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In this paper, we compare and contrast support vector machine (SVM) classifiers to robust hashing based

strategies for the malware classification problem. For both the SVM and robust hashing approaches, we
treat each executable file as a two-dimensional image. We experiment with two image-based robust hashing
techniques, one that relies on wavelet analysis, and one that uses distributed coding. For our support vector
machine experiments, we consider an image-based feature that deals with horizontal edges. While the SVM
performs slightly better, there are some potential advantages to robust hashing for malware detection.

1 INTRODUCTION

Malware is software that is intentionally designed to
cause harm to computer systems (Aycock, 2006). Due
to our heavy reliance on computers in general, and
software in particular, malware classification is a vi-
tally important topic in information security. Sig-
nature scanning (i.e., pattern matching) is the most
common form of malware detection, and hence mal-
ware writers have developed many concealment stra-
tegies aimed at defeating standard signature scanning
techniques (Aycock, 2006). These concealment stra-
tegies result in malware families consisting of large
numbers of related variants. Hence, any practical mal-
ware detection or classification strategy must be ai-
med at entire families, rather than individual malware
samples.

Malware classification can be based on static ana-
lysis or dynamic analysis, or a combination of the
two. Static malware analysis relies on features that
can be extracted without executing (or emulating) the
code—mnemonic opcodes are a well-known example
of a static feature (Yewale and Singh, 2016; ?). Dyn-
amic malware analysis considers the behavior of soft-
ware, which requires the software to be executed (or
emulated) when extracting such features. API calls
are a common dynamic feature (Alazab et al., 2010).

In this research, we treat malware samples as
two-dimensional images and extract static featu-
res. We then apply techniques from image robust
hashing (Venkatesan et al., 2000) and machine lear-
ning to analyze the samples based on these features.
Our goal is to compare the effectiveness of a relatively
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straightforward and intuitive machine learning techni-
que to robust hashing based strategies. The authors
are not aware of any previous research that considers
robust hashing techniques in the context of malware
detection or analysis.

The remainder of this paper is organized as fol-
lows. In Section 2 we discuss relevant background
topics, including treating malware as images, an in-
troduction to robust hashing, the features we consider,
and so on. In Section 3, we give our experimental re-
sults, and provide context for these results. Finally,
Section 4 contains our conclusion and a brief discus-
sion of possible future work.

2 BACKGROUND

In this section, we first motivate the work in this pa-
per, by presenting examples of executable files vie-
wed as images. Next, we give a brief overview of
related previous work, followed by an introduction to
robust hashing. We conclude this section with a dis-
cussion of the various image features we consider, and
an outline of the machine learning technique that we
use.

2.1 Executables as Images

We can treat any binary file as an image by simply in-
terpreting the data as a two-dimensional array of va-
lues and converting to the desired image format. In-
tuitively, we might expect that some common mal-
ware obfuscation techniques can be mitigated by vie-
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wing an executable as an image. That this is indeed
the case is strikingly illustrated in Figure 1, which in-
cludes images corresponding to three samples from
each of three different malware families. For com-
parison, benign executables (as images) appear in Fi-
gure 2.

Figure 1: Images from malware families Agent.FYI (3 left-
most), C2LOP.P (3 top right), and Alueron.gen!J (3 bottom
right).

Figure 2: Examples of benign executables as images.

From the examples in Figures 1 and 2, it appears
that image-based analysis has the potential to be a
strong technique for discriminating between malware
families, and possibly also for discriminating between
malware and benign applications. Furthermore, we
can easily deduce the structure of an executable from
its image. For example, in Figure 3, we can clearly
see the various segments that are present in this exe-
cutable.

2.2 Previous Work

The paper (Nataraj et al., 2011) considers malware
classification based on image analysis, and it is shown
that malware samples from the same family tend to
have similar image characteristics. In (Torralba et al.,
2003), high level image features known as GIST des-
criptors are applied to the malware problem, and
strong results are obtained. The work in (Yajamanam
etal., 2018), builds on previous image-based malware
work and obtains improved results using neural net-
works and transfer learning.
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Figure 3: Code sections corresponding to a malware image.

The paper (Venkatesan et al., 2000) proposed ro-
bust image hashing to handle the proliferation of di-
gital images. This robust hashing technique has many
uses, including image indexing and image authenti-
cation (Lin and Chang, 1998; Schneider and Chang,
1996; Zhao et al., 2013). The robust image hashing
method considered in (Zhao et al., 2013) uses both
global and local features, while (Victor, 1994) pre-
sents a framework for the study of texture perception.

Feature extraction for robust image hashing is
considered in (Monga et al., 2006), where the propo-
sed process consists of feature vector extraction fol-
lowed by compression. The technique in (Venkate-
san et al., 2000) relies on wavelet decomposition for
image feature extraction.

Another example of a novel robust image hashing
technique can be found in the paper (Johnson and
Ramchandran, 2003), where dithering and distributed
source coding form the based for the technique. In
this case, the syndrome serves as the hash value.

2.3 Robust Hashing

There are many types of hashing. For example, cryp-
tographic hash functions have a wide range of uses in
security-related applications, ranging from digital sig-
natures to blockchain technology (Nakamoto, 2009).
A crucial property of a cryptographic hash is colli-
sion resistance, in the sense that it is computationally
infeasible to find distinct inputs that hash to the same
value (Stamp, 2017).

Robust hashing is “robust” in the sense that simi-
lar objects are supposed to hash to the same (or si-
milar) value. Note that this is essentially the oppo-
site of the collision resistance property of a crypto-
graphic hash. Robust image hashing has proven use-



ful in biometric authentication (Sutcu et al., 2005),
image watermark verification (Schneider and Chang,
1996), and image indexing (Venkatesan et al., 2000),
for example.

Again, the goal of robust image hashing is to iden-
tify similar images, that is, similar images should hash
to the same value. As proposed by (Monga et al.,
2006), from a high level, the process consists of ex-
tracting relevant features, generating an intermediate
“hash” value, then applying a compression step to ge-
nerate the final hash value, as summarized in Figure 4.
Note that the purpose of the compression step is to ne-
gate minor differences or remove noise so that simi-
lar intermediate hash values are clustered to the same

group.

Tnput Intermediate

Image Feature Hash Final Hash

— Vector Compression [—*
Extraction

Figure 4: Process of robust hashing.

One approach that has been proposed for the com-
pression step is the use of error-correcting codes (Ven-
katesan et al., 2000). Such codes have the desirable
effect of ignoring small perturbations. A related ap-
proach can be found in (Johnson and Ramchandran,
2003), where a distributed source coding is consi-
dered. In this paper, we experiment with both of
these techniques for the compression step. For the
error-correcting code case, we use a simple Hamming
code (Hamming, 1950).

Hamming codes are a class of linear error-
correcting codes. Here, we use the Hamming(7, 4)
code, a popular configuration with 4 data bits and 3
parity bits, which enables us to correct any 1 bit error.

Distributed source coding (DSC) reduces the com-
putational burden of encoding (Pradhan and Ram-
chandran, 2003). Here, we employ a Wyner-Ziv
encoder as developed and discussed in (Wyner and
Ziv, 1976). A detailed discussion of DSC is beyond
the scope of this paper; for additional information,
see (Johnson and Ramchandran, 2003), for example.

2.4 Image Features

Image features can be categorized as either local or
global. In this paper, we employ two local features
and six global features. The local features we consi-
der are the following.

Local Binary Pattern (LBP) is a well-known tex-
ture descriptor that is widely used in facial recog-
nition (Ahonen et al., 2006). The LBP is found by
extracting the local pixel contrast, relative to each
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pixel. The resulting histogram serves as the LBP
feature vector.

Histogram of Oriented Gradient (HOG) is another
texture descriptor that is wildly used due to its ro-
bustness (Dalal and Triggs, 2005). Whereas LBP
is based on contrast, HOG is based on the local
gradient.

In contrast to local features, global feature are fo-
cused on the entire image instead of local regions.
The global features we consider are the following.

Horizontal Edges is a feature that has been used in
many digital image processing applications. Ba-
sed on the executable images in Figure 1, for ex-
ample, it appears that a horizontal edge feature
will be relevant for the malware classification pro-
blem considered here.

Specifically, we extract the distribution of hori-
zontal edges from the edge magnitudes. Figure 5
illustrated this process. Note that we apply a low-
pass filter, which serves to enhance the edges.

We then project the edge map magnitudes onto
a one-dimensional space. Figure 6 illustrates the
projection we obtain from the graph in Figure 7.
We give a side-by-side comparison of the image
and its horizontal edge projection in Figure 6.

Pixel Intensity is a useful global feature. This fea-
ture consists simply of a histogram of pixel inten-
sities over the entire image.

Contrast is one of the most widely used features.
The contrast tells us the variability in the bright-
ness over an image.

Median Filter consists of low-pass filters with vari-
ous noise reduction techniques applied. A median
filter is designed to preserve edges while smoo-
thing the image and hence this feature appears to
be a good candidate for the malware image analy-
sis problem.

Frequency Distribution is based on quantized dis-
crete cosine transformation (DCT) coefficients.
This feature measures the overall variability in the
frequency domain.

Wavelet Transform can be used to generate featu-
res based on a series of different image resoluti-
ons (Daubechies, 1990). Roughly speaking, wa-
velet transforms enable us to analyze the signal
in the frequency domain, while retaining tempo-
ral information. For our purposes, we decompose
the image to several sub-bands as illustrated in Fi-
gure 8. We then compute statistical features from
each band. For example, we compute the mean
pixel value on the coarse band and the variance
on the fine band.
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Figure 5: Horizontal edge feature extraction.
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Figure 6: Horizontal edge magnitude feature vector.
2.5 Support Vector Machines

We compare our robust hashing technique to a ma-
chine learning classifier. For our machine learning ex-
periments, we have chosen to use a support vector ma-
chine (SVM) (Cristianini and Shawe-Taylor, 2000).
SVMs are well-known and widely used in many dom-
ains.

An SVM classifier attempts to determine a se-
parating hyperplane where the margin (i.e., the mi-
nimum distance from the separating hyperplane to
either class) is maximized. However, the data itself
need not be linearly separable, in which case no se-
parating hyperplane exists in the input space. In the
SVM technique, we can shift the problem to a hig-
her dimensional feature space by using a non-linear
transformation via the so-called kernel trick. By mo-
ving to a higher dimension, there is a much greater
chance that the training data will be linearly separa-
ble. The real beauty of SVMs is that we pay virtually
no computational penalty for working in this higher
dimensional feature space.
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3 EXPERIMENTS

In this section, we give our experimental results. We
apply three versions of robust hashing to the malware
classification problem. For comparison, we also ap-
ply an SVM to the same malware classification pro-
blem. But first, we discuss our dataset.

3.1 Dataset

For the experiments in this paper, we use the Malimg
dataset (Nataraj et al., 2011). As can be seen in Ta-
ble 1, this dataset consists of 9,342 grayscale images
representing binaries from 25 malware families of a
variety of different types. Figure 9 gives examples of
images found in this dataset.

Here, we deal with the problem of classifying the
Malimg images into their 25 families. First, we con-
sider an SVM, then we apply robust hashing techni-
ques.

3.1.1 SVM for Classification

We extracted the features discussed in Section 2.4 for
each of the malware images in the Malimg dataset.
For all experiments discussed here, we use five-fold
cross-validation, that is, we randomly partition the
samples into five equal sized sets, Si,52,93,54,S5.
In the first “fold,” we train on sets S3,S53,54,S5, re-
serving S for testing; in the second fold, we train
on S1,83,54,85, reserving S, for testing, and so on.
Cross validation serves to minimize any bias in the
data, while also maximizing the number of test cases.

Figure 10 gives our results for the classification
problem using an SVM based on the edge feature,
as discussed in Section 2.4. In this case, we obtain
an overall classification accuracy of about 84% if we
consider the per family average. On the other hand,
the classification accuracy is over 93% on a per sam-
ple basis, indicating that some of the less numerous
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Figure 7: Horizontal edge feature vector and image.
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Figure 8: Sub-bands of wavelet decomposed image.

(a)Instantaccess (b)Yuner.A (c)Obfuscator. AD (d)Skintrim

(e) Fakerean (f) Wintrim.BX (g) VBAT (h) Allaple. A

(i) Agent.FYI (j) Dialplatform.B

(k) Dontovo.A (1) Rbot.gen

(o) Azero.A

(m)Alueron.gen!J (n) Adialer.C (0) Malex.gen!J

Figure 9: Malimg examples.

families are among those that are most difficult to dis-
tinguish. Furthermore, these results show that only a
relatively small number of families are not classified

Table 1: Malimg Dataset.

Family Type Samples
1 Adialer.C Dialer 125
2 Agent.FYI Backdoor 116
3 Allaple.A Worm 2949
4 Allaple.L Worm 1591
5 Alueron.gen!J Trojan 198
6 Autorun.X Worm 106
7 C2LOP.gen!G Trojan 200
8 C2LOP.P Trojan 146
9 Dialplatform.B Dialer 177
10 Dontovo.A Trojan DL 162
11 Fakerean Rogue 381
12 Instantaccess Dialer 431
13 Lolyda.AA 1 PWS 213
14 Lolyda.AA 2 PWS 184
15 Lolyda.AA 3 PWS 123
16 Lolyda.AT PWS 159
17 Malex.gen!J Trojan 136
18 Obfuscator.AD  Trojan DL 142
19 Rbot !gen Backdoor 158
20 Skintrim.N Trojan 80
21  Swizzor.gen!E  Trojan DL 128
22 Swizzor.gen!I  Trojan DL 132
23 VB.AT Worm 408
24 Wintrim.BX Trojan DL 97
25 Yuner.A Worm 800

with high accuracy. For example, if we remove the
seven families with the lowest accuracy from the set
of 25 families, then we obtain an accuracy in excess
of 98%. Overall, these results show that a simple and
intuitive horizontal edge feature is extremely useful
for this image-based malware classification problem.

Having determined appropriate parameters for the
features, we now consider the problem of feature ana-
lysis. Specifically, we consider the tradeoff between
the features used and accuracy. We apply both univa-
riate feature selection (UFS) and recursive feature eli-
mination (RFE). UFS simply consists of testing each
feature independently and ranking them based on the
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Figure 10: Classification accuracy using SVM.

accuracy of the resulting models. In RFE, we remove
the lowest performing feature, based on linear SVM
weights, then retrain the SVM on the reduced feature
set. We generally expect RFE to be somewhat more
reliable, as it accounts for the interactions between fe-
atures.

Figure 11 depicts our UFS results for our global
image features in the form of a bar graph. Perhaps not
surprisingly, the horizontal edge feature outperforms
all other features.

All features
100

90

80 -

Accuracy

701

60 -

1 2 3 4 5 6
Number of feature groups

Figure 11: UFS results based on accuracy.

We further analyze the horizontal edge feature
using RFE. Recall that this edge feature is 256 dimen-
sional. When we apply RFE to this specific feature,
we obtain the results in Figure 12. In this case, we
find that by using 169 of the 256 dimensions, we can
obtain optimal accuracy. We use this 169 dimensional
set of horizontal edge features in the subsequent SVM
experiments.

Using an SVM and the reduced horizontal edge
feature as discussed above, we have achieved a clas-
sification accuracy of 92% for the 25 families in the
Malimg dataset. Figure 13 gives confusion matrix (in
the form of a heatmap) for this experiment. Note that
in this figure, the families are numbered as in Table 1.
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Figure 12: RFE result on horizontal edge feature.
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Figure 13: Confusion matrix for SVM as a heatmap.

Next, we apply two different robust hashing ap-
proaches to the malware classification problem. Re-
call that the robust hashing problem consists of fe-
ature vector extraction, followed by a compression
step. In this research, we implement and test the
image robust hashing technique from (Venkatesan
et al., 2000), and the technique from (Johnson and
Ramchandran, 2003), as well as a combined model.

3.1.2 Robust Hashing based on Wavelets

The robust hashing technique that is given in (Ven-
katesan et al., 2000) uses wavelet based analysis and
an error-correcting decoder. In our implementation,
we extract statistical information from different fre-
quency bands and group together similar feature vec-
tors based on an error-correcting decoder. Specifi-
cally, we use a 2-dimensional Haar wavelet transform
and a five level decomposition. We then use a scalar
quantization to normalize the feature vector over 128
levels. After all of these wavelet based features are
acquired, we use a Hamming(7, 4) decoder to “cor-
rect” the sequence of quantized 7-bits values, thus ge-
nerating a vector that represents an image family.
Classification results using this approach are sum-
marized in Figure 14, where we obtain an overall
accuracy of 79%. Although this is significantly lower
than the 92% accuracy we obtained with an SVM, if



we limit the analysis to the top 19 of the 25 families,
we have a comparable accuracy of 90%, while with 11
families we can attain well over 95% accuracy.

Avg. = 79.49% (families)
Avg. = 78.71% (samples)
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Figure 14: Classification result for wavelet approach.

3.1.3 Robust Hashing based on Distributed
Coding

Next, following the general approach considered in
the paper (Johnson and Ramchandran, 2003), we
apply a distributed coding technique to the robust
hashing problem. As implemented in the rese-
arch (Varodayan et al., 2007), we have employed a
Wyner-Ziv encoder based on DCT compression, and
we use a Hamming code to produce a syndrome. The
syndrome serves as the final robust hash value.

For this approach, we achieve slightly over 83%
classification accuracy for all 25 families. Recall that
the wavelet based approach was only able to attain
about 79% accuracy. This is a significant impro-
vement, but still not on par with the SVM results
which achieved an accuracy of more than 92%.

Avg. = 82.63% (families)
Avg. = 83.58% (samples)
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Figure 15: Classification result for distributed coding ap-
proach.
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3.1.4 A Mulitphase Approach to Robust
Hashing

From the robust hashing classification results above,
we observe that for most families, one approach is
more accurate than the other. For example, the family
Autorun.k is classified well by the wavelet based clas-
sifier, but poorly by the distributed coding based clas-
sifier. Here, we combine both our wavelet based and
our distributed coding based robust hashes—we refer
to the resulting combination as a multiphase robust
hash.

Intuitively, we can combine our two robust
hashing techniques by scoring with both techniques,
and in cases where the classifications disagree, we
select the classification with the higher accuracy for
its model. Figure 16 gives our results for this mul-
tiphase approach. Note that we achieve an accuracy
above 87% over all 25 families, and we can attain an
accuracy above 90% by discarding only one family.
While this is not quite as strong as the 92% accuracy
that we achieved with an SVM, it is comparable.

Avg. = 88.06% (families)
Avg. = 87.28% (samples)
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Figure 16: Classification result for multiphase approach.

Finally, Figure 17 compares the classification
accuracy for the three robust hashing techniques con-
sidered. As with all of our classification experiments,
these results are based on the 25 families in the Ma-
limg dataset.

4 CONCLUSION

In this paper, we considered the problem of classi-
fying images corresponding to 25 malware families.
We compared a straightforward SVM classifier based
on a simple and intuitive horizontal edge feature to
robust hashing techniques. For the SVM, we care-
fully considered feature analysis issues, while for the
robust hashing case, we experimented with three ap-
proaches. Overall, an optimized SVM performed so-
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Figure 17: Comparison of robust hashing approaches.

mewhat better, but our best robust hashing results are
comparable. With respect to robust hashing, we find
that these techniques perform better than the SVM on
most families, but a few malware families are extre-
mely difficult to classify. In contrast, the SVM yields
more consistent results over the 25 families.

In spite of the slightly lower accuracy, there are
some potential advantages to robust hashing. Per-
haps the biggest of these advantages is that in ro-
bust hashing, it is easy to add new families as they
appear—we simple generate a syndrome (which, in
effect, defines a cluster) for the new family and the re-
mainder of the robust hashing classification model is
unchanged. In contrast, for an SVM, we would need
to retrain the model each time a new family is added.
For large problems, the SVM training cost—in terms
of both time and computational resources—would be
substantial.

It appears that malware analysis is a novel appli-
cation of robust hashing. And it is worth noting that
robust hashing is a fairly general and somewhat amor-
phous concept. Hence, a multitude of variations on
robust hashing can be considered. In addition to tes-
ting some of the many different possible forms or ro-
bust hashing, future work could include an analysis of
additional features. We could also obtain a more fine-
grained view by analyzing each section of an executa-
ble (i.e., .text, .rdata, and so on) separately. In ad-
dition, hybrid classification techniques involving ro-
bust hashing and any of a variety of machine learning
techniques would be an interesting topic for further
research. For example, we could apply various ro-
bust hashing techniques to a variety of image features,
then apply a machine learning classifier to the results
of these robust hashing algorithms.

Within the robust hashing paradigm, it would be
worthwhile to experiment with more sophisticated co-
ding techniques, such as Reed-Muller codes or trellis-
coded modulation (TCM). Another type of hybrid
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model would consist of using non-coding based com-
pression strategies within a robust hashing scheme—
techniques such as K-means, EM clustering, k-nearest
neighbor, and Gaussian mixture models, for exam-
ple, would fit naturally within a robust hashing fra-
mework.
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