
Automation of Integration Testing of RESTful Hypermedia Systems:
A Model-driven Approach

Henry Vu, Tobias Fertig and Peter Braun
Faculty of Computer Science and Business Information Systems, University of Applied Sciences Würzburg-Schweinfurt,

Sanderheinrichsleitenweg 20, 97074 Würzburg, Germany

Keywords: REST, Integration Testing, RESTful API, Hypermedia Testing, MDSD, MDE, MDT, Model-driven Testing.

Abstract: The proper design of Representational State Transfer (REST) APIs is not trivial because developers have to
deal with a flood of recommendations and best practices, especially the proper application of the hypermedia
constraint requires some decent experience. Furthermore, testing RESTful APIs is a missing topic within lit-
erature. Especially hypermedia testing is not mentioned at all. Manual hypermedia testing is time-consuming
and hard to maintain. Testing a hypermedia API requires many test cases that have similar structure, espe-
cially when different user roles and error cases are considered. In order to tackle this problem, we proposed
a Model-driven Testing (MDT) approach for hypermedia systems using the metamodel within our existing
Model Driven Software Development (MDSD) approach. This work discusses challenges and results of hy-
permedia testing for RESTful APIs using MDT techniques that were discovered within our research. MDT
allows white-box testing, hence covering complete program structure and behavior of the generated applica-
tion. By doing this, we are able to achieve a high automated test coverage. Moreover, any runtime behavior
deviated from the metamodel reveals bugs within the generators.

1 INTRODUCTION

The Web has become the deployment environment for
software systems and applications. Office productiv-
ity applications and corporate tools such as invoicing,
purchasing and expense reporting systems have mi-
grated to the Web (Taivalsaari and Mikkonen, 2017).
Web APIs have become the vital backbones for these
applications and services. While the number of Web
APIs is increasing, the need for good API design has
become more crucial than ever before. Good APIs
can be among a company’s greatest assets, as cus-
tomers invest heavily in buying, writing and learn-
ing them. However, bad APIs can also be among a
company’s greatest liabilities as they result in never-
ending streams of maintenance and support (Bloch,
2014).

In 2000 Fielding (Fielding, 2000) presented an ar-
chitectural design for building network-based appli-
cations that resemble the Web called REST. REST
style requires that an application server must adhere
to a set of constraints, such as client-server, state-
less, cache, uniform interface, layered system and
hypermedia. An API can be described as RESTful
when making use of every Fielding’s constraint in-

cluding hypermedia (Richardson, 2009). Hyperme-
dia constraint has tree jobs according to (Richardson
et al., 2013): 1) It tells the client how to construct
an HTTP request, what method to use, what URL to
use, what HTTP headers and/or entity-body to send.
2) It makes promises about the HTTP response, sug-
gesting the status code, the HTTP headers, and/or the
data the server is likely to send. 3) It guides the client
through the application workflow given by the server.
Non-hypermedia servers have several problems: a)
If a server does not dynamically generate hyperlinks,
clients are forced to construct these hyperlinks piece
by piece which would require prior knowledge about
the implementation details of the server, b) since there
are no hyperlinks for clients to follow, there is no ap-
plication workflow, thus it is rather a static API and c)
this client-server architecture is tightly coupled and is
likely to break due to changes on either side: If the
server changes the URIs, the clients will break and if
any client is to be modified, the server must remain
the same.

We decided to tackle the challenges of RESTful
API development with a MDSD approach. In 2015
we proposed Generating Mobile Applications with
RESTful Architecture (GeMARA) (Schreibmann and

404
Vu, H., Fertig, T. and Braun, P.
Automation of Integration Testing of RESTful Hypermedia Systems: A Model-driven Approach.
DOI: 10.5220/0006932004040411
In Proceedings of the 14th International Conference on Web Information Systems and Technologies (WEBIST 2018), pages 404-411
ISBN: 978-989-758-324-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



Braun, 2015). Instead of a data-first approach which
uses data models for creating an API, we went for
an API-first approach which aims at a proper API
design first which then automatically creates the un-
derlaying database. The main idea of this project is
to take RESTful API development to a higher level
of abstraction by using a metamodel as input. We
use our own Domain Specific Language (DSL) to de-
scribe a metamodel which is then to be translated into
a RESTful API. This way, we can force consistency
and achieve a higher standard of quality by encapsu-
lating reliable and well-known libraries, frameworks
and RESTful best practices behind our DSL.

We also explored the possibility of MDT (Fertig
and Braun, 2015) and realized the lack of information
about MDT. In general, MDSD processes are very
sensitive to the introduction of defects. Any defect
in a model or a model transformation can be easily
propagated to the subsequent stages, thus causing the
production of faulty software (González and Cabot,
2014). However, MDT is a possible way to achieve
correctness within the generators. Test cases can be
generated from the underlying model. Any deviat-
ing behavior of the application on a runtime environ-
ment could reveal possible bugs within the generators.
Moreover, even third-party frameworks and libraries
can be updated or replaced over time, these generated
test cases can also be used to verify our platform code.
Facing the need for better RESTful API design and
deficits in its quality assurance, we are focusing on
answering the following research questions (RQ):

RQ 1) How to generate appropriate test cases from an
existing metamodel to test role-based behavior
for every application state within a RESTful
API?

RQ 2) How can test cases derived from RQ 1 be ver-
ified automatically on runtime?

RQ 3) Can the proposed approach completely relieve
API developers from integration testing?

2 RELATED WORK

According to Fielding (Fielding, 2008) RESTful sys-
tems must be hypertext-driven, in other words these
systems are to be designed as ε-NFAs. In (Zuzak
et al., 2011) and (Hernández and García, 2010) the
authors also present their ε-NFA formal models for
specifying RESTful APIs based on their understand-
ing. It is important to present a formal model in oder
to assign formal semantics because of the benefits for
formal validation and testing.

The established literature concerning REST such
as (Richardson et al., 2013), (Amundsen, 2017) and
(Webber et al., 2010) reveal little to no information
about its quality assurance. Moreover, hypermedia
testing is not mentioned at all. They explain the pur-
poses of hypermedia, but do not present any approach
to test it. REST API integration testing by sending
HTTP-requests and verifying the received responses
was mentioned in (Webber et al., 2010).

In (Frankel, 2015), the author suggests three dif-
ferent "entry levels" for integration testing: 1) At
HTML level using a WebDriver tool such as Selenium
(Project, 2018) to interact with HTML/CSS elements
such as filling a form or clicking on a button. 2) At
HTTP level by sending HTTP requests and checking
HTTP responses. 3) At controller level by directly
testing the methods. The main idea of this book is
testing must be efficient and economic, thus recom-
mending against a high test coverage and complex
logic. However, our MDT approach enables automa-
tion of integration testing with a high test coverage
with minimum manual effort, hence generating great
economic return. Nevertheless, the author also ne-
glects hypermedia testing by suggesting to manually
craft each HTTP request with a fixed URL.

In (Chakrabarti and Kumar, 2009), the authors
present their own framework Test-the-Rest to test
HTTP based web services. The test cases are writ-
ten in a test specification language based on XML to
give the tester a structured approach. Other than that,
response validation only depends on checking media
type and status code. This approach does not fully
address the challenges of testing RESTful APIs.

To the best of our knowledge, there is a lack of in-
formation about generating and testing RESTful sys-
tems, particular hypermedia testing.

3 CHALLENGES

The most important component in our metamodel to
describe a RESTful API is the application state. An
application state is a pair of a HTTP method and a
resource. It represents a valid REST request to ac-
cess a resource. Another central key element in a
RESTful system is the resource. It is important to
note that resource is not a storage object, but it is
instead a conceptual entity. A resource represents a
single object or a collection of objects. The inten-
tion of HTTP methods should be fixed, and devel-
opers should not be free to choose wrong methods.
The four basic operations to create, retrieve, update
and delete (CRUD) resources are mapped to the four
HTTP methods POST, GET, PUT and DELETE. A

Automation of Integration Testing of RESTful Hypermedia Systems: A Model-driven Approach

405



transition is our formal way of modeling relationships
between application states. A client can navigate from
one application state to another via transitions.

In 2017 we proposed several approaches to deal
with MDT for RESTful systems which include
server-side testing and client-side testing (Vu et al.,
2017). MDSD is a software engineering paradigm
that promotes the utilization of models as primary ar-
tifacts in all software engineering activities (González
and Cabot, 2014), therefore, we have to ensure that
there are no defects in our model in the first place. Our
MDSD approach has two distinct artifacts that need to
be tested on the server-side: the model and the gen-
erated code from the model. These artifacts are to be
tested in a bottom up manner because they are built on
top of each other. Errors within the model can prop-
agate subsequent bugs in the generated source code
which lead to undesired system behavior at runtime
or production. Therefore, our model-driven hyper-
media testing on the server-side is divided into two
sequential steps: static and dynamic analysis. Our
findings within the static analysis were presented in
(Vu et al., 2018) covering up an automatic verifica-
tion process for the input-model, thus ensuring its hy-
permedia characteristic as a ε-NFA before triggering
code transformation. This paper is a follow-up contri-
bution within our research regarding testing RESTful
APIs using MDT techniques.

The challenges of the dynamic analysis are ad-
dressed withing the scope of this work. Dynamic
analysis, as opposed to static analysis, always requires
the execution of the software. The simplest form of
dynamic testing is the execution of the software by a
test person, thereby the tester can enter any input to
operate the software. This is an unsystematic ad-hoc
approach and thus inaccurate and usually not repro-
ducible (Liggesmeyer, 2009). However, using MDT
techniques allows us to follow a more novel approach.
Once the model is verified by the static analysis, our
tool will generate a functional server. This generated
server should work correctly and include all the fea-
tures described by its model. But since the generators
are manually implemented, we cannot guarantee this.
The aim of this procedure is to test the correct func-
tionality of the transformation process by testing the
generated code, thus detecting bugs within the gener-
ators. The dynamic analysis can be used to test sev-
eral aspects of a RESTful API: 1) It checks whether a
ε-NFA-compliant model correctly produces a ε-NFA-
compliant RESTful API 2) We also have to consider
the authorization concept of the application. 3) Ad-
ditionally, we can also provoke negative tests to see
how the server handles error cases on runtime.

The dynamic analysis is divided into three phases:

First, model crawling phase, second, building an
HTTP crawler, and third, generation of test classes.
To simplify understanding, it is necessary to present
an application example which will be the basis to
demonstrate our further approaches. Our application
example represents an online shop. There are two
user roles: customer and admin. A customer can view
items whereas a shop admin can also create, update or
delete items. For the sake of clarity, we omitted tran-
sitions back to the dispatcher state and self-pointing
transitions. The entire application workflow with all
application states and possible transitions is described
as an ε-NFA in the Figure 1.

Start

GET
Items

[admin]
[customer]

POST
Item

[admin]

GET
Item

[admin]
[customer]

PUT
Item

[admin]

DELETE
Item

[admin]

Figure 1: Workflow of the application example.

The concept of ε-NFAs revolves around a finite set
of states with an initial state, a set of possible inputs
and rules to map each state to another state, or to it-
self (Wright, 2005). Speaking in REST terms, a client
can enter the application workflow through the ini-
tial state and only be in exactly one state at any given
time and it can only change its current state by navi-
gating through a directed transition with a valid input.
ε-NFA compliance means that every state within an
application is accessible. The client should be able
to start from the entry point of the RESTful API, and
it should be able to visit every application state and
go back to the start state without getting stuck in a
dead-end. We argue that within a RESTful applica-
tion there are no accepting states. An accepting state
assumes that a client has finished a task within the
application workflow after a sequence of inputs. The
question arises "When is a task finished?". Taking
Twitter for example: Entering the Twitter app gives
us our newsfeed. This could be argued as a task done
or an accepting state, but navigate to a friend’s page
could also be a task and so is creating, modifying or
deleting a post. It does not matter if the client wants to

APMDWE 2018 - 3rd International Special Session on Advanced practices in Model-Driven Web Engineering

406



stay in the loop of the application workflow or leave
it at any given state. Due to these argumentations, we
can perform this simplification that our ε-NFA model
of a RESTful API does not have accepting states.

Another challenge of hypermedia testing is to
check whether the generated API delivers appropri-
ate hyperlinks based on the client’s user role. Each
user role sees a different representation of the API
depending on its access rights. In other words, the
API must guide the client through the workflow based
on its user role, otherwise the authorization concept
would be corrupt.

Until now, we have looked at several challenges
to check correct hypermedia-driven behavior. This
falls under the category of positive testing because
our model allows white-box testing, hence revealing
complete program structure and behavior. Therefore,
we can perform a sequence of valid inputs and check
for expected outcomes. But what if the client makes
invalid requests? We must also test the robustness
of the system by checking its ability of handling er-
ror cases. The correct response for an invalid request
within a hypermedia-driven system should contain at
least a self-descriptive message (Fielding, 2000) to
tell a client what to do next. The dynamic analysis can
also be used to provoke negative tests. Instead of veri-
fying hypermedia behavior, we can test how the server
reacts to a client’s non-hypermedia behavior. Since
dynamic testing allows runtime execution of the to-
be-tested system, a client can intentionally send false
requests to test the robustness of the server: Whether
it remains functional or breaks, or whether an appro-
priate response is given in the event of an unautho-
rized request. Each state-to-state transition requires
specific inputs in order to perform. For instance, if a
client wants to enter the POST Item state its request
header must include authorization with credentials of
an admin and its request body must include a proper
Item resource representation (e.g. JSON) as payload.
The server has to validate two input types and handle
several error cases:

1) Authorization header: If the client is not au-
thenticated to the server, the server must response
with a proper HTTP code such as 401 Unauthorized,
indicating that the request lacks valid authentication
credentials for the target resource. Or if the client is
authenticated to the server but does not have permis-
sion to access an application state, the HTTP response
code has to be 403 Forbidden, indicating that the
server understood the request but refuses to authorize
it due to the application logic.

2) Entity-body: If the request body is empty or
not in the correct format, the server has to return a
400 Bad Request, indicating the request could not

be understood by the server due to malformed syntax.
The client should not repeat the request without mod-
ifications. If the request body is in the correct format
but contains invalid data e.g. price of an item should
not be smaller than 0, the server has to respond with
a 422 Unprocessable Entity, meaning the server
understands the content type of the request entity but
was unable to process the contained instructions due
to the application logic.

In addition to self-descriptive messages, we also
have to ensure that the client will be redirected to its
previous application state or at least to the dispatcher
state.

4 APPROACH

In order to carry out a dynamic analysis, it is neces-
sary to perform two crawling processes: first model
crawling and then HTTP crawling. The model crawl-
ing process is intended to derive information from the
underlying model to build appropriate test cases. Af-
terwards, an HTTP client will test against these test
cases when the generated code is deployed on a run-
time environment. It is also necessary to generate test
data based on the model to prevent a client from per-
forming tests on an empty server. At last, a genera-
tor will combine test cases constructed by the model
crawler and functionalities of the HTTP client to pro-
duce runnable test classes.

4.1 Model Crawling

The model crawling process is divided into three parts
to retrieve crucial information for our test case gener-
ation: 1) Verifying hypermedia response, 2) deriving
test paths to visit every state based on the application
workflow and 3) negative testing.

A client expects to only see its permitted hyper-
links at any given state. If a request is valid because
the client is authorized to enter an application state,
response of this application state must contain the
same hyperlinks as given by the model to this role.
If a request goes wrong, the client must be provided
with an appropriate response code or redirected to the
dispatcher state. To accomplish this task, we have to
map every incoming transition of an application state
with its outgoing transitions with respect to a specific
user role. This is necessary, because the client only
knows the URI to the entry state. Every other URI
is dynamically generated by the server. So, in order
to determine whether a hypermedia response is cor-
rect we have to map every relation type to permitted
following relation types while considering the client’s

Automation of Integration Testing of RESTful Hypermedia Systems: A Model-driven Approach

407



user role. This way, an HTTP client is able to make a
request to a relation type and expects to see the corre-
sponding set of following relation types to its request
by checking these mappings. In order to accomplish
this, the model crawler loops through every state and
check if a state can be accessed by a specific user role.
From any given state: A user role is permitted to ac-
cess a set of following states. So we can map a state’s
incoming transition as a key to a set of permitted out-
going transitions.

In the previous step we know what hypermedia re-
sponse to expect after making a request to a particu-
lar application state through our mappings. Neverthe-
less, once the server is deployed on a runtime environ-
ment, the HTTP client cannot verify these responses
by making direct requests to the URI endpoints but
it rather must start from the entry state and navigate
through the application workflow. This way, we can
make sure that responses of every application state
have been tested at least once. This step is to derive
all possible test paths within a role-based workflow
from the existing model to generate test cases for the
crawler.

We decided to develop a depth-first search algo-
rithm that derives all possible paths for every user role
from the model. This algorithm spans a role-based
specific workflow from a directed graph into a tree.
The tree represents every possible path within a work-
flow. Each path represents a task. For instance, a task
could be update an item. To manage this task, a client
with admin role must sequentially visit these applica-
tion states: Start, GetItems, GetItem, PutItem. The
root element is the Start state, it represents the entry
point of the API. A valid path ends when the client is
directed back to one of the previous states in the cur-
rent path. For example, after changing the price of an
item from a PutItem state, the server will redirect the
client to GetItem state which the client has visited be-
fore. When a valid path ends, it is marked as visited
and the HTTP client starts at the Start state again to
crawl through the next path.

A task is considered successfully tested when an
HTTP client is able to visit all edges of the role-based
application workflow. Any occurring error can be
tracked down by looking at the path where the client
fails to walk through. According to REST style, ev-
ery task within the workflow must be reachable from
the entry point, so this is the best way to approve this
premise. Once the client manages to walk through
every path of the tree and to verify every obtained re-
sponse on its way, then we can make a definite state-
ment about the correct hypermedia behavior of the
RESTful API.

This step is to derive role-based positive test paths

from the model for an HTTP client to test against later
on runtime. To achieve this, we have to span the role-
based representation of the application workflow into
a tree with the start state as root. By definition, every
hypermedia API represents a ε-NFA or it can also be
defined as an complete unweighted directed graph G
= (V,E) with V is the set of possible application states
and E is the set of possible state-to-state transitions.

Assuming our ε-NFA is a directed graph
G = (V,E) with V = {A,B,C,D,E} and E =
{(A,B),(B,A),(B,C),(C,B),(B,D),(D,C),(C,E),
(E,B)} shown in Figure 2.

A

B

C

D

E

Figure 2: Graph representation of the application workflow.

At the beginning we have not walked down any
path yet, hence the Visited edges set and the List of
paths are empty and the Unvisited edges set contains
all available edges. A path is defined as a sequential
list of edges and an edge is equivalent to a transition
in our RESTful context.

• Unvisited edges = {(A,B),(B,A),(B,C),(C,B),
(B,D),(D,C),(C,E),(E,B)}

• Visited edges = {}
• List of paths = {}

The algorithm terminates when the last edge has
been visited at (B,A), it walks backwards and finds
no further unvisited outgoing edge from every node
along the path, subsequently it marks all edges left as
visited.

A

B

C

E

B

B

D

C

A

Figure 3: Deriving last path.

APMDWE 2018 - 3rd International Special Session on Advanced practices in Model-Driven Web Engineering

408



Our final list of paths now contains all possible
paths from the start node A and there is no unvisited
edge left.

• Unvisited edges = {}
• Visited edges = {(A,B),(B,A),(B,D),(D,C),
(E,B),(C,E),(C,B),(B,C)}

• List of paths = {{(A,B), (B,C), (C,E), (E,B)},
{(A,B), (B,C), (C,B)},
{(A,B), (B,C), (C,B)},
{(A,B), (B,A)}}
To explain this process in further detail, we

take a look at the pseudo code in Algorithm 4.1.
Our algorithm converts a directed graph into a tree,
similar to block-cut trees (Hopcroft and Tarjan,
1973). The difference to block-cut trees is that we
use paths instead of biconnected components.

Algorithm 1: Transformation of a directed graph into a tree
for deriving role-based test paths. The resulting tree is sim-
ilar to the block-cut trees (Hopcroft and Tarjan, 1973).

Input: s as entry state
Output: allPaths as list of unique paths for a

specific user role
1 initialize role as specific user role;
2 initialize allPaths as list;
3 initialize path as list;
4 initialize root← s;
5 while s has unvisited transition for role do
6 add s to path;
7 initialize next← next unvisited state;
8 if path contains next or next has no

unvisited transition for role then
9 mark transition between s and next as

visited;
10 foreach state in reversed path do
11 if state has no unvisited transition

for role then
12 mark transition between state

and state′s parent node as
visited;

13 end
14 end
15 add next to path;
16 add path to allPaths;
17 path← empty;
18 s← root;
19 end
20 else
21 s← next;
22 end
23 end

4.2 Generation of Test Data

Our generated server has to be populated it with test
data. Otherwise a client would not be able to obtain
or modify any resource while navigating through the
application workflow. Our MDSD approach allows
automated test data generation based on our existing
metamodel. This means, once written, this process
will start to generate adequate test data by looking for
available resources within the input model.

4.3 Building HTTP Client

For our hypermedia testing purpose, we need to build
our own hypermedia-driven HTTP client. First, the
client represents a specific user role while testing, so
it makes sense to save this authentication information.
Then, it must be able to send request to relation types
instead of sending request directly to URIs. By defini-
tion, a hyperlink can be returned within the response
header or body or both. For the sake of simplicity,
this approach only addresses hyperlinks within the re-
sponse header. A header response link of our REST-
ful API consists of four parts: resource URI, rel as
relation type, type for media type and method for
HTTP verb as listed in Listing 1. These elements need
to be extracted and parsed, so the HTTP client can un-
derstand and send request to it. This is necessary be-
cause technically speaking an HTTP client requires
merely a URI to send request to, but it is not rec-
ommended to hard code these so called "REST end-
points" into clients (Fielding, 2013), because they can
change, e.g, to resource renaming. So our hyperme-
dia response is always provided with a fixed relation
type serving as a method call to guide action and of
which the client has knowledge.

<http://api/item >;rel=" createItem ";
type=" application/json",method ="post">

Listing 1: Hypermedia link in HTTP response header.

4.4 Generation of Test Classes

The actual model is encapsulated behind the gener-
ation process, and therefore in order to run these test
cases out of the box, we have to combine the retrieved
data from the model crawling process with the func-
tionalities of the HTTP client and embed them in gen-
erated test classes. This can be done by a generator
producing test class files as shown in Figure 4. There
are three crucial elements that must be persisted in
a test class for an HTTP client to be able to run the
test cases: 1) List of paths that represents given pos-
itive test cases, 2) mappings between relation type

Automation of Integration Testing of RESTful Hypermedia Systems: A Model-driven Approach

409



and correct outgoing relation types which allow the
HTTP client to verify response after each request and
3) mappings between relation type and unpermitted
relation types which allow the HTTP client to per-
form negative testing. This information will be gener-
ated and initialized as hard-coded objects in each test
class.

Model Crawler

HTTP Client

Test Class
Generator

Test
Classes

Figure 4: The model crawler and the HTTP client are re-
quired by the test class generator to create test classes.

5 CONCLUSION

The main goal of this paper is to automate integra-
tion testing with the focus on hypermedia testing us-
ing MDT.

To address RQ 1, we propose a model crawling
process to extract information from the model to build
appropriate test cases. These test cases must consider
role-based access of application states, hypermedia
response validation and negative testing. In order to
retrieve information for role-based access of applica-
tion states, we have developed an algorithm to derive
all possible test paths for each user role. According to
our assumption every task within a hypermedia sys-
tem must be reachable from the entry state, and there-
fore, a path must represent a distinct task. Our al-
gorithm is able to embody an user role to navigate
through the application workflow, visiting every tran-
sition and application state. As a result, it delivers a
set of distinct test paths for each user role. Validation
of application state responses requires mapping infor-
mation between relation type and role-based follow-
up relation types. We have achieved these mappings
by letting the model crawler loop through every ap-
plication state and map all incoming transitions of an
application state with permitted outgoing transitions
for each user role. Our model crawler also managed
to retrieve information for negative testing by map-
ping relation type to unpermitted relation types. Our
model also allows a straightforward approach towards
test data generation. This was achieved by generating
test data based on meta information of the resources
given by the input model.

Approaching RQ 2, we first build an HTTP client
to verify hypermedia test cases. This HTTP client
must be able to authenticate as a pre-defined user role,

send request to relation types and understand hyper-
media responses. We made use of an open source
Java HTTP client named OkHttp (Square, 2017b)
and added necessary features. These objectives were
accomplished with no further complication. After-
wards, we combine both information of role-based
test cases retrieved by the model crawler and func-
tionalities of the HTTP client to generate ready-to-run
test classes. For this purpose, we used an open source
library named JavaPoet (Square, 2017a) to handle
source code generation. As a result, we successfully
generated role-based test classes, including test paths,
validation mappings, negative testing, HTTP crawler
and all required imports.

In order to answer RQ 3, we must take several as-
pects of integration testing into consideration: By us-
ing the underlying model, we were able to generate
test classes to cover all possible tasks within the ex-
ample application workflow, assuring white-box hy-
permedia testing of the overall system. This would
be a time consuming task if implemented manually
because a) deriving all distinct role-based test paths
without an algorithm would be inconceivable, b) role-
based hypermedia testing is a repetitive task because
a developer has to write many similar test cases and
c) negative testing also requires enormous amount of
time when unpermitted actions have to be verified for
every application state. So far, we managed to gener-
ate positive test cases, by making valid requests with
valid data as inputs and checking whether the appli-
cation response as expected. These results are quite
satisfactory as our generated test cases could cover
all possible tasks within a application and verify role-
based responses of every application state. Never-
theless, the type of negative testing we were able to
accomplish within the scope of this work was send-
ing unauthorized requests by the HTTP client to the
server. There are many other possibilities to generate
different types of negative testing, such as applying
not allowed methods, trying to access a (sub-)resource
after deleting it or forcing the HTTP client to send
wrong resource representations. We can extend the
model crawler to extract more possible test cases to
achieve larger test coverage. These features only need
to be implemented once and test cases will be gener-
ated for free. We can strive to reveal more bugs or
as Dijkstra states in his article (Dijkstra, 1972): Test-
ing can only reveal the presence of bugs, but not their
absence.

Additionally, we should discuss more about how
the application should behave in case of invalid re-
quests. As for the scope of this work, we only ex-
pect to see an appropriate response code. We have
also discussed a bit about whether the server should

APMDWE 2018 - 3rd International Special Session on Advanced practices in Model-Driven Web Engineering

410



send a client back to its previous state. However, this
approach would violate the stateless constraint. Al-
ways sending a client back to the start state would,
on the other hand, reduce the usability of the ap-
plication, forcing the user to repeat many unneces-
sary steps again, especially when the intended task is
nested deep within the application workflow. Further
research would be needed to clarify this matter.

REFERENCES

Amundsen, M. (2017). RESTful Web Clients - Enabling
Reuse Through Hypermedia. O’Reilly Media, Se-
bastopol.

Bloch, J. (2014). How to design a good API and why it mat-
ters. http://static.googleusercontent.com/media/ re-
search.google.com/en//pubs/archive/32713.pdf. Last
accessed on May 23, 2018.

Chakrabarti, S. and Kumar, P. (2009). Test-the-REST:
An approach to Testing RESTful web-services. In
Future Computing, Service Computation, Cognitive,
Adaptive, Content, Patterns, 2009. COMPUTATION-
WORLD ’09. Computation World:, pages 302–308.

Dijkstra, E. W. (1972). The humble programmer. Commun.
ACM, 15(10):859–866.

Fertig, T. and Braun, P. (2015). Model-driven Testing of
RESTful APIs. In Proceedings of the 24th Interna-
tional Conference on World Wide Web Companion,
WWW ’15 Companion, pages 1497–1502, Repub-
lic and Canton of Geneva, Switzerland. International
World Wide Web Conferences Steering Committee.

Fielding, R. (2000). REST: Architectural Styles and the De-
sign of Network-based Software Architectures. Doc-
toral dissertation, University of California, Irvine.

Fielding, R. (2008). REST APIs must be hyper-text
driven. http://roy.gbiv.com/untangled/2008/rest-apis-
must-be-hypertext-driven. Last accessed on May 23,
2018.

Fielding, R. T. (2013). WTF is a "REST endpoint". https://
twitter.com/fielding/status/324448353180061696.
Last accessed on May 22, 2018.

Frankel, N. (2015). Integration Testing from the Trenches.
Leanpub.

González, C. A. and Cabot, J. (2014). Test data gener-
ation for model transformations combining partition
and constraint analysis. In Di Ruscio, D. and Varró,
D., editors, Theory and Practice of Model Transfor-
mations, pages 25–41, Cham. Springer International
Publishing.

Hernández, A. G. and García, M. N. M. (2010). A For-
mal Definition of RESTful Semantic Web Services.
In Proceedings of the First International Workshop on
RESTful Design, WS-REST ’10, pages 39–45, New
York, NY, USA. ACM.

Hopcroft, J. and Tarjan, R. (1973). Algorithm 447: Efficient
algorithms for graph manipulation. Commun. ACM,
16(6):372–378.

Liggesmeyer, P. (2009). Software-Qualität - Testen,
Analysieren und Verifizieren von Software. Springer
Science & Business Media, Berlin Heidelberg, 2. aufl.
edition.

Project, T. S. (2018). Selenium. https://www.selenium
hq.org/. Last accessed on May 24, 2018.

Richardson, L. (2009). The Maturity Heuristic.
https:// www.crummy.com/writing/speaking/2008-
QCon/act3.html. Last accessed on May 16, 2018.

Richardson, L., Amundsen, M., and Ruby, S. (2013). REST-
ful Web APIs. O’Reilly Media.

Schreibmann, V. and Braun, P. (2015). Model-Driven
Development of RESTful APIs. In Proceedings of
the 11th International Conference of Web Information
Systems and Technologies. INSTICC, SciTePress.

Square, I. (2017a). JavaPoet. https://github.com/square/
javapoet. Last accessed on May 23, 2018.

Square, I. (2017b). OkHttp. http://square.github.io/okhttp/.
Last accessed on May 23, 2018.

Taivalsaari, A. and Mikkonen, T. (2017). The Web as a
Software Platform: Ten Years Later. In Proceedings of
the 13th International Conference of Web Information
Systems and Technologies. INSTICC, SciTePress.

Vu, H., Fertig, T., and Braun, P. (2017). Towards model-
driven hypermedia testing for RESTful systems. In
WEBIST 2017 - Proceedings of the 13th International
Conference on Web Information Systems and Tech-
nologies.

Vu, H., Fertig, T., and Braun, P. (2018). Verification of
hypermedia characteristic of restful finite-state ma-
chines. In Companion Proceedings of the The Web
Conference 2018, WWW ’18, pages 1881–1886, Re-
public and Canton of Geneva, Switzerland. Interna-
tional World Wide Web Conferences Steering Com-
mittee.

Webber, J., Parastatidis, S., and Robinson, I. (2010). REST
in Practice - Hypermedia and Systems Architecture.
"O’Reilly Media, Inc.", Sebastopol.

Wright, D. (2005). Finite State Machines. http://www4.
ncsu.edu/drwrigh3/docs/courses/csc216/fsm-
notes.pdf. Last accessed on May 16, 2018.

Zuzak, I., Budiselic, I., and Delac, G. (2011). Web Engi-
neering: 11th International Conference, ICWE 2011,
Paphos, Cyprus, June 20-24, 2011, chapter Formal
Modeling of RESTful Systems Using Finite-State Ma-
chines, pages 346–360. Springer Berlin Heidelberg.

Automation of Integration Testing of RESTful Hypermedia Systems: A Model-driven Approach

411


