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Abstract: Linked Data repositories have become a popular source of publicly-available data. Users accessing this data
through SPARQL endpoints usually launch several restrictive yet similar consecutive queries, either to find
the information they need through trial-and-error or to query related resources. However, instead of executing
each individual query separately, query augmentation aims at modifying the incoming queries to retrieve more
data that is potentially relevant to subsequent requests. In this paper, we propose a novel approach to query
augmentation for SPARQL endpoints based on machine learning. Our approach separates the structure of
the query from its contents and measures two types of similarity, which are then used to predict the structure
and contents of the augmented query. We test the approach on the real-world query logs of the Spanish and
English DBpedia and show that our approach yields high-accuracy prediction. We also show that, by caching
the results of the predicted augmented queries, we can retrieve data relevant to several subsequent queries at
once, achieving a higher cache hit rate than previous approaches.

1 INTRODUCTION

Linked Data repositories have grown to provide a we-
alth of publicly-available data, with some repositories
containing millions of concepts described by RDF tri-
ples (e.g. DBpedia1, FOAF2, GeoNames3). Users
access the data in these repositories through public
SPARQL endpoints that allow them to issue SPARQL
queries, the standard query language for RDF stores.
Consecutive queries received from the same client
usually exhibit some patterns, such as querying iden-
tical or similar resources than previous queries.

Caching query results was first proposed to keep
recently retrieved data in a memory cache for use with
later queries (Dar et al., 1996; Martin et al., 2010;
Yang and Wu, 2011). However, caching only works
if the exact same data is accessed multiple times. In
reality, it is more common to have similar consecutive
queries that retrieve related resources from the reposi-
tory (Bonifati et al., 2017; Mario et al., 2011). Query
augmentation takes advantage of this fact, retrieving
data that will potentially be used by future queries
before the queries are received by the SPARQL en-
dopint. Previous approaches to query augmentation

1DBpedia: https://wiki.dbpedia.org/
2FOAF: http://www.foaf-project.org/
3GeoNames: http://www.geonames.org/

are divided into two main categories, (1) techniques
based on information found in the data source, and
(2) techniques based on analysis of previous (histo-
ric) queries, as discussed in section 2.

In this paper, we present an approach to query
augmentation for SPARQL endpoints based on de-
tecting recurring patterns in historic query logs. The
novelty of our approach is that we measure two in-
dependent types of similarity between queries: struc-
tural similarity and triple-pattern similarity. Using
the structural similarity, we apply a machine lear-
ning algorithm to predict the structure of the next
query. Afterwards, we use the triple-pattern simila-
rity to construct augmented triple patterns and predict
which should be combined with the predicted struc-
ture to construct the augmented query. By doing so,
we construct an augmented query that takes into con-
sideration the structure of the next query and, at the
same time, retrieves data relevant to several subse-
quent queries.

In our approach study, we show the accuracy of
our prediction algorithm using query logs of both the
English and Spanish DBpedia. We also estimate the
cache hit rate that can be achieved by caching the re-
sults of the predicted augmented queries, finding that
our method achieves a higher hit rate than previous
approaches with a smaller number of cached queries.
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The rest of this paper is organized as follows:
section 2 reviews the related work in the fields of
‘SPARQL query analysis’ and ‘SPARQL Query Aug-
mentation’. Section 3 lists some SPARQL prelimi-
naries and introduces a running example. Section 4
describes and formalizes the proposed approach.
Section 5 details our experimental study and shows
the viability of our approach. Finally, section 6 con-
cludes the paper and highlights some future work.

2 RELATED WORK

In this section, we provide an overview of the most
important approaches in the two fields from which
we draw our work: (1) SPARQL Query Analysis, and
(2) SPARQL Query Augmentation.

2.1 SPARQL Query Analysis

The motivation to analyze the queries logged by
SPARQL endpoints started with the work of Moller et
al. (Möller et al., 2010), who promoted the creation
of the USEWOD workshop4. They used the informa-
tion in the query logs to show that, for the 4 data sets
they studied, more than 90% of queries were SELECT
queries.

Mario et al. (Mario et al., 2011) used the USE-
WOD 2011 dataset (7 million SPARQL queries from
DBpedia and SWDF) to find the most used features
and concluded that most queries are simple and in-
clude a few triple patterns and joins (Groppe et al.,
2009). They also pointed that 99.7% of valid queries
were SELECT queries.

Raghuveer et al. used the USEWOD 2012 data-
set to manually collect what they called ‘canonical
form’ of SPARQL queries in order to detect repeti-
tive patterns in the creation of queries (Raghuveer,
2012). This might seem similar to our approach to
detect query templates, but we introduce the concepts
of ‘inner tree’ and ‘surface form’ and we can extract
these structures automatically from any query.

The work of Bonifati et al. is based on the largest
studied set of SPARQL query logs to date (Bonifati
et al., 2017). They used over 170 million queries from
14 different sources to perform a multi-level analysis
of common features in SPARQL queries. They rea-
ched similar conclusions to previous studies regarding
the commonality of SELECT queries and the fact that
most of these queries are simple and only contain one
or two triple patterns (Bonifati et al., 2017).

4USEWOD Workshop: http://usewod.org/

Finally, Dividino and Groner classify the existing
methods to measure the similarity of SPARQL que-
ries in 4 categories: structure, content, language and
result set (Dividino and Gröner, 2013). Depending on
the application purposes, a combination of these 4 di-
mensions provides the best metric. In our approach,
we perform a structural categorization of queries and
combine it with content-similarity measures to match
SPARQL queries in a query log.

2.2 SPARQL Query Augmentation

Query augmentation, also called query relaxation,
aims at retrieving related information based on a user
query that is potentially needed for subsequent que-
ries. There are two main categories of query augmen-
tation techniques: (1) techniques based on informa-
tion found in the data source, and (2) techniques ba-
sed on analysis of previous historic queries.

In the first category, Hurtado et al. suggest logical
augmentations based on ontological metadata (Hur-
tado et al., 2008). In contrast, Hogan et al. propose an
approach that relies on precomputed similarity tables
for attribute values (Hogan et al., 2012), whereas El-
bassuoni et al. utilize a language model derived from
the knowledge base to perform query augmentation
(Elbassuoni et al., 2011). Given that these techni-
ques need data from the data source, they require at
least some precomputations to be performed before
they can be applied. Furthermore, they are not porta-
ble across data sources since the required information
might not always be available.

In contrast, techniques that are based on historic
query logs are more portable across data sources since
they do not require any specific information from the
data source. Lorey et al. propose the first work in this
category by detecting recurring patterns in past que-
ries and creating query templates based on a bottom-
up graph pattern matching algorithm (Lorey and Nau-
mann, 2013b). The same authors extend their work by
combining these templates with four different query
augmentation strategies but do not reach any conclu-
sive results on which strategy offers the best results
(Lorey and Naumann, 2013a). Another approach is
proposed by Zhang et al. who measure similarity be-
tween SPARQL queries using a Graph Edit Distance
(GED) function and use similar previous queries to
‘suggest’ data for prefetching (Zhang et al., 2016).

Our approach belongs to the second group of
query augmentation strategies, since it is based on
analyzing queries received by the SPARQL endpoint.
However, unlike previous approaches, we do no di-
rectly launch an augmented query but use a two-step
prediction process to predict the structure of the aug-

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

58



mented query before individually predicting which
triple patterns to use. This separation allows us to take
the query structure into account without performing
any graph matching between each pair of SPARQL
queries.

3 SPARQL PRELIMINARIES AND
MOTIVATING EXAMPLE

SPARQL queries have four different query forms, na-
mely SELECT, DESCRIBE, ASK and CONSTRUCT.
Previous studies show that the most common query
starts with one or more PREFIX items followed by a
SELECT structure (Mario et al., 2011; Möller et al.,
2010). Therefore, in our approach we only consider
SPARQL queries of the SELECT form and we do not
study the less common forms.

The central construct of a SPARQL SELECT query
is a ‘Triple Pattern’. A triple pattern is defined as
T = 〈s, p,o〉 ∈ (V ∪U)×(V ∪U)×(V ∪U ∪L) where
V is a set of variables, U a set of URLs and L a set of
literals (Pérez et al., 2009). The three parts of a tri-
ple pattern correspond to a subject, a predicate and an
object.

A set of one or more triple patterns constitute a
Basic Graph Pattern (BGP). A SELECT query can
contain one or more BGPs, joined with the SPARQL
keywords AND, UNION or OPTIONAL. These BGPs
form the query’s graph pattern. Our approach ta-
kes into account the triple patterns of a query graph
pattern and does not consider other features such as
FILTER, LIMIT or ORDER BY.

We call a consecutive sequence of queries recei-
ved by the SPARQL endpoint from the same client a
‘Query Session’. As previous studies have demon-
strated, queries in the same session tend to be simi-
lar to each other with only minor changes occurring
between them (Dividino and Gröner, 2013; Picalausa
and Vansummeren, 2011). In this paper, we define
the length of a query session to be a one-hour time
window.
Example. Listing 1 shows a query session consisting
of four SELECT queries received by a SPARQL end-
point that will be used as a running example throug-
hout the paper. The queries in this session look up
former teams of different football players and ask
for some properties of these teams. We use the
line numbers in the listing to refer to the triple pat-
terns. For instance, we refer to the triple pattern dbr:
Cristiano_Ronaldo dbo:formerTeam ?team on line 4
as T4.

We can see that the triple patterns of the queries in
Listing 1 are quite similar to each other. For instance,

Listing 1: Example query session of SPARQL SELECT
queries.

1 Q1 : PREFIX dbr: <http://dbpedia.org/
resource/>

2 PREFIX dbo: <http://dbpedia.org/
ontology/>

3 SELECT * WHERE {
4 dbr:Cristiano_Ronaldo dbo:

formerTeam ?team .
5 }
6
7 Q2 : PREFIX dbr: <http://dbpedia.org/

resource/>
8 PREFIX dbo: <http://dbpedia.org/

ontology/>
9 SELECT * WHERE {

10 dbr:Cristiano_Ronaldo dbo:
formerTeam ?team .

11 OPTIONAL {
12 ?team dbo:manager ?manager .
13 }
14 }
15
16 Q3 : PREFIX dbr: <http://dbpedia.org/

resource/>
17 PREFIX dbo: <http://dbpedia.org/

ontology/>
18 SELECT * WHERE {
19 dbr:Iker_Casillas dbo:formerTeam ?

team .
20 }
21
22 Q4 : PREFIX dbr: <http://dbpedia.org/

resource/>
23 PREFIX dbo: <http://dbpedia.org/

ontology/>
24 SELECT * WHERE {
25 dbr:Gerard_Pique dbo:formerTeam ?

team .
26 ?team dbo:manager ?manager .
27 }

T10 is identical to T4 whereas T19 and T25 have a dif-
ferent subject but the same predicate and object. Our
approach uses a supervised learning algorithm to cap-
ture the repetitive patterns of the changes occurring
between the triple patterns to predict the changes that
lead to the triple patterns of the augmented queries.

4 PROPOSED APPROACH

The main goal of our approach is to construct aug-
mented queries that retrieve data relevant to subse-
quent queries received by a SPARQL endpoint. To
do so, we first extract the structure of the queries and
construct query types (Section 4.1). Second, we per-
form a matching of triple patterns between the que-
ries received by the SPARQL endpoint (Section 4.2)
and then construct individual augmented triple pat-
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terns using the generated matchings (Section 4.3). Af-
terwards, we use supervised machine learning algo-
rithms to capture the repetitive patterns between pre-
vious queries and apply a two-step prediction process:
(1) we first predict which query type should come
next, and, (2) we predict which augmented triple pat-
terns should be combined with the predicted query
type to construct the augmented query (Section 4.4).

4.1 Query Types (Q-Types)

The aim of a ‘Query Type’, also denoted Q-Type, is
to capture the syntactic structure of a given SELECT
query. We compute the Q-Type of a query by gene-
rating the query’s parse tree (following the SPARQL
1.1 grammar), removing the leaves of the tree and se-
rializing the resulting tree. We denote ‘surface form’
to the leaves of the tree, and ‘inner tree’ to the rest
of the tree. Therefore, we say that two queries have
the same Q-Type, and hence are structurally similar,
if they differ only in their ‘surface form’. That is,
they have the same ‘inner tree’ but different variable
names, resources and literals in their ‘surface form’.
Example. Listing 2 shows a sample SPARQL SE-
LECT query with one triple pattern.

Listing 2: Example of a SPARQL SELECT query.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT * WHERE
{
?x foaf:mbox ?mbox .

}

Figure 1 shows the parse tree of the SPARQL query
from Listing 2. The query’s surface form, which re-
presents the text seen in the decoded query, is located
in the leaf nodes of the tree.
Listing 3 shows the serialization of the parse tree in
Figure 1 following a top-down, left to right, visiting
algorithm.

Listing 3: Serialization of the parse tree in Figure 1.
(QUERY (PROLOGUE
(PREFIX foaf:
<http://xmlns.com/foaf/0.1/>))

(SELECT (SELECT_CLAUSE *)
(WHERE_CLAUSE
(GROUP_GRAPH_PATTERN
(TRIPLES_SAME_SUBJECT
(SUBJECT ?x)
(PREDICATE (PATH
(PATH_SEQUENCE
(PATH_ELT_OR_INVERSE
(PATH_PRIMARY foaf:mbox))))

(OBJECT ?mbox)))))))

Finally, Listing 4 is the serialization of its inner tree,
that is, after eliminating the surface form of the query.

Note that this serialization only contains the tokens of
the SPARQL grammar.

Listing 4: Serialization of the inner tree in Figure 1.
QUERY ( PROLOGUE ( PREFIX ( ) )
SELECT ( SELECT_CLAUSE ( )
WHERE_CLAUSE
( GROUP_GRAPH_PATTERN
( TRIPLES_SAME_SUBJECT
( SUBJECT ( )
PREDICATE ( PATH
( PATH_SEQUENCE (
PATH_ELT_OR_INVERSE
( PATH_PRIMARY ( ) ) ) )

OBJECT ( ) ) ) ) ) ) )

This inner tree represents the Q-Type that allows us
to group structurally-similar queries. For instance,
examples of queries with the same Q-Type are Q1
and Q3 from the sequence of queries shown in Lis-
ting 1. We can see that both queries have the same
inner structure and the differences are only present in
their surface forms. On the other hand, queries Q2
and Q4 have different Q-Types, since their structure
is different.

As we can see, the Q-Types capture the structure
of a SPARQL query, including how its triple patterns
form BGPs and, if necessary, how the BGPs connect
with each other using the keywords AND, UNION and
OPTIONAL. This eliminates the need to do graph ma-
tching to measure the structural similarity between
queries and allows to only perform simple triple pat-
tern matching.

4.2 Triple Pattern Matching

In order to capture the changes that occur between the
triple patterns of the queries received by a SPARQL
endpoint, we match the most similar triple patterns
together. We do so by counting the number of tri-
ple pattern parts (i.e. subjects, predicates and objects)
that are different between two triple patterns. In this
measure, we say that two triple pattern parts are iden-
tical, and hence their distance is 0, if they are both
variables or have the same URL or literal. Otherwise,
we say that their distance is 1. More formally, as-
suming that x1,x2 are either the subjects, predicates
or objects of two triple patterns T1 = 〈s1, p1,o1〉 and
T2 = (s2, p2,o2), we define the distance between the
two parts ∆(x1,x2) as:

∆(x1,x2) =

{
0, i f (x1 ∈V ∧ x2 ∈V )∨ (x1 = x2)

1, otherwise
(1)
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Figure 1: Parse tree of the SPARQL SELECT query in Listing 2.

We then determine the overall distance between
the two triple patterns by aggregating the individual
triple pattern part distances as follows:

∆(T1,T2) = ∆(s1,s2)+

∆(p1, p2)+∆(o1,o2) (2)
This function is based on the distance function de-

fined by Lorey et al. (Lorey and Naumann, 2013a). In
the original definition, the authors use a Levenshtein
distance to compare two URLs or literals when me-
asuring the distance between two triple pattern parts
∆(x1,x2) and then use a more complex aggregation to
compute ∆(T1,T2). We modified it in our approach
since we are only interested in counting the number
of different triple pattern parts between T1 and T2, re-
gardless of whether they are variables, URLs or liter-
als.

We also introduce a restriction not found in the
original definition to guarantee that the matched triple
patterns are not too different from each other. We do
so by limiting the distance between the matched triple
patterns to ∆(T1,T2) ≤ 1, i.e. the two triple patterns
are different in at most one part. If more than one
triple pattern can be matched with the same distance,
the one that occurs most recently in the query session
is considered. If no such match can be found, we say
that the triple pattern is “unmatched”.

Example. Looking at the queries in Listing 1, we
match their triple patterns as follows:
• Q1: the first query in the session and there are no

previous queries to do the matching.
• Q2: the first triple pattern T10 is identical to T4

while the second triple pattern T12 is unmatched.
• Q3: its triple pattern T19 is matched to T10 with a

change in the subject.
• Q4: the first triple pattern T25 is matched to T19

with a change in the subject. The second triple
pattern T26 is identical to T12.

4.3 Augmented Triple Patterns

For each pair of triple patterns matched as described
in Section 4.2, we construct an Augmented Triple Pat-
tern aug(T1,T2). If the matched triple patterns are
identical, the augmented triple pattern is identical to
both of them as well. Otherwise, we construct the
augmented triple pattern by substituting the part that
is different between them with a variable. For con-
sistency, the same URL or literal is always replaced
with the same variable. If a triple pattern is unma-
tched, then the corresponding augmented triple pat-
tern is identical. Formally, we define aug(x1,x2) as
the augmented part of two triple pattern parts as fol-
lows:
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aug(x1,x2) =





x1 = x2, i f ∆(x1,x2) = 0
?vari where ?vari = aug(x1,xi)

∀xi, otherwise
(3)

We then define aug(T1,T2) for a pair of matched
triple patterns as:

aug(T1,T2) = 〈aug(s1,s2),

aug(p1, p2), aug(o1,o2)〉 (4)

The aim of augmented triple patterns is two-fold.
First, they capture the changes that occur between the
triple patterns of queries in a session. This allows us
to use them to predict the triple patterns of the aug-
mented query based on changes in previous queries in
the session. Second, they are more abstract than the
original triple patterns occurring in the queries and
hence they retrieve additional data that is potentially
relevant for subsequent queries as well.
Example. Given the matchings between the triple
patterns of the queries in Listing 1, we construct the
following augmented triple patterns:

• aug1 = aug(T10,T4) = T10 = T4: since T10 and T4
are identical.

• aug2 = aug(T19,T10) = aug(T25,T19) = ?var1
dbo:formerTeam ?team: since T10,T19 and T25

only differ from each other in the subject

• aug3 = aug(T26,T12) = T26 = T12: since T26 and
T12 are identical.

4.4 Constructing Augmented Queries

To predict and construct an augmented query, we use
the Q-Types and augmented triple patterns of previ-
ous queries in the same query session. More precisely,
we use the Q-Types of previous queries to predict the
Q-Type, and hence structure, of the next query in the
query session. Afterwards, we predict which augmen-
ted triple patterns should be combined with the Q-
Type to construct the ‘surface form’ of the augmen-
ted query. By doing so, we construct an augmented
query that takes into account the structure of the next
query and retrieve data relevant to several subsequent
queries at the same time.

We formulate the prediction process as a multi-
class classification problem, using one classifier to
predict the Q-Type of the upcoming query and one
classifier to predict each augmented triple pattern in
that Q-Type. For the Q-Type classifier, we use as
features the Q-Types of previous queries in the ses-
sion. As for the augmented triple patterns, the feature

vectors include one feature for each augmented triple
pattern of each of the previous queries in the session,
regardless of their position in the original query. The
classifier is then used to predict which augmented tri-
ple pattern should come in the ith position of the pre-
dicted Q-Type.
Example. Using the queries in Listing 1, and assu-
ming we use 2 previous queries in the classifier mo-
del, we would have the following features:

q-type(Q1), q-type(Q2)→ q-type(Q3)

q-type(Q2), q-type(Q3)→ q-type(Q4)

Similarly, the feature vectors of the augmented tri-
ple pattern classifiers would be the following. The
first two features correspond to augmented triple pat-
terns of Q1, the next two features to Q2 and so on.
Note that if a query has less triple patterns than the
maximum, we use the question mark ‘?’ to indicate
that this feature is missing.
Classifier features for first triple pattern:

aug1,?,aug1,aug3→ aug2

aug1,aug3,aug2,?→ aug2

Classifier features for second triple pattern:

aug1,?,aug1,aug3→?
aug1,aug3,aug2,?→ aug3

We then train the classifiers on historical data and
when a new query arrives to the SPARQL endpoint,
we compute its Q-Type and augmented triple patterns
and run the information through the trained classi-
fier to obtain the predicted augmented query. For in-
stance, using the queries in Listing 1, let’s assume that
the classifiers predict that the next query, Q5, is of
type q-type(Q2) and that its augmented triple patterns
are aug2 and aug3. Using these predictions, the sur-
face form of the constructed augmented query would
be the one shown in Listing 5. This query is then
used to retrieve the data retrieved by the original next
query, as well as related data potentially relevant to
subsequent queries.

Listing 5: Surface form of a constructed augmented query.
1 Q5 : PREFIX dbr: <http://dbpedia.org/

resource/>
2 PREFIX dbo: <http://dbpedia.org/

ontology/>
3 SELECT * WHERE {
4 ?var1 dbo:formerTeam ?team .
5 OPTIONAL {
6 ?team dbo:manager ?manager .
7 }
8 }
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Table 1: Characteristics of the datasets used in our expe-
riments. Numbers of queries and distinct queries refer to
SELECT queries only.

esDBpedia enDBpedia
Total Queries 167,810 203,874
Distinct Queries 46,397 105,284
Distinct IPs 2,197 8,918
Sessions 963 619
Months Covered 12 3

5 APPROACH STUDY

We evaluated our approach by studying the Spanish
DBpedia (esDBpedia) query logs extracted directly
from the esDBpedia SPARQL endpoint and the En-
glish DBpedia (enDBpedia) logs published for the
2013 USEWOD workshops5. The log files contain
a sequence of requests received by the respective pu-
blic SPARQL endpoints and cover different periods
between 2012 and 2013. We extracted the SPARQL
SELECT queries from other SPARQL queries and
HTTP requests for use in our experiments. Table 1
shows the most relevant facts about the extracted da-
tasets. As we can see, the esDBpedia dataset covers
more months but the enDBpedia has a more diverse
dataset, both in terms of distinct SELECT queries and
IPs from which the queries were made.

We divided the logs according to the requesting IP
and considered the n previous queries from the same
IP in our classifiers. We experimented with different
values of n to see the influence of the number of consi-
dered queries on the classifiers’ results. For the esDB-
pedia dataset, we included the time intervals between
consecutive queries as additional classifier features.
We could not do the same with the enDBpedia dataset
because the published logs did not include the que-
ries’ timestamps.

We also calculated the number of queries made
from each IP and concluded that it seems to follow a
power-law distribution, that is, a small number of IP
addresses is responsible for a big number of queries.
The main implication of such a generalized behavior
is that the SPARQL endpoints of the Linked Data re-
positories could be optimized to take advantage of this
80-20 behavior. Due to space limitations, we do not
include the implications of this behavior on our ap-
proach in this paper and leave it to future work.

For our classification problem, we used the J48
decision tree classifier (using Weka 3.8.16) and tes-
ted the classifiers by using 10 fold cross-validation.

52013 USEWOD Workshop: https://eprints.soton.ac.uk/
379399/

6Weka: https://www.cs.waikato.ac.nz/ml/index.html

In all of our experiments, we used as a baseline the
ZeroR classifier, which predicts all instances to be of
the most common class. To ensure the reproducibility
of our experiments, we have made all of the training
datasets and experimental results publicly available at
http://prefetch.linkeddata.es.

5.1 Q-Type Prediction

We started our study by calculating the number of ge-
nerated Q-Types. We found that the queries of the
esDBpedia dataset correspond to 943 Q-Types whe-
reas in the enDBpedia logs we found 3,139 Q-Types.
Figure 2 shows the distribution of queries among the
computed Q-Types plotted in logarithmic scale. We
can see from Figure 2 that the distribution of Q-Types
is very skewed, with a large number of Q-Types cor-
responding to few queries and only a handful of Q-
Types corresponding to the majority of queries. Gi-
ven this distribution, in the rest of the experiments we
only consider the most common Q-Types that cover
the vast majority of the queries. More precisely, we
consider 56 Q-Types that cover 98.5% of all queries
in the esDBpedia dataset, whereas in the enDBpedia
dataset we consider 60 Q-Types that cover 98.1% of
all queries.

Using the most common Q-Types, we evaluated
the classifier’s precision in predicting the Q-Type of
the next query when considering different numbers of
previous queries, n. Figure 3 shows the classifier pre-
cision on both datasets. For esDBpedia, the classifier
achieves high accuracy even when n = 2 and reaches
a peak of 96.34% when n = 15. As for the enDBpe-
dia dataset, the classifier’s peak precision of 89.95%
is achieved when n = 10. In general, the classifier
achieves worse precision with the enDBpedia dataset,
which indicates that the queries received by the enD-
Bpedia SPARQL endpoint are more diverse and do
not follow a predictable pattern such as with esDB-
pedia. Note that the baseline for this experiment is
22.09% for esDBpedia and 15.35% for enDBpedia.

We also evaluated the accuracy of the classifier
with less-common Q-Types. Figure 4 shows the clas-
sifier’s precision (number of correctly-classified in-
stances divided by the total number of classified in-
stances) and recall (number of correctly-classified in-
stances divided by the total number of instances of the
class) for each of the included Q-Types in both data-
sets. We chose the values of n that offer the highest
overall accuracy to perform this experiment, namely
with n= 15 for esDBpedia and n= 10 for enDBpedia.

For the esDBpedia dataset, we can see that the
classifier has both precision and recall of over 80%
in the majority of cases and its recall only drops be-
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Figure 2: Number of queries (in log scale) corresponding
to each of the computed Q-Types. The x-axis ranks the Q-
Types from most common (left) to least common (right).
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Figure 3: Precision of the Q-Type classifier.

low 50% for 3 of the included Q-Types. On the ot-
her hand, the classifier registers a similar drop with 8
Q-Types in the case of enDBpedia. The classifier per-
forms badly with these types because it cannot distin-
guish them from other types with the used features.
We argue that the solution could be to include other
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Figure 4: Q-Type classifier precision and recall for each of
the included Q-Types. The x-axis ranks the Q-Types from
most common (left) to least common (right). Each marker
represents the precision (black) or recall (orange) for a Q-
Type.

features in the classifier models, such as the time in-
terval between queries in the enDBpedia.

5.2 Prediction of Augmented Triple
Patterns

After evaluating the Q-Type prediction algorithm, we
studied the accuracy of the classifiers in predicting the
augmented triple patterns (as discussed in section 4.2)
that are used with the predicted Q-Type to construct
the augmented query. Figure 5 shows the classifier’s
precision on both datasets, the x-axis indicates the
number of augmented triple patterns in the predicted
Q-Type and the two series show the results when con-
sidering 5 and 10 previous queries. A common beha-
vior that can be observed in figure 5 in both datasets
is that, unlike the Q-Type classifier, increasing n does
not always increase the precision of the augmented
triple-pattern classifiers. This indicates that the pre-
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Figure 5: Precision of the triple patterns classifiers on the
studied datasets.

dicted triple patterns appear in previous queries even
when n = 5 or n = 10 and any further increase only
adds more unnecessary data points to the classifiers
model.

It is also worth noting that the classifier results are
completely different when considering queries that
have more than 6 triple patterns, with the precision in-
creasing to around 98% with esDBpedia and dropping
to below 50% with enDBpedia. This can be explained
as follows: 21.3% of queries in esDBpedia have more
than 6 triple patterns, of which 98.2% are duplica-
tes. On the other hand, the percentage of queries with
more than 6 triple patterns drops to only 10.8% in the
enDBpedia, out of which only 33.7% are duplicates.
The extremely high duplicates rate explains the high
accuracy of the classifier with esDBpedia, while the
small number of queries with more than 6 triple pat-
terns in the enDBpedia dataset, coupled with the low
duplication rate, is not sufficient to train a classifier
model with high accuracy.
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Figure 6: Cache Hit Rate based on the constructed augmen-
ted queries.

5.3 Cache Hit Rate

We performed a final experiment to estimate the ‘ca-
che hit rate’ that our approach can achieve by caching
the predicted augmented queries. We did so by cal-
culating the percentage of queries for which all tri-
ple patterns occur in an augmented query previously
predicted in the same session. When this happens,
assuming that we cache the results of the predicted
queries, we have a ‘cache hit’ since the cached results
will also be results of the query being predicted.

Figure 6 shows the cache hit rates that can be
achieved by caching different numbers of predicted
augmented queries. It indicates that, for esDBpedia,
we can have cached results for between 92.63% and
96.80% of future queries, depending on the number
of cached queries. On the other hand, the hit rate
for enDBpedia ranges between 67.70% when only ca-
ching 10 augmented queries and 88.10% when ca-
ching 1,000 augmented queries.

Compared to previous approaches, Zhang et al.
reported an average cache hit rate of 76.65% using a
dataset of enDBpedia queries of a similar size (Zhang
et al., 2016) and a cache of 1,000 queries. We could
not readily compare our approach to the work of Lo-
rey et al. since the authors do not provide compara-
ble measures in their evaluation (Lorey and Naumann,
2013b).

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we presented a novel approach to query
augmentation in SPARQL endpoints based on mea-
suring two independent types of similarity between
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SPARQL SELECT queries. We use syntactic parse
trees to measure the structural similarity of SPARQL
queries and create Query Types which we use to pre-
dict the structure of the next query. Independently,
we measure the similarity between the queries’ triple
patterns, and use the similarities to construct augmen-
ted triple patterns. We then combine the two predicti-
ons to construct an augmented query that can be used
to retrieve data relevant to subsequent queries in the
query session.

We evaluated our approach on the SPARQL end-
point query logs of the Spanish and English DBpedia.
The results show that the prediction of both Q-Types
and augmented triple patterns does not require a large
number of queries, only between 10 to 15, to achieve
high precision. This indicates that our approach can
be used in both long and short query sessions alike.
In general, the classification precision is higher for
the esDBpedia dataset, due to the fact that the enDB-
pedia logs are more diverse and contain more unique
queries. For a minority of cases, namely for queries
containing more than 6 triple patterns, the classifier
accuracy drops for the enDBpedia due to the insuf-
ficient size of this subset of queries. However, our
approach can still achieve a cache hit rate of around
85% for the enDBpedia dataset, which is considerably
higher than previous augmentation approaches.

In the future, we intend to implement a full ca-
ching and prefetching system using our proposed
query augmentation approach. We also plan to extend
our prediction method to take into account other fea-
tures of SELECT queries, such as FILTER clauses, as
well as other less common forms of SPARQL queries.
Finally, we want to distinguish human query sessions
from sessions made by machine agents to test the ef-
fectiveness of our approach on both types and opti-
mize it accordingly.
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