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Abstract: SWRL is an extension for OWL which allows the use of Horn clause like rules in ontologies. SWRL ru-
les are an expressive instrument for OWL-based ontologies simplifying and augmenting deductive reasoning
capabilities. With increasing size and complexity rule bases becomes more and more fragile as logical incon-
sistencies in the overall structure of the rule base are difficult to find. However, available debugging options
require immense manual effort, if not even become an impossible task. Therefore, there is an expressed need
for developers and end users to get an efficient and easy to use interactive rule evaluation instrument. In this
paper we present a new method for a simplified debugging process that we call Single Rule Evaluation (SRE).
This SRE method enables the user to iterate through the reasoning process of the ontology and the set of
inference rules and examines each atom of a selected SWRL Rule to deliver detailed information about the
inferred output. In addition to a theoretical concept, we present a prototypical implementation of SRE as a
Protégé plugin that can be invoked during the modelling process to test rules for consistency.

1 INTRODUCTION

SWRL (Semantic Web Rule Language) is a rule lan-
guage based on RuleML extending OWL (Web On-
tology Language) with Horn clause like if-then rules
(Horrocks et al., 2004). With a growing number of
developers the need for appropriate debugging tools
for SWRL rules in large knowledge bases becomes
more prominent as was already stated by the creator
of Protégé Martin O’Connor himself in a blog post
(O’Connor, 2018). Up to now there are only few
open source solutions for that purpose and only a sin-
gle commercial product called ODASE Rules Work-
bench (MacLarty et al., 2016). However, it should
be noted that most of the available solutions only of-
fer an insufficient scope of debugging functionalities.
An example is the Fluent Editor 2015, which is able
to display all SWRL rules together with all relevant
elements from the ontology executed by the Rule En-
gine (flu, ). Nonetheless, information about elements
that caused a rule to fail are missing. Computer-aided
debugging methods reduce manual efforts and incre-
ase the efficiency of the development process. Wit-
hout tool support, a developer must search for contra-
dictions in the rule antecedent of a rule manually, if
a rule consequent is not executed. For this purpose,
all atoms of the rule need to be individually examined
by hand, which often includes inspecting each corre-

sponding entry in the ontology. This tedious process
makes testing a long and inefficient task. Therefore,
there is an urgent demand for an efficient computer-
aided method for debugging single SWRL Rules.

1.1 Motivation

SWRL Rules consist of a rule antecedent (“if”) and a
rule consequent (“then”). If all conditions in the rule
antecedent are satisfied, the rule consequent is consi-
dered true and inferences are drawn. Otherwise, the
rule consequent is considered false and there is cur-
rently no method for developers to identify which of
the conditions in the rule antecedent are not met and
cause the rule to fail. SWRL does not provide infor-
mation about the evaluation process of an executed
rule. Therefore, it is difficult to identify atoms clas-
sified as false. A developer must manually resolve
the rules in the logical context of the relevant entities
in the ontology. In practical industrial applications
(e.g. from engineering disciplines), this issue beco-
mes considerably complicated and time consuming.

1.2 Idea

In this paper we address the task of developing a de-
bugging method for the evaluation of single SWRL
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rules in the context of a given ontology. The algo-
rithm to be designed must potentially compute the
output values for each atom in the rule antecedent and
must be able to process rules with the help of arbi-
trary reasoners. Therefore this approach differs from
existing open source solutions, like the Protégé plugin
SWRL-IQ which is based on an XSB Prolog inference
engine (Elenius, 2012). By computing the output va-
lues for each atom of the antecedent, the SRE answers
the question whether the conclusion of a specific rule
was drawn. Our algorithm rearranges the rule struc-
ture (atom ordering) in order to examine the integrity
of references for each atom in the rule antecedent and
then assigns values successively following the depen-
dencies within the rule. is the academic standard for
OWL ontology editors. It has an open architecture
and can easily be extended with plugins. We pre-
sent such a Protégé plugin which iteratively evalua-
tes SWRL rules using our algorithm. The following
example illustrates the general idea.

Figure 1: Example evaluation.

1.3 Outline of the Paper

The following section provides general background
knowledge for the work with OWL ontologies and in
particular SWRL. Section 3 describes the concept and
preconditions of our SRE algorithm. In section 4, we
present a practical example of application of SRE as
a proof of concept. Finally, this paper explains the
approach used for the implementation and showca-
ses the developed visualisation plugin for evaluating
SWRL rules.

2 BACKGROUND

OWL is a standardised general knowledge representa-
tion language defined in the official W3C OWL guide

from 2004 (McGuinness et al., 2004). Being based on
description logic the language is object centred with
no real support for if then rules. This can be healed by
extending OWL with SWRL (Horrocks et al., 2004),
which offers Horn clause like rules to express such
inferences.

In addition to OWL elements that mainly pro-
vide class definitions and descriptions of their con-
textual interrelation i.e concepts, individuals and pro-
perties, SWRL further includes elements for functi-
ons (i.e. built-ins) and restrictions (McGuinness et al.,
2004). Built-ins can be described as operators similar
to functions in conventional programming languages,
e.g. they can be used to express mathematical ope-
rations. Results are not passed as return values but
are bound to variables. The following table summari-
ses the most significant elements that can be used in
SWRL and shows their syntactic structure.

Table 1: OWL/SWRL Elements.

OWL/SWRL Element Syntax
Class Person
Individual /
Class instance

Person(bob) /
Person(alice)

Data Property canDrive(bob, true)
Object Property isSon(bob, alice)
Built-ins swrlb:lessThan(?age,18)
Restrictions integer[> 0]
Variable ?age

2.1 SWRL Syntax Diagram

SWRL rule consists of two sets of atoms (antecedent
and consequent). An atom has a name and depending
on the atom type (class, data property, object property,
built-in) they can contain i-objects and d-objects. An
i-object can either be an individual ID or an i-variable,
which is a URI referring to an entity defined in the on-
tology. In contrast, d-objects are either data literals or
d-variables that also refer to an entity. Fig. 2 illus-
trates the syntactical structure of SWRL rule in more
detail.

2.2 Semantic Query-Enhanced Web
Rule Language

The Semantic Query-Enhanced Web Rule Language
(SQWRL) is a language based on SWRL, in which
the rule consequent is replaced by so-called SQWRL
selection operators. For this purpose, SQWRL provi-
des different operators such as selection of values or a
function for counting the number of entries in the re-
sult set of a query. As SQWRL is based on SWRL, it
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Figure 2: SWRL syntax diagram.

makes use of syntactically similar rules to specify the
extraction of the data. The consequent of the rule is
replaced by a retrieval specification (a set of SQWRL
selection operators) in order to specify the data that
should be extracted. In contrast to the retrieval speci-
fication (rule consequent), the antecedent follows the
regular SWRL syntax to specify patterns for the query
(O’Connor and Das, 2009). The following example
illustrates a SQWRL rule which selects all individu-
als in the ontology that belong to concept person and
possess a driver licence.

Person(?p) ˆ hasDL(?p, ?dl)→ sqwrl:select(?p)

The operator sqwrl:select is one of the core functions
that return a list of relevant concepts i.e. persons ?p
(see (O’Connor and Das, 2009)).

2.3 Dependencies between SWRL
Atoms

Typically, variables are used in more than one SWRL
within a rule or a part of the rule. A fact that defines
logical dependencies e.g. through object properties
used. SWRL atoms that are not dependent on any
other atoms are called root atoms (see Fig. 3). Atoms
that are linked to other atoms are called child atoms.

Figure 3: Dependencies between SWRL atoms.

3 SRE ALGORITHM

3.1 Specification

SRE allows debugging SWRL rules by cascading va-
lues of variables along the logical dependencies bet-
ween the atoms of the rule. The debugging procedure
is supposed to deliver detailed output for each atom
in the rule antecedent to explain whether and why a
rule consequent was executed or not. Moreover, the
SRE algorithm provides an option to document results
from the evaluation.

3.2 Preconditions

In order to use SRE, the SWRL rules must meet cer-
tain conditions. While the general SWRL syntax, al-
lows rules without any class atoms in the antecedent,
our algorithm depends on the convention that class
atoms must explicitly be defined for each variable
occurring in the rule. We can later improve the al-
gorithm by implicitly asserting variables without bin-
ding class atom to be of type Thing, which we have
not done yet because of performance considerations.

Figure 4: SRE Rule Structure.

As indicated in Fig. 4 SRE does not allow for ob-
ject property atoms to be directly followed by another
property atom. The SRE rule syntax convention re-
quires object properties to be explicitly followed by a
class atom. Otherwise, there will be errors in the SRE
path creation. If this is not guaranteed, it may happen
that the object property is appended by more than one
atom at the same time (see Fig. 5).

3.3 Algorithm Procedure

First, the algorithm selects a rule and restructures into
an internal representation. As SRE only focuses on
proving whether a rule consequent has been execu-
ted, the consequent is not relevant for the evaluation.
After the rule is rearranged, the algorithm detects root
atoms. Variables in root atoms must be bound to user
input (data literals or individual IDs) as they cannot
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Figure 5: Inconsistent Rule Syntax.

be derived from other atoms. This input is passed to
SQWRL queries which are used in the evaluation pro-
cess. The algorithm creates a list in which results of
the evaluation are stored, so that the user debugging
the rule is able to get efficient access to them after-
wards.

Figure 6: Algorithm procedure.

The following subsections provide a more detailed
explanation of the main processes.

3.3.1 Rearrange Rule Structure

In order to execute an evaluation, the rule antecedent
is rearranged into linked data structure that displays
single atoms and their dependencies to each other.
Therefore, the rule is split into single SWRL atoms
first. After that root atoms are identified using a re-
cursive approach that inspects each atom and its de-
pendencies. These atoms become root nodes. De-
pendencies can derive from all atom types and are re-
presented as a directed link according to the order in
which variables appear as arguments. Based on this,
a depth-first search is used to find all relevant child
atoms. The result is a tree like structure with atoms as

nodes and dependencies as edges. Note that SRE can
not handle theoretically possible cyclic dependencies
of variables at the moment. This tree structure called
rule graph is then used in the evaluation process.
The following example shows how the rule antece-
dent is rearranged as a linked-list as illustrated in Fig.
7

Person(?p) ˆ hasDl(?p, ?dl) ˆ DriverLicense(?dl) ˆ
hasAge(?p,?age) ˆ swrlb:greaterThan(?age, 18)

Figure 7: Rearranged Rule.

3.3.2 Definition of Variable Values

After the algorithm has rearranged the rule atoms and
built the rule graph, variables used in root atoms of
the antecedent need to be replaced by literals exter-
nally, i.e. by the user debugging the rule. In order
to determine these variables, SRE first identifies all
class atoms and all data property atoms in the rule
list. Object properties are not relevant for this search,
as the rule convention (see Section 3.2) ensures that
all object property variables that can be replaced by
literals, can also be found in the corresponding class
atom. Moreover, it is ensured that an object property
is followed by the referred class atom. Built-ins, on
the other hand, only provide variables to be replaced,
if they represent a function which binds a resulting
value into the first argument of of the built-in atom.
This is the case for example with math built-ins such
as swrlb:add.

Fig. 8 shows the variables which can potentially
be defined by a user.

Figure 8: Variable Definition.

It is essential that variables in root atoms of the
rule graph are replaced by literals before the evalua-
tion starts. This is a mandatory step as otherwise SRE
cannot produce results. In this case, SRE instantly
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fails to evaluate the first atom, as the algorithm pro-
duces an invalid SQWRL query with an empty retrie-
val specification (see table 2 for valid SQWRL state-
ments).

3.3.3 Evaluation

The evaluation step is supposed to find atoms that
cause the selected rule to fail. For this purpose, the ex-
ternally defined values (see chapter 3.3.1) are copied
into two lists, called master-list and path-list respecti-
vely. In the beginning both lists contain the same va-
riables and their assigned values. The two lists are
crucial for evaluating built-ins used in the rule. The
path-list contains variables together with their values
that were found in a path found by the depth-first se-
arch through the rule graph. This is necessary as eva-
luated atoms may lead to multiple entries in the result
set of the SQWRL query. Multiple results create new
paths, and each paths requires its own list. The follo-
wing example clarifies the issue.

Figure 9: Pathlist.

The master-list is filled with variables and the
corresponding values found during the evaluation
process. This list is used, whenever the SWRL rule
contains a built-in atom which refers to more than one
other atom. In this case, values from more than one
path-list are used. The following example illustrates
the role of this master-list.

The evaluation uses a depth-first search to iterate
through the rearranged rule list (see section 3.3.1).
During each iteration, the current SWRL atom
needs to be classified to find variables that can be
replaced by literals. After identifying the relevant
variables, the algorithm searches the path-list for
the corresponding value. In case a matching value
is found, the sqwrl:select operator is used to query
the ontology. Moreover, if an atom is an instance of
a built-in which refers to more than one other atom,

Figure 10: master-list.

the algorithm uses the master-list to find the required
values.

For example in a query that checks whether
Person(Bob) owns Cars(?c) the SQWRL query
returns a list of all car individuals that belong to
Person(Bob) according to object properties in the
ontology.

ownsCar(Bob, ?c)→ sqwrl:select(?c)

The sqwrl query delivers a set of values for que-
ried variables. These values are put into the path-list
and the globally accessible master-list. The path-list
is only valid until the depth-first search switches to
another path. The following table defines the the dif-
ferent SQWRL queries that are required for each atom
type.

Table 2: SQWRL Queries.

Atom type Syntax
Class class(?i obj) → sq-

wrl:select(true)
Data Property dp(?i obj,?d obj) → sq-

wrl:select(?d obj)
Object Property op(?i obj1,?i obj2) → sq-

wrl:select(?i obj2)
Built-in (Typ 1) bi(?res, ?d obj1, ..., ?d objN)→

sqwrl:select(?res)
Built-in (Typ 2) bi(?d obj1, ?d obj2) → sq-

wrl:select(true)

A further rule list is simultaneously created and
documents the steps of the evaluation process. For
each SQWRL query which examines the outcome for
an atom a new entry containing information about the
current SWRL atom is appended to this list. The entry
is labelled as false if the query does not return any data
from the ontology.
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4 EXAMPLE

In this section, an example of an SRE application pro-
vides a proof of concept.

4.1 Simple Evaluation Example

This example shows a simple evaluation process of
SRE. The following entries are provided by the given
ontology.

• Classes: Person, Dl(short form for “Driver Li-
cence”)

• Instances: Bob instance of Person, DL Of Bob
instance of Dl

• Relations: Bob hasDriverLicence DL Of Bob,
Bob hasAge 17

Based on this, the following example rule is to be
evaluated:

Person(?p) ˆ hasDriverLicence(?p, ?dl) ˆ Dl(?dl) ˆ
hasAge(?p, ?age) ˆ swrlb:greaterThan(?age, 18)→

Person(?p) ˆ canDrive(?p, true)

At first, the rule is rearranged into the structure of
the corresponding rule graph. As the rule consequent
is not relevant for the assessment, it can be discarded.
The rule antecedent is now arranged as as shown in
Fig. 11.

Figure 11: Example 1: Rearranged Rule.

In the next step the rule graph is used to identify
variables that can be replaced by literals. Root atoms
of the rule graph must be replaced, as they define the
starting point for the evaluation. In our example va-
riable ?p is identified as root atom and is replaced by
the literal ”Bob”. The variable is now used in the cor-
responding SQWRL query.

As Fig. 12 shows person Bob is not
allowed to drive a car, because the built-in
swrlb:greaterThan(?age, 18) returns false.

5 IMPLEMENTATION

Based on the concept of SRE we implemented the
algorithm as a Java-based API. Java was chosen for
compatibility as the programming interfaces and the

Figure 12: Example 1: Evaluation Process.

ontology editor Protégé are also written in Java. The
following sections describe the basis architecture of
the SRE API and how it is used to implement the pro-
totypical SRE Protégé Viewer.

5.1 Single Rule Evaluation API

In order to make the SRE reusable the algorithm was
implemented in the form of an application program-
ming interface (API). This API focuses on usabi-
lity and provides different interfaces to monitor the
progress of the evaluation. The implementation fol-
lows architectural principles i.e. it conforms to de-
sign patterns especially the observer and the facade
pattern. The facade pattern provides a single entry
point for users which summarises the most impor-
tant methods. This entry point (facade class) provi-
des functions such as the registration of SRE obser-
vers and SRE main clients. Those two interfaces are
used for the observer pattern. A user that is registered
as a SREMainClient is able to define literals requi-
red to be assigned to variables during rule evaluation.
In contrast, SREObserver instances only receive log
messages and the evaluated rule after the assessment
has finished. The evaluation can be started, only when
the user has registered all observers. Moreover, by
using the executeEvaluation() function, a rule is se-
lected by addressing its rule name. The facade class
provides a function for this specific purpose.

When an ontology is submitted, the ExecutionU-
nit initialises the OntologyAccess component, which
provides a utility class to enable bi-directional data
exchange between the ontology and the system. This
utility class is mainly used by the EvaluationEngine,
which is responsible for the rearrangement process,
the identification of to be replaced variables, and the
evaluation of a selected rule. Queries against the On-
tology are generated by the QueryGenerator compo-
nent and run by the EvaluationEngine. It provides
an interface that returns SQWRL queries based on
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data delivered by the EvaluationEngine. The Node-
Generator component documents the progress of the
evaluation. It builds a rule graph, which is similar
to the rule graph for a rearranged rule. However, it
contains extra information for each evaluated SWRL
atom. Because of the observer pattern, the Evalua-
tionEngine is connected to an interface of the Upda-
terComponent. This component has the purpose to
handle communications with the user.

See Fig. 13 for an illustrated explanation of the
API.

Figure 13: SRE API Component Diagram.

5.2 SRE Protégé Viewer

The implementation of the SRE Viewer as a Protégé
plugin makes use of the developed SRE API. The
plugin provides a graphical user interface via the
Protégé ontology editor and is divided into three sub-
panels. The first area contains a drop-down menu in
which a user can select the rule for the evaluation.
In order to execute the evaluation with a selected rule,
the panel provides a button that starts the process. The
panel in the middle of the perspective contains a can-
vas area on which the results of an evaluated rule are
displayed. As the assessed rule is a linked list of no-
des, it is displayed as a tree structure. For this, the
canvas area is inspired by the Protégé plugin Onto-
graf, which is based on the Cajun Visualization Li-
brary (Falconer, 2010). Finally the GUI provides a
simple output console that displays log messages that
the SRE API produces while the evaluation is run-
ning. A single click on a node shows detailed infor-
mation about the assessment of a specific SWRL atom
in a pop-up window.

Figure 14: SRE Protege Viewer.

6 CONCLUSION AND FUTURE
WORK

In this paper we introduce a new method for evalu-
ating SWRL atoms in the rule antecedent of SWRL
rules in order to examine whether a rule consequent
will be executed. This can significantly simplify the
work on complex ontologies as it reduces the effort to
find atoms that cause rules to fail. The SRE algorithm
was implemented as an application programming in-
terface (API) that focuses on usability and creates new
possibilities for other projects as it can easily be inte-
grated in application programs. Moreover the SRE
and the developed API offer various applications for
real world problems, like form-input validation with
the help of SWRL rules. We also implemented a pro-
totypical SRE Viewer as a plugin for Protégé since
we believe that it can become a useful tool for future
applications. The visualisation of the evaluated rule
simplifies the debugging process, as the atoms that
produce false values are instantly visible. The deve-
loped plugin at this stage offers potential for extensi-
ons and improvements. A first problem to be solved
is caused by the SQWRL query language as large on-
tologies may cause heap space errors which are due
to the underlying reasoning unit. Moreover, the deve-
lopment of an SRE syntax validator is a useful impro-
vement, as it supports the editing of complex SQWRL
rules. This validator can inspect rules suggest chan-
ges, if they do not conform to defined conventions.

We will provide the source code for the SRE
project on github. The repository can be accessed
under the following URL: https://github.com/KITE-
Cloud/SRE
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Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S.,

Grosof, B., Dean, M., et al. (2004). Swrl: A semantic
web rule language combining owl and ruleml. W3C
Member submission, 21:79.

MacLarty, I., Langevine, L., Bossche, M. V., and Ross, P.
(2016). Using swrl for rule-driven applications.

McGuinness, D. L., Van Harmelen, F., et al. (2004). Owl
web ontology language overview. W3C recommenda-
tion, 10(10):2004.

O’Connor, M. (2018). How to debug swrl rules?. https:
//mailman.stanford.edu/pipermail/protege-
owl/2008-May/007034.html. Last checked on
April 23, 2018.

O’Connor, M. and Das, A. (2009). Sqwrl: a query language
for owl. In Proceedings of the 6th International Con-
ference on OWL: Experiences and Directions-Volume
529, pages 208–215. CEUR-WS. org.

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

198


