
Method for the Development of Recommendation Systems,
Customizable to Domains, with Deep GRU Network

Arseny Korotaev1 and Lyudmila Lyadova2
1Department of Computer Science, Perm State National Research University, Perm, Russia

2Department of Information Technologies in Business, National Research University Higher School of Economics,
Perm, Russia

Keywords: Deep Learning, Knowledge-based Recommender System, Ontology, Customization, GRU.

Abstract: The GRU-based recurrent neural networks (RNN) for constructing recommendation systems are proposed.
Such systems are mainly developed by large companies for specific domains. At the same time, small
companies don’t have the necessary resources to develop their own unique systems. Therefore, they need
universal recommendation system (or recommender platform) automatically customized for a specific
domain. This system allows to develop own recommendation system from scratch for companies whose
services are under development. The RNN-based approach is proposed for session-based recommendation
with automatically modelling of the domain. This approach is based on the content analysis of the web sites.
Several modifications to classic RNNs such as a ranking loss function that make it more viable for this
specific problem are considered. General scheme of the approach and architecture of the recommendation
system based on proposed scheme are described in this paper.

1 INTRODUCTION

Currently, in the field of information and
communication technologies, there is a need for
systems that can guess the preferences and needs of
users and offer suitable solutions. Such systems are
named recommendation systems and have a lot of
applications (Carlos, 2016).

Large companies such as Amazon, Apple, eBay,
Yandex, etc., use recommendation systems as part of
their products to offer relevant information to users.
Recommendations are formed based on individual
preferences of the user. This approach simplifies
user work with a large amount of data, helps to
reduce the time search for the desired solution,
ensuring the receipt of relevant information.

Such systems are mainly developed by large
companies to solve specific domain problems:
Amazon developed its system for the sale of
physical goods, Netflix for video content. At the
same time, small companies don’t have the
necessary resources to develop their own unique
systems. Therefore, there is a need for universal
recommender platform that are automatically
customized for a specific domain, this will help to
solve the problem of the need to develop own
recommendation system from scratch for companies

whose services are under development.
The development of recommendation systems is

based on the generally accepted methods of machine
learning, so we can formulate the task of developing
a universal solution based on these methods. The
adjustment for the subject area can be performed by
automatically modeling the subject area based on the
content analysis of the web site.

A recommendation system adapted to a specific
subject area should be based not only on the model
of the recommendation system, its subject area and
data collection tools, but also include data analysis
tools that must ensure compliance with the
requirements guaranteeing the quality of the results:
relevance, uniqueness, completeness, structuredness,
lack of redundancy, etc. Only with the availability of
qualitative data is it possible to make decisions that
most fully meet the needs of companies and users.

2 BACKGROUND

There are some software decisions for the
development of recommendation systems:

 Services with the module of recommendations
for a certain data domain. Such approach is

Korotaev, A. and Lyadova, L.
Method for the Development of Recommendation Systems, Customizable to Domains, with Deep GRU Network.
DOI: 10.5220/0006933302310236
In Proceedings of the 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2018) - Volume 2: KEOD, pages 231-236
ISBN: 978-989-758-330-8
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

231

Table 1: Comparing of the existing decisions for recommendation system development.

Evaluation criterion

Recommendation
systems as a part of

the completed
services

Research prototype
(Unresyst)

Libraries
(Crab, LensKit,

RankSys)
Prediction IO

Universality 0 2 1 2

Ability to integrate 0 0 0 1

Existence of components
for data collection

2 0 0 0

Existence of the data
analysis module

1 0 0 0

Accessibility 0 0 2 2

used, for example, in Apple, Netflix, Amazon
and other companies.

 The research projects aimed at creation of the
universal platform ensuring functioning with
different data domains (Unresyst).

 Different libraries used by developers for
creation of the own recommendation system.

 The universal recommendation system
(Apache Prediction IO) as the completed
software product.

Comparing of the existing decisions is given in
table 1.

The following scale for estimation of decisions is
used: 0 – the decision does not perform the specified
function; 1 – the decision partially performs the
specified function; 2 – the decision completely
performs the specified function.

Comparing shows that Prediction IO most of all
meets the delivered requirements: it can be used as
the module which is built in the systems of third-
party developers. However it is not integrated
completely with the main service. Besides, there are
no modules for the data storing and analysis which
are necessary during creation of recommendation
system (the completed services having the module of
recommendations surely have also these means).

Thus, revealed at the existing solutions of
restriction specify relevance of the universal
recommendation system development.

Recommendation system is used for estimating
users’ preferences on items they have not seen
(Duchi, 2011). There mainly exist three types of
recommendation tasks based on the forms of
outputs: rating prediction, ranking prediction (top-n
recommendation) and classification.

Two main elements are involved in
recommendations:
 Recommender elements. Elements can be

characterized by complexity, value or utility.

The value of an element can be positive, if the
element is useful to the user, or negative, if the
element does not fit it.

 Users. Users can have different goals and
characteristics. The central role is played by
the user model.

Transaction is a record of the interaction
between the user and the system, a kind of logs
necessary for the system to issue recommendations.
For example, a transaction can contain a record of an
item selected by the user and a context description.
Additionally, it may contain a user feedback (rating
of the selected item).

The main classes of recommendation systems
based on different approaches described below.

The system based on content recommends items
that are similar to those that the user liked in the past
(Chen, 2017). The similarity of elements is
calculated on the basis of features related to the
characteristics of the compared elements. For
example, if a user appreciates a movie that belongs
to the genre of comedy, the system will recommend
other films from this genre.

The easiest way to implement collaborative
filtering approach is to recommend the user elements
that other users with similar tastes liked in the past.
The similarity of the taste of two users is calculated
on the basis of the similarity in the history of the
user rating. Collaborative filtering is considered to
be the most popular and widely applied method in
advisory systems (Deng, 2017; He, 2016).

The “demographic” system recommends items
based on the user's demographic profile. It is assumed
that various recommendations should be created for
different demographic niches. Many websites adopt
simple and effective solutions based on the
personalization of demographics. For example, users
are redirected to special departments of websites
based on their language or country or the offer can be

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

232

customized according to the age of the user.
Knowledge-based systems recommend elements

based on specific knowledge of the domain, about
how some elements meet the needs and preferences of
users and, ultimately, how the element is useful to the
user. In these systems, the similarity function assesses
whether the user's needs (problem description)
correspond to the recommendation (task solution).
Here the similarity can be directly interpreted as the
utility of the recommendation for the user.

The “social” system recommends items based on
the preferences of the user's friends. This method
follows the rule "Tell me who your friends are, and
I'll tell you who you are". Experience shows that
people tend to rely more on recommendations from
their friends than on recommendations from similar,
but anonymous individuals (Carlos, 2016). This
observation, combined with the growing popularity
of social networks, generates a growing interest in
systems of this kind. This type of system receives
information about the social relationships of users
and the preferences of the user's friends. The
recommendation is based on a ranking that has been
exhibited by the user's friends.

The hybrid system (Yi Zuo, 2016) is based on a
combination of methods described above.

The above approaches have become widespread
and have proved themselves well. However, there
are more modern solutions. In this work we use
recurrent neural networks of the GRU (Gated
Recurrent Unit) type. Such networks are well suited
for creating a model for predicting the next event
along the chain of previous ones.

3 ARCHITECTURE OF THE
RECOMMENDATION SYSTEM

The recommendation system consists of the
following main components:
 Data collection and processing module.
 Module of data mining and recommendations

generation.
This architecture should also provide an open

API for integration with the user’s service.
The main components of the recommendation

system architecture are shown in Figure 1.

Figure 1: The recommendation system architecture: main components.

Method for the Development of Recommendation Systems, Customizable to Domains, with Deep GRU Network

233

3.1 Data Collection and Processing
Module

The requirements for the module are following:
 The module must have a programming

interface (API) for receiving events from
clients.

 The module must have an events store.
 The system must quickly process data having

an exponential increase.
Let describe the above scheme in more detail.
The system has a client-server architecture.

Clients are "thin". Client must have at least two
modules:
 Data collection module. Implements

collection and sending of data about the user's
behaviour on the server.

 Content presentation module. Individual for
each client. The user ID asks the
recommended content from the server.

Clients interact with the server using the REST
protocol.

The server consists of API-part that implements
a micro-service architecture and a data processor
based on Keras.

There are two API services:
 Data collection receives data from clients and

sends it to the non-relational database
management system HBase.

 Inquiry accepts requests from customers for
recommendations.

Modules functions are:
 Data preparation, algorithm: data preparation

and model training takes place in this section.
The data is selected from HBase and the Data
Preparatory module step by step turns the data
into a “working” format, generates the
behaviour patterns given to the Algorithm
module, produces system training and user
model formation.

 Portraits store user models.
 Serving module accepts requests and gives

recommendations.

3.2 Data Mining Module

Traditional neural networks have a significant
limitation – they cannot remember information. For
example, if the task is to classify what is happening
in every frame of the film, then the classical neural
network will not be able to use its previous
conclusions for further solutions. Recurrent

networks are aimed at correcting this shortcoming,
since they contain cycles that allow to store
information.

The same task is also in the recommendation
systems. A certain history of interaction with the
user accumulates. This information is important for
constructing an accurate recommendation. The
method based on recurrent networks is flexible and
allows you to use any information about the objects
of interest. In addition, importantly, the sequence of
views is taken into account, which allows you to
give preference to the latest events and, at the same
time, adequately respond to a sharp change in mood.
Another important plus is to get new
recommendations user does not need to recalculate
the model, he can get answers in real time.

There are two types of recurrent networks
(Xie, 2016):
 LSTM (Long short-term memory). Long-term

memory is a kind of recurrent neural networks
capable of memorizing long-term
dependencies. They were introduced by Sepp
Hohrater and Jürgen Schmidhuber in 1997.
LSTM networks were developed to address
the problem of long-term dependencies.
Remembering information for a long time is
one of the main features of these networks,
which does not require long-term training.

 GRU (Gated Recurrent Unit). Recurrent
module with closures. Introduced by Cho,
et al. (2014). This approach combines the
"forget" valves and the input valves into a
single update valve. The resulting model is
simpler than the classical LSTM model.

If we compare models, then:
 GRU is less redundant, is trained 20-30%

faster.
 The GRU almost always exceeds the LSTM in

terms of work quality. At the same time it was
shown that with a certain initialization of the
LSTM cell we have almost no quality
difference. But in fact, even with this
initialization, the GRU is often better.

3.3 Ontology based Knowledge
Representation Module

Ontologies are now regularly used in
recommendation systems in combination with
machine learning, statistical, user profiling and
specific domain heuristics. Commercial
recommendation systems usually either support
simple product ontologies (e.g. books) that can then

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

234

be used with heuristics or have a large community of
users actively evaluating content (for example,
movies) suitable for collaborative filtering. More
research-oriented systems of recommendations use a
much wider range of methods that offer advantages
such as improved accuracy combined with
constraints such as feedback requirement or
intrusive monitoring of user behavior over long
periods of time (Middleton, 2009).

Ontology is a powerful tool for profiling users.
Ontology can contain all sorts of useful knowledge
about users and their interests, for example, related
to scientific subjects, technologies underlying each
subject area, projects over which people work, etc.
This knowledge can be used to bring out more
interests than it can be seen simply by observation.

We try to use inference to improve user profiles.
Is-relationships in the thematic ontology are used to
evoke interest in more general topics of the
superclass. This conclusion has the effect of
rounding profiles, making them more inclusive and
tuning them to the broad interests of the user.

We try to apply time decay to the observed
behavior events for the formation of the main
profile. Then the output is used to enhance the
profile of interests, with the 50% output rule applied
to all ontological relationships, up to the root class,
for each observed event.

The events of interest were chosen to balance the
feedback in favor of explicitly provided feedback,
which is likely to be the most reliable. The value of
the 50% output was chosen to reflect a decrease in
confidence that you are deviating from the observed
behavior that you are moving. Determining the
optimal values for these parameters will require
further empirical evaluation.

Recommendation systems suffer from a cold
start problem (Middleton, 2009), where the lack of
initial behavioral information significantly reduces
the accuracy of user profiles and therefore
recommendations. This low performance can keep
users from accepting the system, which, of course,
does not allow the system to receive more data about
behavior; it is possible that the recommendation
system will never be used enough to overcome its
cold start.

We try to apply external ontology containing
domain specific data. The knowledge stored in the
external ontology is used to initial load user profiles
in order to reduce the effect of cold start. External
ontology providing a solid basis for communication.
Knowledge stored in an external ontology is used to
determine historical interests for new users, and a
network analysis of ontological relationships is used

to identify similar users whose own interests can be
used to load a new user profile.

3.4 Recommendations with GRU

RNN have been developed to model sequence data.
The main difference between RNNs and ordinary
feed forward deep model is the existence of internal
state unit. Standard RNNs update hidden state with
function ℎ = (− ℎ),
where is logistic sigmoid function of . An RNN
outputs a probability distribution over the next
element of the sequence, given its current state ℎ .

A Gated Recurrent Unit (GRU) is more
advanced model of RNN that aims to solve
vanishing gradient problem. GRU gates essentially
learn when and by how much to update the hidden
state of the unit (Razvan, 2012). The activation of
the GRU is a linear interpolation between the
previous activation and the candidate activation ℎ : ℎ = (1 −)ℎ + 	ℎ ,

where the update gate is given by: = (+ ℎ),
while the candidate activation function ℎ is
computed in a similar manner: ℎ = tanh	(+ (⊙ ℎ)),
and finally the reset gate is given by: (+ ℎ).

We used the GRU-based RNN model for
recommendations. The input of the network is the
current session while the output is the item of the
next event in the session. The state of the session can
either be the item of the actual event or the events in
the session so far. In the former case 1-of-N
encoding is used, i.e. the input vector’s length equals
to the number of items and only the coordinate
corresponding to the active item is one, the others
are zeros. The latter setting uses a weighted sum of
these representations, in which events are discounted
if they have occurred earlier. For the stake of
stability, the input vector is then normalized. We
expect this to help because it reinforces the memory
effect: the reinforcement of very local ordering
constraints which are not well captured by the longer
memory of RNN. We also experimented with adding
an additional embedding layer, but the 1-of-N
encoding always performed better.

The core of the network is the GRU layer(s) and
additional feedforward layers can be added between
the last layer and the output. The output is the

Method for the Development of Recommendation Systems, Customizable to Domains, with Deep GRU Network

235

predicted preference of the items, i.e. the likelihood
of being the next in the session for each item. When
multiple GRU layers are used, the hidden state of the
previous layer is the input of the next one. The input
can also be optionally connected to GRU layers
deeper in the network, this improves performance.
See the whole architecture on Figure 2, which
depicts the representation of a single event within a
time series of events. The final sentence of a caption
must end with a period.

Figure 2: General architecture of the network.

Since recommendation systems are not the
primary application area of recurrent neural
networks, we modified the base network to better
suit the task. We also considered practical points so
that our solution could be possibly applied in a
production environment.

4 CONCLUSION

Theoretical significance of the work is to develop
universal approach to develop recommendation
systems based on data from different domains.

To improve the quality of recommendations we
suggested to use the composition of data analysis
methods, which can efficiently solve the tasks of
clustering, searching for duplicates and associations
in the recommender systems of several regions
spectra.

This approach can be used to develop
recommender platform for groups of domains with
specific requirements, which are difficult to take into
account when developing.

The versatility of the developed system provides
its advantages over other products on the market: the

service can be configured to needs of many
companies operating in various fields, while do not
need the cost of its development. Installation (or
connection with existing service) and tuning can be
carried out in the shortest possible time and does not
require a high qualification of company personnel.

REFERENCES

Carlos, A Gomez-Uribe, Hunt, N., 2016. The
recommender system: Algorithms, business value, and
innovation. ACM Transactions on Management
Information Systems (TMIS). 6, 4 (2016), 13.

Chen, J., Zhang, H., He, X., Nie, L., Liu, W., Chua, T.,
2017. Attentive Collaborative Filtering: Multimedia
Recommendation with Item- and Component-Level
Attention. In: Proceedings of the 40th International
ACM SIGIR conference on Research and Development
in Information Retrieval.

Deng, Sh., Huang, L., Xu, G., Wu, X., Wu Zh., 2017. On
deep learning for trust-aware recommendations in
social networks. IEEE transactions on neural
networks and learning systems. 28, 5.

Duchi, J., Hazan, E., Singer, Y., 2011. Adaptive
subgradient methods for online learning and stochastic
optimization. The Journal of Machine Learning
Research, 12:2121–2159.

He, R., McAuley, J., 2016. Ups and Downs: Modeling the
Visual Evolution of Fashion Trends with One-Class
Collaborative Filtering. In Proceedings of the 25th
International Conference on World Wide Web.

Middleton, S. E., Roure, D. D., Shadbolt, N. R., 2009.
Ontology-Based Recommender Systems. In: Staab S.,
Studer R. (eds) Handbook on Ontologies.
International Handbooks on Information Systems.
Springer, Berlin, Heidelberg

Razvan, P., Tomas, M., Yoshua, B., 2012. On the
difficulty of training recurrent neural networks. arXiv
preprint arXiv:1211.5063.

Xie, R., Liu, Z., Yan, R., Sun, M., 2016. Neural Emoji
Recommendation in Dialogue Systems. arXiv preprint
arXiv:1612.04609.

Zuo, Yi., Zeng, J., Gong, M., Jiao, L., 2016. Tag-aware
recommender systems based on deep neural networks.
Neurocomputing 204 (2016).

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

236

