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Abstract: This article shows how an adaptive instructional design in a standard learning management system was 
realized within the framework of a straightforward technological concept with four components and with the 
help of simple technological tools for a mathematics module. For this purpose, we have implemented a 
didactic design with domain-specific online exercises in which the frequency of step-by-step support is 
automatically adapted to the level of knowledge of the individual students. The consequence of this is that 
students with lower pre-knowledge and/or a lower learning achievement receive more and other teaching 
assistance than those with a high pre-knowledge or high performance. In our approach we assume that this 
indirectly reduces the subjective task difficulties (intrinsic cognitive load) for beginners but also means 
unnecessary repeating for advanced learners. The design of this teaching method is based on an adaptive 
feedback mechanism with integrated recommendations. After a presentation of the didactic design and its 
theoretical and empirical foundations, we report on the first results with a focus on the learning progress of 
the various student groups. It has been shown that both weaker and stronger students benefit from the adaptive 
tasks. Online activity is hereby a crucial factor.

1 INTRODUCTION 

As a result of the life-long learning required in the 
modern world, new forms of learning such as distance 
learning as well technology-based learning are 
gaining in significance (Bergamin et al., 2012). These 
concepts and their flexible approaches enable many 
people to pursue continued academic education in 
situations in which traditional studies would be 
difficult to accomplish (e.g. employment or 
parenthood). From a didactic perspective, flexibility 
also means taking the individual requirements of the 
learner into account and incorporating respective 
measures into the instructional design.  

According to the Cognitive Load Theory and in 
particular to the Expertise Reversal Effect (Sweller et 
al., 2003), it is important to adapt the learning process 
to the learner’s level of knowledge. Such 
individualisation of learning possibilities can be 
achieved through adaptive learning environments and 
provide students with the chance to better handle the 

challenges of life-long learning (Boticario and 
Santos, 2006). In academia for instance, the design of 
adaptive learning concepts is aimed at delivering an 
optimal support for learners in consideration of their 
differing levels of knowledge. Despite different levels 
of pre-knowledge, learners should be able to finally 
develop the same competences. At universities, this 
usually happens less as a result of the learners 
processing different learning content and more 
through instructional support or content sequencing 
adapted to the individual learners.  

Today, there is an increasing number of 
technological possibilities for implementing adaptive 
learning. Numerous experimental investigations have 
been carried out to test even the most complex 
adaptive learning systems. Despite this, practical 
implementations of adaptive technology-based 
learning systems in real-life learning settings seem to 
still be very rare (Somyürek, 2015). FitzGerald et al. 
(FitzGerald et al., 2017) state that individualisation in 
technology-based learning can be seen as positive and 
promising but its implementation is difficult to 
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realize. The application of experimental research into 
prototypes and the following implementation in 
everyday scenarios seems to be hard to achieve 
(Scanlon et al., 2013). Murray and Pérez (Murray and 
Pérez, 2015) predict that there is still a long way to go 
before appropriate, sophisticated and intelligent 
learning systems can be applied in practice. Bridging 
the gap between research and practice requires results 
of applied research and specific experience in the 
implementation and application of relevant 
technology-based learning systems, well-founded 
instructional designs and large-scale investigations in 
university contexts. However such research findings 
are very scarce (Johnson et al., 2016). 

This work seeks to bridge the gap between 
experimental research and its practial application. In 
this regard, we address the question of whether there 
are currently any possibilities for implementing an 
exemplary adaptive learning system in a classic 
learning environment (Moodle), based on a cognitive 
learning approach and on a fairly simple rule-based 
instructional design but without the use of high-end 
technology or machine learning algorithms. Drawing 
on our experience in designing and implementing 
course modules for online distance learning, we 
demonstrate in this paper how an offer of adaptive 
learning can be implemented in practice at university 
level within a traditional Learning Management 
System (Moodle). We further explore to what extent 
instruction design based on the adaptation of task 
difficulty, online activity and previous knowledge are 
related and contribute to the improvement of learning 
progress. Finally, we discuss the possibilities and 
limitations of rule-based adaptive learning systems in 
a standard Learning Management System (LMS) in 
addition to the advantages for students. 

2 THEORETICAL  
BACKGROUND AND DESIGN 

2.1 Instructional Implications of the 
Cognitive Load 

Optimal teaching of complex learning content needs 
to deliberately take account of learners’ cognitive 
load or actively manage it through instructional 
interventions (Somyürek, 2015). The Cognitive Load 
Theory (Sweller, 1988) can be used as a basis for this. 
The Cognitive Load Theory strongly focuses on the 
interplay between two interacting components of the 
cognitive system: The working memory and the long-
term memory. According to the Cognitive Load 

Theory, the long-term memory is where all our 
knowledge is stored and has an unlimited capacity. 
The working memory, by contrast, is used to 
consciously process new information but is 
significantly limited in terms of its capacity and 
durability (Kalyuga, 2011a). Nowadays, we 
differentiate between two kinds of cognitive load 
during learning: the intrinsic load and the extraneous 
load. The intrinsic load is occupied by cognitive 
processes which are necessary to process learning 
material and can be affected by the subjective 
complexity or difficulty of the learning content. The 
extraneous load is consumed by cognitive processes 
that are not vital for learning, caused by unfavourable 
design or presentation of the learning material 
(Kalyuga, 2011a, b). The extraneous and intrinsic 
load combined cannot exceed the limited capacity of 
the working memory (Paas et al., 2003). So, if the 
extraneous load is filled with unnecessary 
unfavourable design or presentation of the learning 
material less intrinsic load can be allocated to 
processing learning material. If learning activities 
require too much cognitive capacity (overload), 
learning is hindered. In addition to the objective 
difficulty of the learning content and instructional 
design, the extent of the current cognitive load on the 
working memory is also determined by 
characteristics of the learner. As already mentioned, 
working memory and long-term memory interact 
with one another. The extensive schemata stored in 
the long-term memory enable complex learning 
content to be processed more easily in the working 
memory because elements can already be collated in 
higher-order units thanks to the available schemata. 
This reduces the intrinsic load and enables certain 
processes to take place routinely. In this way, there is 
more cognitive capacity left for new content 
(Kalyuga, 2011a). Consequently, the level of 
available expertise/knowledge in the long-term 
memory exerts considerable impact on cognitive load 
in the working memory (Kalyuga, 2007b). 

The influence of this effect on the instructional 
design can be demonstrated via the so-called 
Expertise Reversal Effect. This theory postulates that 
the teaching support which is beneficial for novices 
can be superfluous or even detrimental to experts and 
vice versa (Kalyuga, 2007a, b). ‘Reversal’ here refers 
to the fact that the relative effectiveness of didactical 
aspects may reverse for differing levels of learners’ 
expertise (Lee and Kalyuga, 2014). One important 
application of the Expertise Reversal Effect relates to 
the degree of the learners’ instructional guidance. On 
the one hand, if novices do not receive sufficient 
external instructional guidance during complex 
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learning activities, this leads to poor problem-solving 
strategies or arbitrary trial-and-error attempts. On the 
other hand, superfluous instructional guidance for 
experts, forcing the learners to squander their 
resources to compare and connect what they already 
know with their own schemata, may also lead to 
inefficiency through high extraneous load (Kalyuga, 
2011a). In this sense, the assumption is that direct 
instructional guidance can balance out a lower level 
of knowledge in the long-term memory of novices by 
clearly indicating how they should proceed in a 
certain situation while this should be avoided for 
experts (Kalyuga, 2007b; Kalyuga and Sweller, 
2005). For us, this means that learners are to be 
provided with instructional guidance (e.g. step-by-
step instruction) at the start of the learning process 
(novices) to enable them to handle tasks and optimise 
the cognitive load. This guidance can then be 
gradually reduced as they gain more expertise (see, 
for example, fading scaffold; Merriënboer and 
Sluijsmans, 2009). The fundamental educational 
implications of the Cognitive Load Theory and, in 
particular, the Expertise Reversal Effect have been 
confirmed by numerous studies. In order to tie in 
some contradictory research results with theory, 
Kalyuga and Singh (Kalyuga and Singh, 2016) stress 
that the validity of this theory is limited to the 
acquisition of subject-specific knowledge as a 
learning goal. For other educational goals (e.g. 
promoting self-regulated learning skills or learning 
motivation), the assumptions of Cognitive Load 
Theory (e.g. suitability of much instructional 
guidance for novices) are not necessarily applicable.  

Learners, particularly novices, may feel 
overburdened by the notion of undertaking the 
adjustment of their learning (Kirschner and van 
Merriënboer, 2013). Therefore technology-based 
adaptive learning support may be an option to 
enhance effectiveness of learning. 

2.2 Adaptivity in Technology-based 
Learning Environments 

In contrast to the traditional technology-based 
approaches adaptive concepts allow the learning 
content, navigation and suitable learning support to 
be presented in a dynamic environment continually 
changing based on individual requirements. In 
principle, adaptive learning support can be provided 
at the macro level (e.g. at the level of the academic 
goals of an individual) or at the micro level (e.g. at 
the level of individual courses or tasks). In this study 
we focus on this second level. There is a wide range 
of possibilities how to adapt individual characteristics 

on a course level (for an overview see e.g. Nakic et 
al., 2015). Three main factors can be established as 
basis of adaptation: (1) Stable or situation-related 
personal characteristics such as gender, culture, style 
of learning, knowledge or emotions, (2) content-
specific characteristics such as topics or task 
difficulty and (3) context-based characteristics such 
as learning time or place (Wauters et al., 2010). Three 
main factors can be established as basis of adaptation: 
(1) Stable or situation-related personal characteristics 
such as gender, culture, style of learning, knowledge 
or emotions, (2) content-specific characteristics such 
as topics or task difficulty and (3) context-based 
characteristics such as learning time or place 
(Wauters et al., 2010). On the basis of these factors, 
different dimensions of the learning experience can 
be adapted. For instance, the level of task difficulty, 
the level of detail of the explanations, the frequency 
of hints, or the modus of presentation (video, text, 
figure...) can be adapted to match the needs (basis of 
adaptation) of individual students. 

In our instructional design we focus on task 
difficulty, actual knowledge and giving different 
adaptive support. Depending on the learner's level of 
knowledge, the system recommends tasks with more 
or less detailed instructions and thus with different 
degrees of difficulty. This way less performant 
learners are given tasks with more support and 
assistance. The support and assistance is reduced for 
more efficient learner increasing the difficulty of the 
tasks. Aiming to reduce the cognitive load. 

Based on a model by Zimmermann et al. 
(Zimmermann et al., 2005), we developed the 
methods and components for processing and linking 
learning data with adaptive instructional 
interventions. We delivered interventions in the form 
of hints and recommendations integrated in task 
feedbacks displayed by our learning management 
system Moodle. Conceptually, the system is based on 
four components resulting in the adaptation 
mechanisms. The components themselves use 
learning data, which must be measured and stored 
continuously. The first component are the sensors. 
These use data from tasks worked on by learners, 
specifically if a certain point has been achieved or 
not. As an entry point we use the data from a previous 
knowledge test, which evaluates the expertise with 
which the learners start the course. Further tests and 
assessments then form an additional data base for the 
sensor component. The second component is the 
analyser. This component collects, evaluates and 
interprets the data measured by the sensors. The 
analyser then transfers this information to the third 
component, the controller. This component 
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determines whether a threshold is met. Depending on 
the outcome the controller determines if and to what 
extent the adjustment object (for example a task) is to 
be changed by one or more educational interventions. 
The last and fourth component is the presenter, which 
finally triggers the customized display of the concrete 
learning objects. 

Based on the model with its four components, the 
learners are classified as "low" or "high" performers, 
depending on their learning performance. In addition, 
the result of each individual learning step is registered 
and compared with a threshold value. Consequently, 
learners receive instructions and learning support 
adapted to their learning performance and behaviour. 

We chose a rule based operating, adaptive 
learning system with a fixed set of rules for two 
reasons: On the one hand our learning scenario and 
the sensors we use for individual learners do not 
generate enough data for a high-quality self-learning 
system and, on the other hand, we chose to keep the 
adaptation mechanisms transparent for learners in the 
sense of an "open learner model". We will take up this 
issue in the conclusion section again. 

3 INSTRUCTIONAL DESIGN 
AND SYSTEM 
IMPLEMENTATION 

Starting in the autumn semester of 2016/17, we have 
carried out a two-year field study to implement the 
above-mentioned approach. For this we used the 
framework of the study module "Mathematics, 
Statistics and Operation Research" and our 
university's standard student platform (Moodle). This 
course covers concepts, terms and methods of one-
dimensional analysis. The entire module is organized 
in a blended learning format. In addition to the 
participation in five face-to-face sessions, there is a 
high proportion of self-study, which consists of a mix 
of online and off-line phases. The learning platform 
offers students the opportunity to complete voluntary 
online task sets that have been modified as part of an 
adaptive instructional design compared to non-
adaptive, poorly interactive ones foreseen in the 
classic form of the course. The students were enabled 
to work on the modified tasks for the first time in the 
autumn semester 2017/18. 

Distance students in general and students at our 
university specially tend to have very different 
previous knowledge and different strategies to 
acquire knowledge, depending on their education or 
professional experience. Accordingly, we supported 

learners with lower current knowledge levels by 
adapting additional learning support without 
hindering those with more knowledge through this 
additional support. The learning process itself is 
constantly adapted based on a theory-led, rule-based 
adaptation mechanism to ensure the optimal cognitive 
load during the completion of tasks. As explained 
previously the appropriate learning support delivered 
to the student was defined by four components: the 
sensor determines is a point has been achieved, the 
analyser sums up the point total, the controller 
determines if a specific threshold has been reached 
and the presenter displays recommendations and 
other objects of learning support. Our individualised 
support focuses on three elements: 

The first element (initial sensor) is a first 
knowledge determination, consisting of a set of 
standard exercises that students complete at the start 
of the course. Based on the performance in this 
assessment and a given threshold score, the learners 
are divided into two groups, “novice" and "expert". 
Depending on the score the first task of the set appears 
in a guided (high learning support) or an unguided 
(low learning support) version.  

The second element (step loop) is used to measure 
the current level of knowledge within a task and to 
determine the appropriate learning support. In this 
second element, the default values are determined on 
the basis of a specification by experts, taking into 
account the difficulty of the different tasks. When 
learners reach or exceed the threshold value, i.e. have 
(partially) answered a question correctly, they receive 
a different feedback than when they receive an 
incorrect answer and fall below the threshold value. 
Such feedback is given after each step in the task. 
This error-sensitive feedback includes appropriate 
advice depending on whether there are visible gaps in 
knowledge or misinterpretations that can be 
characterized by individual wrong answers (cf. for 
example Goldberg et al., 2015). Such adaptive 
feedback prompts serve to clarify possible 
misunderstandings of learners as quickly as possible, 
for example by reminding them of forgotten 
information (Durlach and Ray, 2011). 

The third element, the task loop, consists of both 
standard tasks and transfer tasks. The standard tasks 
are used to assess to ability to solve a particular 
problem, while the transfer task has two objectives: 
On the one hand, the transfer task aims to determine 
whether a particular problem has been understood and 
can be solved in its unguided form (see vertical 
transfer), on the other hand, it aims to evaluate 
whether the acquired problem-solving knowledge of 
a previous basic task can be applied to a similar task 
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on the same issue (see horizontal transfer; van Eck 
and Dempsey, 2002). Within each task set, the system 
recommends which task a learner should tackle next 
and in which form (guided/non-guided). The guided 
version includes numerous small solution steps, while 
the unguided version is composed of few solution 
steps.  

To promote the acceptance and motivation of 
learners, we chose a mixed form of adaptation 
(system controlled) and adaptability (learner 
controlled). This means that the learners receive 
recommendations as to which tasks (and in which 
form) they should ideally complete according to the 
current level of knowledge. The learner always has 
the choice whether to comply with these 
recommendations or not. The recommendations 
themselves are integrated into the task feedback. At 
the same time, the sensor data (current state of 
knowledge) is also made available to the learners in a 
clear and concise way to promote their own self-
assessment skills and the acceptance of the 
recommendations (see open learning models, e.g. 
Long and Aleven, 2017; Suleman et al., 2016). 

4 ANALYSIS 

In order to investigate the impact of our instruction 
design (based on the adaptation of task difficulty in a 
mathematical course) on learning progress, we 
concentrate in a first step on the relationship of online 
activity and learning progress and in the second step 
on the connection between previous knowledge and 
learning progress in a comparison of an adaptive and 
a non-adaptive course module. To achieve this goal, 
we have formulated two hypotheses for our 
exploratory investigations: 

H1: Students who actively perform the tasks of 
adaptive instruction design have a higher learning 
progress than those who do not actively engage in 
these tasks. 

H2: Regardless of pre-knowledge, adaptive 
design leads to higher learning progress for students 
who are actively engaged in learning tasks. 

All statistical operations were performed with 
IBM SPSS Statistics 23. 

4.1 Object of Investigation and 
Subjects 

As we have already reported, for the use of adaptive 
tasks with a recommendation system in our 
investigation we chose the mathematics module 

"Mathematics, Statistics and Operation Research (in 
the following always named MSOR1)". The module 
is offered each autumn semester at our university. We 
chose this module, as it can be called a “problem 
module”. It is the first math module in the university 
program and has a high failure rate.  

In each semester the students are divided into 
seven or eight classes. Each class has its own online 
course. At our university all courses base on a 
blended learning concept which includes 80% 
distance study and 20% interaction with tutor either 
online or face to face. The classes allow students, who 
usually work in a profession, to choose the best place 
(and date) for the face-to-face events. This division 
has no influence on the module content or the online 
part of the course. 

In the autumn semester 2017/18 were implemented 
84 adaptive tasks in the module MSOR1. These tasks 
cover each learning goal several times. However, not 
all tasks have to be completed by a student. A good 
student, for example may only need to complete 18 
adaptive tasks after having successfully completed the 
first knowledge assessment (initial sensor). This is if he 
always follows the recommendations. With these 18 
tasks he will have worked on each learning goal once. 
So the principle differences between the module of 
2016/17 and the 2017/18 one are the additional 
adaptive tasks that were implemented. The remaining 
module content was the same. The data of 288 
students was used for this analysis. 143 students from 
the adaptive MSOR1 autumn semester 2017/18 
module and 145 students from the non-adaptive 
MSOR1 of the autumn semester 2016/17 (see table 
1). The data from this second module was only used 
for the comparison of learning progress. 

Table 1: Dataset. 

semester n 
Non-adaptive Course (MSOR1, AS 2016/17) 145 

Adaptive Course (MSOR1, AS 2017/18) 143 
overall 288 

4.2 Procedure 

To start off we compared the students' learning 
progress in the module MSOR1 of the autumn 
semester 2017/18. We looked at the students’ log files 
with focus on the number of tasks completed. Some 
students did not use the adaptive tasks, but other 
students worked very intensively with the tasks. Thus, 
we decided to take the group of students who did not 
use the adaptive tasks as a control group for this 
module. We will compare their learning progress with 
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the students, who use the adaptive tasks for their 
learning.  

In a second step will also compare the learning 
progress between the adaptive course and the non-
adaptive course (MSOR1 AS 2017/18 and AS 2016/17 
respectively). To achieve this we will focus on learning 
progress. Finally we will compare the two courses in 
regard to previous knowledge and online activity. 

4.3 Online Activity  

Taking into account the number of tasks completed, 
we divide the participants into three groups to define 
different activity groups of the adaptive module (table 
2). The first group (the control group) is classified as 
"Inactive". These participants have completed a 
maximum of three adaptive tasks online, this means 
less than one per topic. The second group are referred 
to as "moderate active". These students worked on 
four to sixteen adaptive tasks. Sixteen completed 
tasks are just under the minimum number of 18 tasks 
with which a (good) student needs to address all 
learning objectives. The third group were named 
"Active". These students performed at least 17 
adaptive tasks. 

Students were free to choose whether or not to 
work on the tasks. While working on the tasks, they 
were also allowed to freely decide whether to follow 
the recommendations of the system and the learning 
support or not. 

In our analysis we only account for completed 
tasks because the recommendation made on task loop 
is only given after a completed task.  

Table 2: Activity groups with students per group (n), mean 
and standard deviation of tasks completed. 

group n mean 
tasks 

SD 
tasks 

Inactive 68 0.46 0.94 
Moderate Active 41 9.00 3.22 

Active 34 30.09 14.8 
overall 143 10.0 13.95 

The number of tasks completed by a student in the 
module has a high correlation (Pearson's r = .926) 
with the total online activity in the module (number 
of logs). From the number of tasks processed, we 
therefore assume a high level of online activity.  

4.4 Pre-Knowledge, Learning Progress 
and Online Activity  

In the following step we try to explain the relationship 
between the online activity and the learning progress 

in the adaptive module. For this purpose learning 
progress was defined as the difference between the 
results of the pre-knowledge test and the final test, 
both standardized to 100.  

Table 3: Learning progress of groups. 

group n mean 
learning 
progress 

SD 
learning 
progress 

Inactive 22 8.40 29.11 
Moderate Active 36 21.49 32.32 

Active 32 32.36 22.05 
overall 90 22.15 29.40 

Table 3 shows the distribution of the learning 
process among the three groups. Only students who 
completed both the pre-knowledge assessment and 
the final test could be included in the analysis. 

A t-test was performed that shows a significant 
difference with regard to learning progress between 
the "Inactive" and the "Active" group (t (52) = -3.442, 
p = .001, n = 54). The variance homogeneity, tested 
with Levene’s test, was given (F (1, 52) = 1.126, p = 
.293, n = 54). The comparison of the “Moderate 
Active” group with the “Inactive” and the “Active” 
group failed to show a significant difference in the t-
test (t (56) = -1.552, p = .126, n = 58) and (t (66) =      
-1.600, p = .114, n = 68 respectively). Variance 
homogeneity, as tested with Levene’s test, was given 
for both tests (F (1, 56) = 0.303, p = .584, n = 58) and 
(F (1, 66) = 3.196, p = .078, n = 68 respectively). The 
results show that, in line with our first hypothesis 
(H1), more online activity leads to more progress for 
students who actively participate in the adaptive 
learning module than for those who do less. It is also 
to note, that the non-adaptive course of the autumn 
semester 2016/17 was non-interactive and did not 
allow online activity. In view of this fact, no direct 
comparison between the adaptive and non-adaptive 
course modules is possible with regard to the 
correlation between learning progress and online 
activity.  

The same pre-assessment and a comparable final 
test were used in both courses, allowing for 
comparison of learning progress of both modules. 
The comparability of the final test was determined by 
a comparison of the pass-grades students obtained in 
this final test. The mean values and the SD are close 
to each other (autumn semester 16/17: Mean = 5.07, 
SD = .644. Autumn semester 17/18: Mean = 5.24, SD 
= .707.). This allows the learning progress of different 
levels of previous knowledge i. e. different starting 
positions to be compared between the courses. 
Students were divided into “novices” (less than 50% 
correct) and “experts” (more than 50% correct) 
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depending on the achieved points in the initial 
assessment.  

Table 4 and 5 show the mean of the initial 
assessment (pre-knowledge test) and the mean score 
on the final test separated by semester. 

Table 4: Mean pre-knowledge test (standardized to 100). 

semester n mean pre-
knowledge 

SD 
previous 

knowledge 

Non-adaptive 
Course (MSOR1, 

AS 2016/17) 

92 54.83 18.48 

Adaptive Course 
(MSOR1, AS 

2017/18) 

103 45.96 23.93 

Table 5: Mean final test (standardized to 100). 

semester n mean 
final test 

SD note 
final test 

Non-adaptive 
Course (MSOR1, 

AS 2016/17) 

124 56.67 25.59 

Adaptive Course 
(MSOR1, AS 

2017/18) 

118 61.82 31.14 

A t-test showed a significant difference in the 
previous knowledge test between MSOR1 HS16/17 
and MSOR1 HS17/18 group (t (189.149) = 2.911, p 
= .004, n = 195). The variance homogeneity, checked 
with Levene's test, was not given (F (1, 193) = 7.252, 
p = .008, n = 195), therefore the corrected t-value was 
chosen.  

The t-test did not show any significant difference 
between both semesters on the final test (t (226.681) 
= -1.403, p = .162, n = 242). The variance 
homogeneity, also checked with Levene's test, was 
not given (F (1, 240) = 12.135, p = .001, n = 242), 
therefore the corrected t-value was chosen. This 
results shows, that the final tests had comparable 
difficulties. 

In a further step the course participants of adaptive 
course (MSOR1 AS 2017/18) were divided into six 
groups with regard to online activity and previous 
knowledge. To compare the courses (adaptive vs. 
non-adaptive), the two groups (“novices” and 
“experts”) of the traditional course from the autumn 
semester 2016/17 were also taken into account. The 
results of the learning progress in the corresponding 
eight groups are listed in Table 6. 

Table 6: Pre-knowledge level and learning progress. 

group n mean 
learning 
progress 

SD 
learning 
progress 

Adaptive Course, MSOR1 , AS 2017/18 

Active Novices 12 49.23 21.39 

Moderate Act. Nov. 19 29.11 35.55 

Inactive Novices 14 16.19 30.76 

Active Experts 20 22.24 15.52 

Moderate Act. Exp. 17 12.97 26.79 

Inactive Experts 8 -5.24 21.24 

Non-adaptive Course, MSOR1, AS 2016/17 

Novices 34 19.04 21.64 

Experts 51 -12.12 28.73 

overall 175 11.56 31.65 

In the following analysis we excluded the group 
of inactive novices and inactive experts of the 
adaptive course, since the non-adaptive course is used 
as a control condition compared to the adaptive 
course. We applied a one-sided ANOVA with 
Tamhane post-hoc testing assuming unequal 
variances, as the variance homogeneity tested with 
Levene’s test was not given (F (7, 167) = 3.467, p = 
.002, n = 175). The one-sided ANOVA shows 
significant group effects (F (7, 174) = 11.979, p < 
0.001, n = 175). The post hoc test leads to significant 
differences between active Novices (Mean = 49.23) 
of the adaptive course and the Novices (Mean = 
19.04) of the non-adaptive course (p = .013) as well 
between the active Experts (Mean = 22.24) of the 
adaptive course and the Experts (Mean = -12.12) of 
the non-adaptive course (p < 0.001). These results 
indicate in line with our second hypothesis (H2) that 
for students who are actively involved in adaptive 
learning tasks regardless of their pre-knowledge, 
adaptive design leads to a higher level of learning 
progress compared to non-adaptive design. However, 
we also have to note that no significant differences 
were found between moderate active novices (Mean 
= 29.11) of the adaptive course compared to novices 
(Mean = 19.04) of the non-adaptive course (p = 
1.000) and also between the moderate active experts 
(Mean = 12.97) of the adaptive course and the experts 
(Mean = -12.12) of the non-adaptive course (p = 
.072). From our point of view, this result indicates 
that a certain online activity level is necessary for the 
adaptive instructional design to be effective.  

In addition, we have found a significant difference 
between the learning progress of active novices 
(Mean = 49.23) and active experts (Mean = 22.24) of 
the adaptive course (p = .035). A difference was also 
found in the non-adaptive course for the Novices 
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(Mean = 19.04) and the Experts (Mean = -12.12) (p = 
.001). This can be understood by the novices having 
a larger learning progress than the experts in both 
courses. 

Besides the significant differences mentioned 
here, however, we also point out that the differences 
between the active novices (Mean = 49.23) and the 
inactive novices (Mean = 16.19) and between the 
active experts (Mean = 22.24) and the inactive experts 
(Mean = -5.24) cannot be shown as significant 
(between novices p = .102 and between experts p = 
.192) despite the high differences between the mean 
values. We assume that large individual differences 
and the real small number of test persons play a role 
here.  

5 DISCUSSION OF THE FIRST 
EXPLORATIVE RESULTS 

In this article we presented an adaptive instruction 
design which was implemented in a standard learning 
management system as a relatively simple concept. 
The theoretical part of the instruction refers to the 
Cognitive Load Theory and the Expertise Reversal 
Effect. On this basis we developed adaptive task sets 
and combined them with a recommendation system. 
The practical application took place in a mathematics 
module (AS 2017/18) at our university.  

The first results on effects related to students' 
different prior knowledge, online activity and 
learning progress show some positive effects of the 
adaptive design used, although not all results are 
unambiguously. We have also found some unclear 
results, such as the insignificant differences between 
the active and inactive novices and between the active 
and inactive experts in the adaptive course, even 
though there are very high differences in the mean 
values. Hence it has also become apparent that some 
further clarifications are necessary and will also 
require further in-depth research.  

All in all the students from the adaptive course 
scored significantly worse in the pre-knowledge test 
than their fellow students from the non-adaptive 
course. This is not due to the adaptive design, as at 
the time when the students fill out the pre-knowledge 
test no adaptive measures have been taken. But rather 
simply that one year students had a higher starting 
level than the next. It is also evident that at the end of 
the adaptive course more students (54.2 %) passed 
this examination on their first attempt than after the 
non-adaptive course (37.0 %), despite a similarly 
difficult final examination. 

As mentioned previously, the results show a clear 
improvement in learning progress with increasing 
online activity in which students actively work 
through online tasks. The better results of both the 
novices and the experts with high online activity 
indicate this. However, this result cannot 
unequivocally be attributed to the instructional 
design. Higher online activity could lead to better 
results independently of learning design. Or the better 
results could effectively be due to the instructional 
design and the compliance of the recommendations. 
To clarify this question further investigations are 
required. Furthermore, the significant differences can 
only be seen in the comparison of very active students 
and inactive students. This means that a certain level 
of activity is necessary. In fact, the question arises as 
to why moderately active participants did not benefit 
significantly from the instructional design but also did 
not differ significantly from the active participants. It 
is possible, that they do benefit a bit, but by not 
committing to the recommendations the benefit is 
only limited. We also found that 47.6 % of students 
(in the AS 2017/18) were not active online. 
Unfortunately, it was not possible in our study to 
control further learning activities (such as learning 
offline, face to face discussions, etc.). These learning 
activities could have had an impact as well.  

Further, we found a significant difference 
between novices and experts in terms of learning 
progress in both the active group of the AS 2017/18 
group and the AS 2016/17 group (control). In both 
instances the novices showed a more prominent 
learning progress. The interpretation that this cannot 
be attributed to adaptive tasks can be justified, as the 
same difference can be seen in both adaptive and non-
adaptive courses. In this context, however, it would 
be interesting to examine more precisely the learning 
paths of the individual students in order to determine 
whether the learning progress can be traced back, 
among other things, to more success or more and 
earlier positive feedback, especially in the case of the 
novices and thus also be attributed to motivational 
factors. Another possible explanation could be, that 
the experts started at a point where their potential to 
improve was just too small. Such a ceiling effect 
would lead to similar result.  

6 CONCLUSIONS 

Returning to our three-part research question, 
whether it is possible to implement an adaptive 
learning system based on a cognitive learning 
approach in a classical learning environment (1), to 
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what extent the cognitive factors and technical 
components mentioned in previous parts contribute to 
improving learning progress, taking into account the 
design of the corresponding instructional design (2), 
and which possibilities this opens up and which limits 
are set (3), the following conclusions can be drawn: 

The instructional design used in this project refers 
to findings of cognitive load theory and the associated 
Expertise Reversal Effect. This approach points out 
that the teaching support helpful to beginners (low 
level of knowledge) can be superfluous or even 
harmful to experts (high level of knowledge) and vice 
versa (Kalyuga, 2007a, b). We have shown that 
adaptive interventions used for the adaptive learning 
design of online tasks in mathematics are possible. 
The consideration of the difficulty of the tasks and the 
previous knowledge, as well as the students' 
intermediate solutions in the step loop and the 
distinction between guided/unguided tasks with a 
correspondingly elaborated feedback, as selected 
here, seems to represent a useful and achievable 
adaptation approach (see e.g. also Brunstein et al., 
2009; Hsu et al., 2015; instructions with feedback: 
e.g. van der Kleij et al., 2015). However, during the 
development of the design we were also able to note 
that there are numerous other possibilities for design 
adaptations and interventions. In this respect, there is 
the option of further designs can be varied or 
extended. Some of these methods are much more 
complex in concept and design, but potentially bring 
further advantages. For example, the differentiation 
with regard to the level of knowledge and the 
associated level of didactic guidance could be refined 
(e.g. adding a medium level of competence and a 
medium level of didactic guidance). In this sense we 
have deliberately concentrated on a rather easy to 
implement version. Of course there is no standard 
optimal adaptive teaching design in the field of 
adaptive learning, but the specific learning objectives 
and characteristics of the teaching and learning 
environment should be taken into account. The 
adaptive, elaborate feedback used here is suitable for 
learning objects where certain misunderstandings are 
based on false answers and can be recognized. The 
distinction between guided and unguided teaching 
according to the level of knowledge seems to be easy 
to implement, especially for tasks in mathematics 
teaching, which require basic previous knowledge.  

By confirming our two hypotheses, we were also 
able to show that high online activity leading to clear 
learning progress can be realized with both a low and 
a high level of pre-knowledge. As already mentioned, 
we have not yet evaluated data on the acceptance and 
use of the recommendations. In principle, the students 

were free to decide whether they would follow the 
recommendations contained in the feedback on the 
tasks (and on the previous knowledge test). It was 
also up to the students to decide whether they want to 
perform a task one time, perform it several times or 
skip it. 

Based on our theoretical assumptions about the 
concept of the adaptive design, a significant learning 
effect should be demonstrated for students who have 
followed the recommendations. In principle, one can 
assume that learners following such 
recommendations invest more learning effort or 
practice more in a well thought-out adaptive system. 
Therefore, it should also be carefully examined 
whether more learning effort and practice goes hand 
in hand with greater learning efficiency. However, it 
must be taken into account that the design of the user 
interface has a considerable influence on the learning 
behaviour and thus also on the learning progress of 
the students. In particular, the presentation of learning 
content and the handling of the learning system, lead 
to an extraneous cognitive load (Sweller et al., 2011). 
In fact, we have not taken the relevant questions into 
account in this study. In our further research, 
however, we will look into these issues more closely. 
In addition to the Cognitive Load Theory (CLT) for 
instance various findings from the application of 
Cognitive theory of Multimedia learning (CTML) can 
be used (see for an overview Mayer, 2009). 

Overall, we have repeatedly been challenged by 
the fact that technological feasibility alone is no 
guarantee of the didactic quality of the system. As 
such, it is therefore appropriate to check and, if 
necessary, optimise the functioning of implemented 
components using, for example, empirical learning 
analytics for the purposes of quality assurance as for 
instance the measurement performance of the sensors 
(e.g. normal distribution of the number of points 
reached in a task, degree of difficulty of the task, etc.) 
and dependent threshold values are fundamental for 
the quality of the adaptation system. Although not 
shown in this paper due excessive length, we 
validated the measurement performance of the 
sensors in various smaller test runs and the non-
adaptive course which was carried out in the autumn 
semester 2016/17. Another element for measuring the 
accuracy of sensors is the awareness of the students 
in carrying out seriously the assessments. A problem 
for a reliable and valid measurement is that it requires 
a careful and serious completion of the tasks by the 
users. Failure to do so (e.g. quick or unenthusiastic 
clicking on answer options without proper thinking or 
trial-and-error strategies) can reduce the reliability of 
the adjustment basis and thus the informative value of 
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the entire adjustment process. However, it seems 
difficult to force a serious completion of the tasks 
when time-consuming sensors are connected with 
relatively high mental effort. Automatic sensors (such 
as face scanners or eye-trackers), which will probably 
be available in everyday learning situations in the 
future, could solve this problem, since no significant 
additional time and effort is then required for learners 
to obtain valid measurements. Such "objective" 
measurement parameters would function relatively 
autonomously. A quick recognition of inappropriate 
(unscrupulous) behaviour would then be possible and 
instructive interventions could be displayed.  

Taking up the third part of our research question, 
we note that there is currently a controversial 
discussion about the way adaptive learning systems 
are controlled. In the concept presented here, we 
applied a theory-based, rule-based adaptation 
mechanism and avoided the frequently propagated 
self-learning mechanism of systems based on 
artificial intelligence. One reason for this is that 
simple, theory-based mechanisms are generally 
understandable for learners if the mechanisms are 
clearly communicated (Long and Aleven, 2017; 
Suleman et al., 2016). They can also promote 
secondary learning objectives such as self-assessment 
or self-regulation by learners. Mechanisms acquired 
purely from data technology are often less systematic 
and logically difficult for learners to understand, 
since they cannot be assigned to a specific didactic 
theory. Another reason against self-learning 
mechanisms was our limited data volume per course 
module with approx. 100 students. The debate on 
whether the control mechanism should be rule-based 
or self-learning is fundamental and advocates of self-
learning systems currently seem to dominate the 
literature. For the reasons mentioned above, careful 
consideration is necessary to determine in which 
learning scenarios and for which learning objectives 
rule-based or self-learning control mechanisms are to 
be used. In our case it would have made less sense to 
control the selection of our adaptive, elaborate 
feedback in the step loop by artificial intelligence, 
since the formulation of the elaborated feedback itself 
is based on theory-led rules. Essa (Essa, 2016), for 
example, argues that artificial intelligence generally 
seems unsuitable for a step loop adjustment. A 
combination of rule-based systems with artificial 
intelligence could also be a useful mechanism. 
Further research is needed to obtain concrete 
information on the advantages and disadvantages of 
the various control mechanisms.  

Finally, we hope that the work presented here will 
help bridge the gap between research and practice and 

we would like to use our experience to motivate 
university and distance teachers to test the 
implementation of rule-based, adaptive designs. 
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