need to
be familiar with the query language, i.e. SPARQL,
and to understand the vocabulary used in the datasets.

In Section 2 we will provide a brief survey of
the approaches providing friendly User Interfaces ai-
med at supporting human users in overcoming the
complexity of SPARQL queries and the difficulties in
grasping the semantic model underlying RDF data-
sets. In this paper, instead, we focus on the provision
of suitable APIs, aimed at offering software clients
(applications) an easy and flexible way to access LOD

datasets. In particular, we will present the formal mo-
del underlying LDscout, a Java library enabling deve-
lopers to specify the vocabulary they can understand
(or they are currently focusing on) and the instances
they want to query about. The library is wrapped in
a RESTful web service interface, in order to offer a
language-independent interoperability.

LDscout is based on a general model, that can be
used to query any dataset. The specific implementa-
tion we present here enables the interaction with RDF
datasets and in order to assess its usefulness, we used
it within PRiSMHA (Providing Rich Semantic Me-
tadata for Historical Archives: di.unito.it/prismha).
PRiSMHA is a Digital Humanities project aimed at
experimenting with a crowdsourcing approach for the
construction of ontology-based formal semantic re-
presentations of the content of historical documents
(Goy et al., 2017), within the overall goal of enhan-
cing the access to historical archives through Seman-
tic Web technologies (Goy et al., 2015). The project is
funded by Compagnia di San Paolo and Università di
Torino and relies on a collaboration between Compu-
ter Science and Historical Studies departments of the
same University with Fondazione Istituto Piemontese
A. Gramsci, member of the Polo del ’900 foundation
(www.polodel900.it). The current proof-of-concept
prototype we are developing within the project in the
area of cultural heritage deals with archival resour-
ces concerning the students and workers protest du-
ring the years 1968-1969 in Italy.

The paper is organized as follows. In Section 2 we
briefly survey the relevant work investigating the inte-

92
Goy, A., Magro, D. and Conforti, F.
Exploring RDF Datasets with LDscout.
DOI: 10.5220/0006957600920100
In Proceedings of the 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2018) - Volume 3: KMIS, pages 92-100
ISBN: 978-989-758-330-8
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

raction with RDF datasets. Section 3 presents the mo-
del underlying LDscout by providing a general formal
definition of Exploration Task (Section 3.1), its in-
stantiation on RDF triplestores and OWL ontologies
(Section 3.2), and the mechanisms for computing so-
lutions to Exploration Tasks (Section 3.3); the section
is concluded by summarizing how we used LDscout
within the platform developed in the PRiSMHA pro-
ject (Section 3.4). Finally, Section 4 mentions the
main directions of our future work.

2 RELATED WORK

”The term Linked Data refers to a set of best practices
for publishing and interlinking structured data on the
Web” (Ngonga-Ngomo et al., 2014), p.1. The intro-
duction to Linked Data by Ngonga Ngomo and collea-
gues contains a detailed overview of the Linked Data
life-cycle and discusses the state-of-the-art of diffe-
rent aspects of it (namely, extraction, authoring, lin-
king, enrichment, and quality assessment). As alre-
ady mentioned in Section 1, in order to query RDF
datasets available in the LOD cloud, users need to be
familiar with formal languages used to query such da-
tasets (typically SPARQL), and should be aware of
the semantic model undelying the dataset, in order to
be able to formulate the proper query and to ”under-
stand” the resources and properties in the query re-
sults.

In order to face such difficulties, a number of
tools have been proposed, aimed at providing sim-
ple query interfaces to non-expert users – see, for ex-
ample, (Heim et al., 2010) (Russell and Smart, 2010)
(Haag et al., 2015) among many others.

In this perspective, a user-friendly approach to
query RDF datasets is keyword search; for example,
(Ouksili et al., 2016) presents an enhanced appro-
ach to search through RDF datasets using keywords:
Ouksili and colleagues’ approach is based on patterns
used to include external knowledge in the search pro-
cess in order to improve the result quality. Howe-
ver, the most promising approach to support users in
querying RDF repositories seems to be faceted search
(Tunkelang, 2009) (Tzitzikas et al., 2017). Facets are
predicate-value pairs (e.g., gender= female) and fa-
ceted search can be seen as an interactive model for
query formulation in which users can progressively
apply filters in the form of facets to narrow down the
results. There are several tools based on this appro-
ach, such as (Berners-Lee et al., 2008) (Hahn et al.,
2010) (Heim et al., 2008) (Hildebrand et al., 2006)
(Huynh and Karger, 2009), and more recently (Fafa-
lios and Tzitzikas, 2013) (Navarro et al., 2015) and

(Graub et al., 2016), where the authors present Sem-
Facet, a faceted search tool enhanced by the use of
ontological axioms for enriching results with impli-
cit information. Moreover, in this track, it is worth
mentioning the ontology-aware system by Hyvönen
and colleagues (Kurki and Hyvönen, 2010), and the
application of their approach in the cultural heritage
domain (Hyvönen et al., 2005).

Another tool aimed at supporting users in LOD
exploration is PepeSearch (Vega-Gorgojo et al.,
2016), that provides a form-oriented user interface
based on the semantic model underlying the data-
set to be explored. Other similar tools are Optique-
VQS (Soylu et al., 2016) and Surveyor (Vega-Gorgojo
et al., 2017), a CORS-enabled SPARQL 1.1 endpoint
plugin available without installation, providing users
with a view of the content of the selected dataset and
enabling navigation through classes and instances.

One of the most challenging issue when exploring
LOD sets is the mapping between semantic models as
well as between entities across different datasets. As
far as semantic models alignment is concerned, the
relevant research area is ontology matching – see, for
instance, (Potoniec et al., 2017) – but it falls outside
the scope of the present paper. As far as the map-
ping between entities described in different datasets is
concerned, it is worth mentioning some well-known
entity linking (or instance matching) tools: LIMES,
a time-optimized tool for link discovery (Ngonga-
Ngomo and Auer, 2011) (Ngonga-Ngomo, 2012) and
SILK (Volz et al., 2009). We will see how such tools
can be relevant in our approach in Section 3.4.

3 LDscout

LDscout executes an Exploration Task on a given da-
taset, retrieving all data about a given set of instan-
ces, described using a given set of terms (vocabulary).
We will start by defining the notions of Exploration
Task and Solution to an Exploration Task in general
(Section 3.1), then we will instantiate these notions
on the specific case of RDF datasets and OWL ontolo-
gies (Section 3.2). Since computing the solution to an
exploration task may be often unfeasible in practice,
we will then characterize specific subsets of the so-
lutions to RDF-OWL Exploration Tasks, which can
be easily computed and that still provide useful insig-
hts on data (Section 3.2); we will then show how this
sub-solutions can be actually computed by means of
SPARQL queries (Section 3.3).

Exploring RDF Datasets with LDscout

93

3.1 Formal Definition of an Exploration
Task

Definition 3.1. An Exploration Task is a triple ET =
〈V, I, ds〉, where V is a non-empty and possibly infi-
nite set of terms, I is a non-empty and possibly infinite
set of instances (where V ∩ I = /0) and ds is a dataset
(i.e. a set of data elements).

Intuitively, an exploration task represents the task
of retrieving from the dataset ds all and only those
data elements that describe the instances in I and that
are expressed by means of the terms in V . The con-
straint V ∩ I = /0 states that in any exploration task
there is a rigid distinction between the elements that
play the role of instances about which data are sear-
ched and those that play the role of terms used to des-
cribe those instances.

In a typical setting, I is the set of entities an agent
(being either a human user or a software application)
is focusing on and that (s)he/it is searching data about,
V is a vocabulary that the agent can understand (and
that denotes the set of notions the agent is currently
interested in) and ds is the dataset that is being explo-
red.

A solution to an exploration task is defined as fol-
lows:

Definition 3.2. The solution to an Exploration Task
ET = 〈V, I, ds〉 is the largest set SOL(ET)⊆ ds, such
that each data element in SOL(ET) is about a non-
empty set of instances INST ⊆ I and it describes the
instances in INST using only terms contained in V .

Intuitively, a solution to an exploration task is the
largest subset of the explored dataset ds that describes
entities specified in I, by means of terms in V .

From the definitions above, it immediately follows
that:

Proposition 3.1. Any exploration task always has one
and only one (possibly empty) solution.

For example, let us consider the following sets:

• V1 = {Woman, Man, Factory, age, works at,
collaborates with}

• V2 = {Person, knows}
• I1 = {Mary, Alice, Bob}
• I2 = {Betty, Bob}
• ds = {Woman(Mary), Woman(Alice),

Man(John), Man(Steve),
Consultant(John), Consultant(Alice),
age(Mary, 45), Company(ACME),
works at(Mary, ACME),
collaborates with(John,Mary),

collaborates with(Alice, Mary),
collaborates with(Steve, John)}
Given the sets specified above, the solution to the

exploration task ET1 = 〈V1, I1, ds〉 is
SOL(ET1) = {Woman(Mary), Woman(Alice),
age(Mary, 45), works at(Mary, ACME),
collaborates with(John, Mary),
collaborates with(Alice, Mary)};

As regards the problem formulation, it is worth
noting that: Not all the terms employed in ds are men-
tioned in V1 (e.g. Consultant 6∈ V1, but it is used in
ds); the same holds for instances (Steve 6∈ I1, but it is
described in ds); conversely, Factory belongs to V1,
but it does not belong to the language of ds and Bob
is included in I1, but it is not described in ds.

Moreover, for what it concerns the solution, it is
worth noting that: Man(John), Man(Steve),
collaborates with(Steve, John) 6∈ SOL(ET1),
even though Man, collaborates with ∈ V1 and
this is due to the fact that John, Steve 6∈ I1;
Consultant(Alice) 6∈ SOL(ET1), even though
Alice ∈ I1 and this is due to the fact that
Consultant 6∈V1; works at(Mary, ACME),
collaborates with(John, Mary) ∈ SOL(ET1), even
though ACME, John 6∈ I1, and this is due to the fact
that works at, collaborates with∈V1 and Mary∈ I1.

As stated in Proposition 3.1, an exploration task
may have an empty solution, for instance: If ET2 =
〈V2, I1, ds〉, then SOL(ET2) = /0 (since no term in V2
belongs to the language of ds); if ET3 = 〈V1, I2, ds〉,
then SOL(ET3) = /0 (since no instance in I2 is descri-
bed in ds).

Among the exploration tasks, it is worth mentio-
ning those ones in which the vocabulary is the set V
of all possible terms and/or the set of instances is the
set I of all possible instances. Even though such tasks
do not present any formal peculiarity, they are con-
ceptually relevant, thus we spend a few words about
them.

Any exploration task of the form ETV =
〈V , I, ds〉 (with I 6= I) specifies the task of retrie-
ving from the dataset ds all the data about the instan-
ces in I, no matter the language in which such data
are expressed. For example, if ETV

1 = 〈V , I1, ds〉
(I1 and ds specified above), we have SOL(ETV

1) =
{Woman(Mary), Woman(Alice), Consultant(Alice),
works at(Mary, ACME),
collaborates with(Mary,John),
collaborates with(Alice, Mary)}

Any exploration task of the form ET I = 〈V, I, ds〉
(with V 6= V) represents the task of retrieving from
the dataset ds all the data expressed in terms of
the vocabulary V , no matter the instances they are

KMIS 2018 - 10th International Conference on Knowledge Management and Information Sharing

94

about. For example, if ET I
1 = 〈V1, I, ds〉 (V1

and ds specified above), we have SOL(ET I
1) =

{Woman(Mary), Woman(Alice), Man(John),
Man(Steve), works at(Mary, ACME),
collaborates with(Mary,John),
collaborates with(Alice, Mary),
collaborates with(Steve, John)}.

Any exploration task of the form ETV ,I =
〈V , I, ds〉 represents the task of retrieving from the
dataset ds all the data about any instance, no matter
the language in which such data are expressed. For
example, if ETV ,I

1 = 〈V , I, ds〉 (ds specified above),

we have SOL(ETV ,I
1) = ds.1

3.2 RDF-OWL Exploration Tasks:
Exploration Tasks for RDF Datasets
that Use OWL Ontologies

The formal definitions stated in Section 3.1 can be
instantiated to a specific kind of exploration tasks,
which is relevant for both Semantic Web and Linked
Data: the case in which the dataset is an RDF data-
set, possibly using terms from OWL ontologies for
expressing (part of) its data.

RDF – Resource Description Framework – (W3C,
2014) is a model for data representation based on tri-
ples. A triple 〈x p y〉 represents a data element where
x is an RDF resource (i.e., anything that can be tal-
ked about), p is a property and y can be either a re-
source or a value. The meaning of a triple is that the
resource x is associated with y through the property
p (e.g., 〈Mary works at ACME〉 means that the re-
source Mary is associated with the resource ACME
through the property works at; 〈Mary age 45〉 means
that the resource Mary is associated with the value 45
through the property age).

OWL – Web Ontology Language – (W3C, 2012)
is a formal language for representing ontologies in
a standard and machine-readable way. OWL allows
one to describe instances (e.g., Mary, ACME, etc.)
by grouping them in classes (e.g., Woman, Company,
etc.), by linking them through binary object proper-
ties (e.g., works at, collaborates with, etc.), by as-
sociating them with values through binary data pro-
perties (e.g., age, etc.). An OWL ontology (basically,
a set of axioms) can be seen as a formal description
of the semantics of a vocabulary whose terms refer to

1It is worth noting that, in general, for an exploration
task ETV ,I = 〈V , I,ds〉 it can be SOL(ETV ,I

1) 6= ds, since all
the data not describing instances possibly present in ds (e.g.
the metadata about the terms of the language employed in
ds) should be filtered out in the solution.

instances, classes, object properties, and data proper-
ties.

In the RDF-OWL setting, the definition of an ex-
ploration task is instantiated as follows:

Definition 3.3. An RDF-OWL Exploration Task is an
exploration task (Definition 3.1) RO-ET = 〈V = C∪
OP∪DP∪{rdf: type, owl:sameAs}, I, ds〉, where:

1. C is a possibly empty and possibly infinite set of
OWL class names;

2. OP is a possibly empty and possibly infinite set of
OWL object properties names;

3. DP is a possibly empty and possibly infinite set of
OWL data properties names;

4. I is a non-empty and possibly infinite set of RDF
resources, representing instances;

5. ds is an RDF dataset.

The definition above explicitly distinguishes the
different categories of (logical) terms by means of
which instances can be described in OWL (i.e., class,
object property and data property names). Moreo-
ver, the vocabulary always includes the pre-defined
properties rdf: type and owl:sameAs, expressing the
membership of an instance to a class and the equiva-
lence between two instances, respectively.

The definition of the solution to an exploration
task (Definition 3.2) still holds for RDF-OWL Ex-
ploration Tasks. However, in many cases, solving an
RDF-OWL Exploration Task may be difficult or even
unfeasible, in practice. The main source of difficulty
being that, in general, OWL data may be expressed by
means of complex class expressions, negative proper-
ties, and other OWL constructs, which make it diffi-
cult (if not impossible) to compute solutions to RDF-
OWL Exploration Tasks, especially if the dataset ds is
huge and only remotely accessible through SPARQL
queries.

For practical purposes, we thus define the notion
of Restricted Solution to an RDF-OWL Exploration
Task, as follows:

Definition 3.4. A Restricted Solution to an RDF-
OWL Exploration Task
RO-ET = 〈V = C ∪ OP ∪ DP ∪
{rdf: type, owl:sameAs}, I, ds〉 is the
set R-SOL(RO-ET) = R-SOLC(RO-ET) ∪
R-SOLOP(RO-ET) ∪ R-SOLDP(RO-ET) ∪
R-SOLsameAs(RO-ET), where:

1. R-SOLC(RO-ET) = {〈i rdf: type c〉 ∈ ds/i ∈ I ∧
c ∈C};

2. R-SOLOP(RO-ET) = {〈i op j〉 ∈ ds/op ∈ OP∧
(i ∈ I∨ j ∈ I)};

3. R-SOLDP(RO-ET) = {〈i d p v〉 ∈ ds/i ∈ I∧d p ∈
DP};

Exploring RDF Datasets with LDscout

95

4. R-SOLsameAs(RO-ET) = {〈i owl:sameAs j〉 ∈
ds/i ∈ I∨ j ∈ I};
The definition above takes into considera-

tion only those RDF triples that express clas-
ses (the R-SOLC(RO-ET) set), positive object
properties (R-SOLOP(RO-ET)), positive data
properties (R-SOLDP(RO-ET)) and identity
(R-SOLsameAs(RO-ET)) assertions on instances.
Moreover, the considered class assertions have the
form 〈i rdf: type c〉, where c is a class name. There-
fore, the other kinds of OWL assertions on instances
that may be present in an RDF dataset (i.e., negative
properties, difference among individuals, and com-
plex class expression assertions on instances), are
ruled out.

The above-stated definitions immediately entail
the two following properties:

Proposition 3.2. Any RDF-OWL Exploration Task
always has one and only one (possibly empty) Re-
stricted Solution.

Proposition 3.3. If RO-ET = 〈V = C ∪ OP ∪
DP, I, ds〉 is an RDF-OWL Exploration Task, it holds
that R-SOL(RO-ET)⊆ SOL(RO-ET).

Intuitively, Proposition 3.3 states that every re-
stricted solution to an RDF-OWL exploration task is
also a solution to it.

As an example, let us consider the dataset ds
in Section 3.1. If we interpret the unary pre-
dicates as class names, the predicate age as a
data property name, and the other predicates as
object property names, we can easily rewrite ds
into an RDF dataset dsRDF , where, for exam-
ple, “Woman(Mary)” and ”age(Mary,45)” become
“〈Mary rdf: type Woman〉” and “〈Mary age 45〉”
respectively). If C1 = {Woman, Man, Factory},
OP1 = {works at, collaborates with}, DP1 = {age},
V1 = C1 ∪OP1 ∪DP1 ∪{rdf: type, owl:sameAs} and
I1 = {Mary, Alice, Bob}, we can specify the RDF-
OWL Exploration Task RO-ET1 = 〈V1, I1, dsRDF〉.
The restricted solution R-SOL(RO-ET1) to this ex-
ploration task is the union of the following sets:

1. R-SOLC(RO-ET1) = {〈Mary rdf: type Woman〉,
〈Alice rdf: type Woman〉};

2. R-SOLOP(RO-ET1) = {〈Mary works at ACME〉,
〈Alice collaborates with Mary〉,
〈John collaborates with Mary〉};

3. R-SOLDP(RO-ET1) = {〈Mary age 45〉};
4. R-SOLsameAs(RO-ET1) = /0.

In this specific case, we have R-SOL(RO-ET1) =
SOL(RO-ET1) (i.e. the restricted solution is also the
solution).

3.3 Computing Restricted Solutions to
RDF-OWL Exploration Tasks

For practical purposes, in the following, we consider
only RDF-OWL Exploration Tasks RO-ET = 〈V =
C ∪OP ∪DP ∪ {rdf: type, owl:sameAs}, I, ds〉 in
which the sets C, OP, DP and I are either finite or
they are, respectively, the set C of all possible class
names, OP of all possible object property names, DP
of all possible data property names and I of all possi-
ble instances.

The Restricted Solution to RO-ET can be compu-
ted by means of SPARQL queries.

SPARQL – SPARQL Protocol and RDF Query
Language – (W3C, 2013) offers a language to
query RDF datasets. The core part of a SPARQL
query is represented by a set of triple patterns
that express the main conditions that the pieces
of data must meet. Each query execution matches
these patterns with the data in order to single
out all the possible pattern instantiations. For in-
stance, if we consider the above-specified dataset
ds, the triple patterns [〈?x collaborates with ?y〉,
〈?y works at ACME〉]2 can be instantiated in the two
following ways: [〈John collaborates with Mary〉,
〈Mary works at ACME] and
[〈Alice collaborates with Mary〉,
〈Mary works at ACME〉]. Pattern instanti-
ations can be restricted by means of suit-
able filters. For instance, the SPARQL filter
“FILT ER EXIST S{?x rdf: type Woman}” would
retain only the latter instantiation. SPARQL offers
four query forms, including ASK and SELECT. The
former simply tests whether the queried dataset
provides at least one instantiation for the specified
set of triple patterns (satisfying the optional filters);
the latter returns as input a (combination of a) subset
of the variable bindings in the pattern instantiations
(that satisfy the optional filters).

In order to specify how this computation can be
done, we consider the restricted solutions’ subsets lis-
ted in Definition 3.4 and show how to calculate them;
with RES(Q) we indicate the result of a SPARQL
query Q.

The set R-SOLC(RO-ET) of class assertions is
computed as follows:

R-SOLC(RO-ET) =

• /0, if C = /0;

• {〈i rdf: type c〉/i ∈ I ∧ c ∈ C ∧
RES(ASK WHERE{i a c.}) == true},

2Elements preceded by a question mark “?” denote va-
riables.

KMIS 2018 - 10th International Conference on Knowledge Management and Information Sharing

96

if C 6= /0∧C 6=C∧ I 6= I;

• {〈?x rdf: type c〉/c ∈ C∧?x ∈
RES(SELECT ?x WHERE {?x a c.}),
if C 6= /0∧C 6=C∧ I = I;

• {〈i rdf: type ?y〉/i ∈ I∧?y ∈
RES(SELECT ?y WHERE {i a ?y.}),
if C =C∧ I 6= I;

• {〈?x rdf: type ?y〉/〈?x ?y〉 ∈ RES(SELECT ?x ?y
WHERE {?x a ?y.
FILT ER (EXIST S {?x a owl:NamedIndividual} ||
EXIST S {?y a owl:Class})},
if C =C∧ I = I.
Starting from the first case above, if no class name

is specified (i.e., C = /0), no class assertion is retrie-
ved from the dataset. If non-empty and finite sets of
class names and instances are specified (C 6= /0∧C 6=
C ∧ I 6= I) an ASK SPARQL query for each pair in
I×C is performed to check whether the correspon-
ding class assertion is present in the dataset. If a non-
empty and finite set of class names is specified for
any possible instance (C 6= /0∧C 6=C∧ I = I), all the
class assertions involving a specified class name is re-
trieved, no matter the instance it refers to. If the set
of all possible class names is specified for a finite set
of instances (C = C∧ I 6= I), all the class assertions
on the specified instances are retrieved, no matter the
employed class name. If the sets of all possible class
names and instances are specified (C =C∧ I = I), all
the class assertions on instances present in the data-
set are retrieved. In this last case, it should be noted
that all the class assertions possibly present in a RDF-
OWL dataset that do not refer to instances (i.e. to
OWL named individuals) should be ruled out. This
is the case, for example, of those assertions that spe-
cify that an ontology element is an owl : Class, an
owl : DatatypeProperty, etc. Here we assume that
the dataset explicitly specifies the OWL type at least
for the individuals it describes or for the classes it em-
ploys. If this is the case, we can specify a simple filter
that rules out unwanted triples (otherwise, we would
need more elaborated filters).

The set R-SOLOP(RO-ET) of object property as-
sertions is computed as follows:

R-SOLOP(RO-ET) =
• /0, if OP = /0;

• {〈i op ?y〉/i ∈ I ∧ op ∈ OP∧ ?y ∈
RES(SELECT ?y WHERE {i op ?y.})}
∪
{〈?x op i〉/i ∈ I ∧ op ∈ OP∧ ?x ∈
RES(SELECT ?x WHERE {?x op i.})},
if OP 6= /0∧OP 6= OP∧ I 6= I;

• {〈?x op ?y〉/op ∈ OP ∧ 〈?x ?y〉 ∈
RES(SELECT ?x ?y WHERE {?x op ?y.})},
if OP 6= /0∧OP 6= OP∧ I = I;

• {〈i ?p ?y〉/i ∈ I ∧ 〈?p ?y〉 ∈
RES(SELECT ?p ?y WHERE {i ?p ?y.})}
∪
{〈?x ?p i〉/i ∈ I ∧ 〈?x ?p〉 ∈
RES(SELECT ?x ?p WHERE {?x ?p i.})},
if OP = OP∧ I 6= I;

• {〈?x ?p ?y〉/〈?x ?p ?y〉 ∈
RES(SELECT ?x ?p ?y WHERE {?x ?p ?y.
FILT ER (EXIST S {?x a owl:NamedIndividual}||
EXIST S {?p a owl:ObjectProperty}||
EXIST S {?y a owl:NamedIndividual})},
if OP = OP∧ I = I;
If no object property name is specified (i.e. OP =

/0), no object property assertion is retrieved from the
dataset. If non-empty and finite sets of object property
names and instances are specified (OP 6= /0∧OP 6=
OP∧ I 6= I), then each triple that represents an object
property assertion through a specified object property
and that is about a specified instance (which can be
either subject or object of the triple) is retrieved. If a
non-empty and finite set of object property names is
specified for any possible instance (OP 6= /0∧OP 6=
OP∧ I = I), then all the object property assertions in-
volving a specified object property name is retrieved,
no matter the instances it refers to. If the set of al
possible object property names is specified for a fi-
nite set of instances (OP = OP∧ I 6= I), all the object
property assertions on the specified instances are re-
trieved, no matter the employed object property name
and the subject or object role of the specified instances
in the triples. If the sets of all possible object property
names and instances are specified (OP = OP∧ I = I),
all the object property assertions on instances present
in the dataset are retrieved. As in the case of class as-
sertions, also in this case suitable filters are specified
to rule out unwanted triples.

Sets R-SOLDP(RO-ET) – data property assertions
– and R-SOLsameAs(RO-ET) – identity assertions on
instances – mentioned in Definition 3.4, are computed
in a similar way.

3.4 The Role of LDscout in PRiSMHA

Figure 1 shows an overview of PRiSMHA architec-
ture, focusing on the role that LDscout plays in it.
We only provide here a very quick sketch of this ar-
chitecture, in order to describe the way we are using
LDscout in the project: a detailed description of the
other mentioned modules is out of the scope of this
paper and can be found in (Caserio et al., 2017).

Exploring RDF Datasets with LDscout

97

The system offers a crowd-sourcing platform ena-
bling users to specify ontology-based formal seman-
tic representations of the content of historical docu-
ments. Following a quite standard approach – e.g.,
(Cybulska and Vossen, 2011), (Sprugnoli and Tonelli,
2016) – such semantic representations are centered on
the notion of event. Basically, events are described by
means of their types, the places where they occur, the
time when they happen and the entities that participate
in them. These representations are based on the His-
torical Event Representation Ontology (HERO) (Ca-
serio et al., 2017) and are stored in an RDF triplestore.

The crowd-sourcing platform relies on the support
provided by the Information Extraction module and
the LOD mining module. The Information Extraction
module analyzes texts (when available) extracting in-
formation about entities (people, organizations, pla-
ces), which are used to support users in the identifi-
cation of relevant events and participants within the
documents (Rovera et al., 2017).

Figure 1: The role of LDscout in PRiSMHA architecture.

The LOD mining module queries LOD datasets
in order to get more information about the entities
identified by users in the documents. For example,
if the user is reading a text about CGIL (the Italian
General Confederation of Labour), and needs some
more information about it, the LOD mining module

can get such information from DBpedia (dbpedia.org)
and provide it to the user. The retrieved information
(e.g., that the acronym means ”Confederazione Ge-
nerale Italiana del Lavoro”, that it is an Italian Trade
Union, and it was founded in June 1944, etc.) is re-
presented as a set of RDF triples, expressed in terms
of the HERO vocabulary, so that it can be immedia-
tely used to enrich the semantic representation under
construction on the crowd-sourcing platform.

In order to query LOD datasets and get results
immediately usable on the PRiSMHA platform, the
LOD mining module exploits LDscout APIs. For
configuring the suitable Exploration Task in such a
way that ensures results (Exploration Task Soluti-
ons) in terms of HERO, the LOD mining module re-
lies on a set of mappings between: (a) HERO clas-
ses/properties and the vocabulary used in the selected
dataset; (b) instances in the PRiSMHA triplestore and
instances in the selected dataset. In the current proof-
of-concept prototype, such mappings ensure intero-
perability with DBpedia and they have been manu-
ally encoded. However, if ontological mappings (i.e.,
those concerning classes and properties) can be seen
as part of the design and implementation of the onto-
logy interoperability, for instance mappings automa-
tic tools such as LIMES (see Section 2) should be ta-
ken into account, in order to guarantee the scalability
of the approach.

The RDF dataset produced by the crowd-sourcing
platform is accessible through a standard SPARQL
endpoint. However, in order to hide SPARQL com-
plexity, providing a much easier to use interface, the
dataset can also be accessed through a RESTful ser-
vice, implemented thanks to LDscout APIs. In this
case, the Exploration Task is defined on the dataset
containing the semantic representation produced by
the platform, enabling software clients to easily confi-
gure their queries with different sets of HERO classes
and properties, and different sets of instances.

The availability of a RESTful service to access the
semantic representations greatly simplifies the exploi-
tation of the PRiSMHA dataset by third-party appli-
cations that aims at exploiting our data for different
purposes, ranging from history-aware tourist guides
to education-oriented tools.

4 CONCLUSIONS

In this paper, we presented a general model handling
exploration tasks over datasets and we described its
instantiation in LDscout, a Java library for querying
RDF triplestores by specifying the vocabulary (onto-
logy) and the set of instances the client is interested

KMIS 2018 - 10th International Conference on Knowledge Management and Information Sharing

98

in.
To assess the usefulness of LDscout, we also sho-

wed how we used it within the PRiSMHA platform.
With respect to this usage, the first improvement we
are working on concerns the mappings between in-
stances in our triplestore and instances in LOD sets:
we are investigating the exploitation of automatic
instance mapping tools, such as LIMES (Ngonga-
Ngomo and Auer, 2011) in order to overcome the
work overload of manually encoding such mappings.

Moreover, an interesting enhancement is represen-
ted by endowing LDscout with a friendly web-based
user interface, available for human users, and not only
for software clients.

ACKNOWLEDGEMENTS

This work has been partially supported by Compag-
nia di San Paolo and Università di Torino within the
PRiSMHA project.

REFERENCES

Alexiev, V. (2016). Linked Open Data for cultural heritage
and digital humanities. Ontotext Blog, September 28.

Berners-Lee, T., Hollenbach, J., Lu, K., Presbrey, J., Prud-
hommeaux, E., and Schraefel, M. M. C. (2008). Ta-
bulator redux: Browsing and writing linked data. In
Proc. LDOW 2008.

Caserio, M., Goy, A., and Magro, D. (2017). Smart access
to historical archives based on rich semantic metadata.
In Proc. KMIS 2017, pages 93–100. SciTePress.

Cybulska, A. and Vossen, P. (2011). Historical event ex-
traction from text. In Proc. LaTeCH 2011, pages 39–
43.

Edelstein, J., Galla, L., Li-Madeo, C., Marden, J., Rho-
nemus, A., and Whysel, N. (2013). Linked Open
Data for cultural heritage: Evolution of an information
technology. In Proc. 31st ACM International Confe-
rence on Design of Communication. Association for
Machine Computing.

Fafalios, P. and Tzitzikas, Y. (2013). X-ENS: Semantic en-
richment of web search results at real-time. In Proc.
SIGIR 2013, pages 1089–1090.

Goy, A., Damiano, R., Loreto, F., Magro, D., Musso, S.,
Radicioni, D., Accornero, C., Colla, D., Lieto, A.,
Mensa, E., Rovera, M., Astrologo, D., Boniolo, B.,
and D’ambrosio, M. (2017). Prismha (providing rich
semantic metadata for historical archives). In Proc.
Contextual Representation of Objects and Events in
Language (CREOL 2017).

Goy, A., Magro, D., and Rovera, M. (2015). Ontologies and
historical archives: A way to tell new stories. Applied
Ontology, 10(3-4):331–338.

Graub, M. A. N. B. C., Kharlamovb, E., Marciuška, S., and
Zheleznyakov, D. (2016). Faceted search over RDF-
based knowledge graphs. Web Semantics: Science,
Services and Agents on the World Wide Web, 37-
38:55–74.

Haag, F., Lohmann, S., Siek, S., and Ertl, T. (2015). Visual
querying of linked data with QueryVOWL. In Joint
Proc. SumPre 2015 and HSWI 2014-2015. CEUR.

Hahn, R., Bizer, C., Sahnwaldt, C., Herta, C., Robinson,
S., Bürgle, M., Düwiger, H., and Scheel, U. (2010).
Faceted Wikipedia search. In Proc. BIS 2010, pages
1–11.

Heath, T. and Bizer, C. (2011). Linked Data: Evolving the
Web into a Global Data Space. Morgan & Claypool.

Heim, P., Ertl, T., and Ziegler, J. (2010). Facet graphs:
Complex semantic querying made easy. In Proc.
ESWC 2010, pages 288–302.

Heim, P., Ziegler, J., and Lohmann, S. (2008). gfacet: A
browser for the web of data. In IMC-SSW 2008, pages
49–58.

Hildebrand, M., van Ossenbruggen, J., and Hardman, L.
(2006). /facet: A browser for heterogeneous semantic
web repositories. In Proc. ISWC 2006, pages 272–
285.

Huynh, D. F. and Karger, D. R. (2009). Parallax and com-
panion: Set-based browsing for the data web. In Proc.
WWW 2009. ACM.

Hyvönen, E., Mäkelä, E., Salminen, M., Valo, A., Viljanen,
K., Saarela, S., Junnila, M., and Kettula, S. (2005).
Museumfinland - finnish museums on the semantic
web. Journal of Web Semantics, 3(2-3):224–241.

Kurki, J. and Hyvönen, E. (2010). Collaborative metadata
editor integrated with ontology services and faceted
portals. In Proc. ORES 2010.

Navarro, J. F. G., Villamar, V. A. L., Srinivasan, J., Perry,
M., Das, S., and Wu, Z. (2015). Exploring large RDF
datasets using a faceted search. In Proc. ISWC 2015 -
Posters and Demos. CEUR.

Ngonga-Ngomo, A. C. (2012). On link discovery using a
hybrid approach. Journal on Data Semantics, 1:203–
217.

Ngonga-Ngomo, A. C. and Auer, S. (2011). LIMES - a
time-efficient approach for large-scale link discovery
on theweb of data. In Proc. IJCAI 2011, pages 2312–
2317.

Ngonga-Ngomo, A. C., Auer, S., Lehmann, J., and Zaveri,
A. (2014). Introduction to linked data and its lifecycle
on the web. In Koubarakis, M., Stamou, G., Stoilos,
G., Horrocks, I., Kolaitis, P., Lausen, G., and Weikum,
G., editors, Proc. Reasoning Web 2014, LNCS 8714,
pages 1–99. Springer.

Ouksili, H., Kedad, Z., Lopes, S., and Nugier, S. (2016).
Pattern-based keyword search on RDF data. In Proc.
ESWC Satellite Events 2016, pages 30–34.

Potoniec, J., Jakubowski, P., and Ławrynowicz, A. (2017).
Swift linked data miner: Mining OWL 2 EL class ex-
pressions directly from online RDF datasets. Web Se-
mantics: Science, Services and Agents on the World
Wide Web, 46-47:31–50.

Exploring RDF Datasets with LDscout

99

Rovera, M., Nanni, Ponzetto, S. P., and Goy, A. (2017).
Domain-specific named entity disambiguation in his-
torical memoirs. In Proc. CLiC-it 2017. CEUR.

Russell, A. and Smart, P. R. (2010). NITELIGHT: A graphi-
cal editor for SPARQL queries. In Proc. ISWC 2008 -
Posters and Demos.

Soylu, A., Giese, M., Jimenez-Ruiz, E., Vega-Gorgojo, G.,
and Horrocks, I. (2016). Experiencing optiquevqs: a
multi-paradigm and ontology-based visual query sy-
stem for end users. Universal Access in the Informa-
tion Society, 15(1):129–152.

Sprugnoli, R. and Tonelli, S. (2016). One, no one and
one hundred thusand events: Defining and processing
events in an inter-disciplinary perspective. Natural
Language Engineering, 23(4):485–506.

Tunkelang, D. (2009). Faceted Search, Synthesis Lectu-
res on Information Concepts, Retrieval, and Services.
Morgan & Claypool.

Tzitzikas, Y., Manolis, N., and Papadakos, P. (2017). Face-
ted exploration of RDF/S datasets: A survey. Journal
of Intelligent Information Systems, 48(2):329–364.

Vega-Gorgojo, G., Giese, M., and Slaughter, L. (2017). Ex-
ploring semantic datasets with RDF surveyor. In Proc.
ISWC 2017 - Posters and Demos and Industry Tracks.

Vega-Gorgojo, G., Slaughter, L., Giese, M., Heggestøyl, S.,
Klüwer, J. W., and Waaler, A. (2016). Pepesearch:
Easy to use and easy to install semantic data search.
In Proc. ESWC 2016 Satellite Events, pages 146–150.

Volz, J., Bizer, C., Gaedke, M., and Kobilarov, G. (2009).
Discovering and maintaining links on the web of data.
In Proc. ISWC 2009, pages 650–665.

W3C (2012). OWL 2 Web Ontology Language primer (se-
cond edition).

W3C (2013). SPARQL 1.1 overview.
W3C (2014). RDF 1.1 primer.

KMIS 2018 - 10th International Conference on Knowledge Management and Information Sharing

100

