
A Decentralized and Remote Controlled Webinar Approach, Utilizing
Client-side Capabilities: To Increase Participant Limits and Reduce

Operating Costs

Roy Meissner, Kurt Junghanns and Michael Martin
Institute of Applied Informatics, Leipzig University, Hainstrasse 11, Leipzig, Germany

Keywords: WebRTC, Remote Control, Peer-to-Peer, Online Lecture, Webinar, Accessibility, SlideWiki, Decentralization.

Abstract: We present a concept and implementation on increasing the efficiency of webinar software by a remote con-
trol approach using the technology WebRTC. This technology enables strong security and privacy, is cross-
device usable, uses open-source technology and enables a new level of interactiveness to webinars. We used
SlideWiki, WebRTC, and browser speech to text engines to provide innovative accessibility features like mul-
tilingual presentations and live subtitles. Our solution was rated for real world usage aspects, tested within the
SlideWiki project and we determined technological limits. Such measurements are currently not available and
show that our approach outperforms open-source market competitors by efficiency and costs.

1 INTRODUCTION

A modern vision for education, that many teachers,
students, professors as well as the European Union
(EU)1 shares is that education should be:

• Open

• Free for everyone

• Accessible

• Inclusive

• Modern

• Based on Open Ed-
ucational Resources
(OER)

• Multilingual
• High-Quality
• Engaging

The recent two decades showed that education
uses more and more digital approaches. Thus more
and more specialized tools for e.g. webinars ap-
peared. Most of these tools have not been created by
this vision, but fulfil some of these aspects and are
thus usable for educational purposes. But they lack to
project the vision holistically. In contrast, SlideWiki
is an EU project about creation and management of
OER and realizes all aspects of the painted vision. We
chose to extend SlideWiki by a tool for educational
lectures, usable for webinars and hybrid lectures2.

1See http://ec.europa.eu/education/policy/strategic-frame
work en and linked documents

2A hybrid lecture is a face-to-face lecture, for which indi-
viduals are able to participate from a remote location.

We show in this paper how a remote-control ap-
proach, that focuses on utilizing client-side capabil-
ities decreases server load and thus overall costs for
providing a webinar service. This approach allows us
to support much more participants than known com-
petitors free of cost and thus enables more people
world wide to join or give lectures. Our focus on a
browser only solution is considered inclusive to e.g.
rising countries, as modern browsers are available on
all devices, even low-end ones. Furthermore the in-
tegration with SlideWiki and use of WebRTC enables
us to support multilingual audiences in an inclusive
way, which no competitor yet achieved. We want to
also present how the technology WebRTC is utilized
to remote control a browser application as of a we-
binar scenario. Furthermore we fill the gap for sci-
entific measurements of resource usage and limits in
this technological context. Thus our main contribu-
tions are:

• Increased participant limit of a webinar by ap-
prox. 1:10 by using a remote-control approach

• Utilization of client-side capabilities to reduce
server-side workload and thus operating costs

• Measurements for three different WebRTC broad-
cast scenarios and of technology specific limits

At first, we introduce into the use case and ob-
served real world aspects that influenced the design
of our solution. Starting with section 2.2, we present

Meissner, R., Junghanns, K. and Martin, M.
A Decentralized and Remote Controlled Webinar Approach, Utilizing Client-side Capabilities: To Increase Participant Limits and Reduce Operating Costs.
DOI: 10.5220/0006923901530160
In Proceedings of the 14th International Conference on Web Information Systems and Technologies (WEBIST 2018), pages 153-160
ISBN: 978-989-758-324-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

153

technical aspects of the developed tool and showcase
possibilities and limits of the used technologies. In
section 3 we evaluate the tool by measuring its per-
formance characteristics as close to our targeted use
case as possible. Finally, in section 4 related projects
are presented, as well as a separation of our work from
different existing tools and approaches.

2 PRESENTATION ROOMS

The educational material at SlideWiki is intended
for lecture series at educational institutions, online
courses and self education. Especially for the for-
mer two and in university courses, a typical scenario
is that some educator presents a deck (a collection
of slides) in a lecture style to the audience, regard-
less whether this is online or not. The audience is in-
tended to follow the presentation and to ask questions
about what they have seen and heard afterwards. De-
pending on the lecturers style sometimes also during
the presentation. Lecturers often use dynamic prac-
tices like to conduct polls or to ask for suggestions
that aim at including the audience and to keep it moti-
vated. Even though many studies, like (Mason et al.,
2013; Strayer, 2012; Raymond et al., 2016) promise
advantages of peer learning or the inverted classroom
concept, a large part of university, higher schools and
online courses are held in a lecturer centred style. We
thus chose to use this style as a basis for our con-
cept. According to our own experiences, dynamic
practices like mentioned above are not very well sup-
ported in today’s online lecture systems. Thus these
are often issued as tasks that shall be completed later
on and thus no longer fulfil the presented aims. Be-
sides these participation challenges, disabilities and
language barriers make it difficult or prevent to ac-
cess educational content. Especially language bar-
riers are typically ignored by today’s online lecture
systems. In contrast, our approach focuses on these
issues and barriers and is based on the ideas and con-
cepts of university face-to-face lectures, extended by
the advanced possibilities of online lecture systems
and new technologies. We have come up with a pure
web solution that is usable for face-to-face lectures,
online lectures as well as for hybrid lectures.

In our approach a presenter opens a new virtual
room in which a chosen deck shall be presented. In-
terested people may join this room via an invitation
or by discovering it on SlideWiki as part of the deck
overview. We decided that each room is public and
not access restricted by any means. This aims at sup-
porting libre and free teaching on a libre and free
OER platform. Nevertheless, access restrictions may

be easily added for other use cases. A room enables
to share the presenters slide progress and voice to the
participants. This may be imagined like screen and
audio sharing. We have added various dynamic fea-
tures for the presenter, that are intended as proof of
concepts (POCs) and may be extended or altered in
the future. One of these POCs is to ask the audience to
complete a task and to receive live feedback about the
audiences progress. Another POC is a one way chat
for participants to the presenter in order to ask ques-
tions or to send in requested input. We chose this to
be text based as we want the presenter to be in control
of the presentation and thus to decide the point in time
and if at all to react to input, like a lecturer would in a
face-to-face lecture. Sent messages are only readable
by the presenter, not by any other participant. Further-
more we added two features that aim at improving the
accessibility of the tool, besides having an accessible
user interface. One is a live transcription of the pre-
senters voice to text, that is displayed as a subtitle to
participants (also a POC). This enables aurally hand-
icapped persons to attend presentations. The second
one is about multilingual presentations and described
in the paragraph below. All of the above described
features are named a presenter console, that is styl-
ized in figure 1.

As mentioned above, a room is publicly listed on
SlideWiki and interested people do not need a user
account on SlideWiki to join it. A participants view
of a room is very similar to the presenter console (see
figure 1), showing the currently presented and remote
controlled deck, a subtitle, some controls as well as
the one way chat. The available controls allow par-
ticipants to pause and resume the remote control of
the shown deck. This means that participants can
switch slides individually and e.g. continue to read
a slide that the presenter already left. A SlideWiki re-
lated feature is that everyone joining a room is able
to choose the language of the presented deck from
the available translations on SlideWiki without loos-
ing the remote control by the presenter. So one par-
ticipant may view the deck in Indonesian, another one
in French, even though the presenter chose to present
the deck in English. This feature is currently limited
to the deck itself and we do not offer to live trans-
late the presenters voice or the subtitle, even though
this is imaginable. Participants may switch between
available languages at any time while the presenta-
tion is in progress. SlideWiki focuses on a crowd-
sourced approach to improve and maintain decks and
slides. Thus we have added links for participants to
navigate to the currently shown slide on SlideWiki to
e.g. improve it and to issue a change request of the
improvement to the deck owner (SlideWiki feature).

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

154

If the presenter chose to leave the room, participants
are still able to use it, e.g. for navigating slides, to
reread the subtitle and also their issued questions, un-
til they leave the room themselves.

Figure 1: Components of the presenter/learner console.

2.1 Security, Privacy and Requirements

Slides and decks may be modified on SlideWiki while
a presentation of the same deck is in progress. Due
to the SlideWiki revision feature it is impossible to
manipulate an ongoing presentation. Each update of
a slide or deck on SlideWiki creates a new revision
of these and does not override an existing one. If a
room is opened up it is associated with a specific deck
revision.

In the current state of implementation, all partici-
pants of a room create room specific data that are only
temporarily saved at the participants local devices, but
not on any remote servers. In case a presentation was
finished and the room was left by all participants, all
room specific data is discarded - even that the room
existed.

Our implementation depends on a stable and
working network connection of the presenter. It is
currently not possible to recover a room on network
issues. If the network connection is unstable and thus
not usable for online or hybrid lectures, we recom-
mend to use the SlideWiki presentation mode instead.
Furthermore the used browser needs to support We-
bRTC.

2.2 Technical Background

We are using WebRTC as a base technology. While
using this technology a presenter acts as a broadcast-
ing3 peer that has opened up a room on a socket.io
server. Other peers may to join this room via our
application. The socket.io server acts as a signal-
ing server for WebRTC and maintains a live list of
all opened rooms. This list is used to display avail-
able rooms at decks on SlideWiki. WebRTC itself
3”broadcast” is used for simplicity reasons, even though
these are several unicasts

negotiates via its signaling process an end-to-end en-
crypted peer-to-peer connection between the broad-
casting peer and all other peers. We chose to estab-
lish a one way connection for audio (microphone of
the presenter) and a two way connection for data, us-
ing audio streams and data channels. Thus, audience
members can not speak up. The mentioned data chan-
nel is used to broadcast the current application state
to connected peers. This enables them to mirror the
application state of the presenter at their local ma-
chine. We use data channels furthermore to transmit
the speech transcript, as well as commands for fea-
tures introduced in section 2.

We have modularized our approach and are using
an Iframe to display both, the remote controlled appli-
cation at participants, as well as the source application
at the presenter. In order to mirror the presenter ap-
plication state and control the remote application, we
are gathering emitted events of the source application,
execute a postprocessing and send relevant events to
peers. Received events are preprocessed and issued to
the remote controlled application in order to trigger
the same action that was executed at the source appli-
cation. This flow is depicted in figure 2. As WebRTC
data channels support to keep sent messages in order,
we do not need to care about event reordering.

Figure 2: Remote Control Pipeline.

Iframes are due to browser security policies
only controllable from their parent page if both,
the parent page, as well as the Iframe originate
at the same domain. Thus this is precondition
to relay any events that originate in an Iframe.
Due to a bug of the Blink engine4 (used by
Chromium, Google Chrome, Opera and more
browsers), events must be issued as generic events.
The concrete problem and solution is described as of
https://stackoverflow.com/questions/45457271/forwar

4Blink engine bug about event creation: https://bugs.chrom
ium.org/p/chromium/issues/detail?id=327853

A Decentralized and Remote Controlled Webinar Approach, Utilizing Client-side Capabilities: To Increase Participant Limits and Reduce
Operating Costs

155

d-a-keydown-event-from-the-parent-window-to-an-
iframe-that-contains-reveal.

For speech recognition (SR) we have used the cur-
rent experimental browser API, that is currently only
available on Google Chrome. Chrome’s SR is usable
for short phrases, but is problematic for continuous
input as it spontaneously stops transcoding without
proper error reports. Furthermore it can not recognize
punctuation characters, unless explicitly spoken.

All source-code has been implemented as part of
the SlideWiki FLOSS project and is hosted at Github
https://github.com/slidewiki/slidewiki-platform/tree/
master/components/webrtc for WebRTC specific
functionality and for the signaling server at https://git
hub.com/slidewiki/WebRTC-Signaling-Service.

2.3 Technical Security Considerations

Besides the initial signaling process to establish a
WebRTC connection, no server is involved to trans-
mit any data between peers. The only server-side
available information is the room id and presented
slideshow. These information are only available for
the time a room exists. The encrypted peer-to-peer ap-
proach (see (W3C, 2018)) results in a partly resistance
against server-side failures and unauthorized data col-
lection. It has no impact on already opened rooms and
connected peers if the signaling service or SlideWiki
itself is not reachable. The only impact is that no new
rooms can be opened up and no peers are able to join
existing rooms.

In case of client-side issues, an erroneous audi-
ence peer has no impact on the room or presenter peer.
Such peers may just join the room again as of a new
browser tab. In contrast, if the presenter-peer fails, the
room will be marked as closed and the presenter needs
to open up and share a new room. This has been only
experienced rarely due to browser tab crashes that we
expect to get less frequent in the future as the imple-
mentation of WebRTC stabilizes.

As of possible attacks, we can only imagine man-
in-the-middle attacks by breaking into the server-side
signaling service or SlideWiki itself. There are two
possible scenarios, besides common scenarios like
system intrusion:

1. Mallory manipulates SlideWiki and exchanges the
link for joining a room, that is displayed at decks.
Thus, every new peer connects to Mallory instead
of the actual presenter. Mallory is using a custom
client that is connected to the actual presenter and
relays everything to Mallory’s peers.

2. Mallory manipulates the signaling service and
acts like in scenario 1, without exchanging the
link for joining a room on SlideWiki.

Both scenarios require that Mallory breaks into a
server system and manipulates or exchanges running
code. In both scenarios Mallory tries to attack the
connection establishment process between a presenter
and peers. There exists an approach to improve the
security of the signaling process, that we outline in
section 5.1.

2.4 Workload Estimation

WebRTC requires to open up a new connection for ev-
ery peer, for which streams are encoded specifically
to the capabilities of this peer. Singh et al. showed in
(Singh et al., 2013) that WebRTC chooses automati-
cally the most efficient codec possible, which are self
adapting to bandwidth limits. Thus the presenter ma-
chines upload and processing capabilities are the ma-
jor limitations to the number of connected peers and
thus the amount of audience members in a broadcast
scenario. Furthermore the workload is influenced by
the availability of hardware encoders for various au-
dio and video formats5, like VP8, VP9 and OPUS.
As WebRTC requires to open up a new connection
for every peer we expect the workload to increase lin-
ear to the number of connected peers. We determined
the limits for an exemplary machine in an unrestricted
network, as well as measured possible side effects.
Results are presented as of section 3.

In contrast, a participant machine does not need to
provide extensive capabilities, as it receives only one
audio and data stream, that it needs to decode. This
enables to use low-end devices, like Smartphones as
peers. Their workload is also influenced by the avail-
ability of hardware decoders for the used formats.

3 EVALUATION

The presented approach is integrated with SlideWiki,
has several novel features and uses experimental tech-
nologies. Thus, it might be evaluated for many differ-
ent aspects, like impact on learning performance of
students, workflow changes for teachers, usability for
pure online lectures, and many more. All of the men-
tioned evaluations need to be settled on a foundation
that classifies and rates the implemented by technol-
ogy specific limits. This is why we focus on tech-
nological performance and limit measurements in the
following subsections. Performance measurements
are important in order to

5See the following URLs for supported codecs: https://
webrtc.org/faq/#what-codecs-are-supported-in-webrtc and
https://developers.google.com/web/updates/2016/01/vp9-
webrtc

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

156

• show the efficiency of the approach in terms of
hardware as well as software and service costs

• know in which area the software is applicable, e.g.
to not schedule courses with too many students,
which the software can not handle

• fill the gap for scientific measurements about the
broadcast WebRTC usage scenario.

3.1 Experiment Description

We identified 5 aspects that are listed below and need
to be measured. To be able to measure any as-
pect, a WebRTC data channel must be established
(see next paragraph for the measuring method de-
scription). Measuring data transmission and audio
streaming has been chosen as this matches our imple-
mented approach. Furthermore we chose to measure
data transmission, audio and video streaming as this
is what all listed tools in section 4 do. All of the fol-
lowing aspects aim at identifying possible limits and
to gain insights into their respective resource usage.

• Maximum number of simultaneously connected
peers

• Signal delay for increasing number of peers
• CPU and RAM usage for data channels only for

increasing number of peers
• CPU and RAM usage for data channels and audio

streams for increasing number of peers
• CPU and RAM usage for data channels, audio and

video streams for increasing number of peers

We have set up three different scenarios to mea-
sure these aspects - (1) determine the maximum peer
number for a browser tab, the maximum peer num-
bers for audio only (2) and audio and video stream-
ing (3), as well arising delays in each of the scenar-
ios. Signal delays are measured by regularly send-
ing the current timestamp to all connected peers via
a WebRTC data channel. The first peer that connects
to the presenter measures a default delay. For rising
peer numbers, the measuring peer continues to com-
pare sent timestamps to its local timestamps minus
the default delay to calculate the effective signal de-
lay (100 measurements per data point). The default
delay has been measured for each scenario indepen-
dently. System statistics, like CPU and RAM usage,
are monitored independently by an OS specific pro-
gram, called sysstat. To exclude network interfer-
ence effects, we have measured all scenarios in a lo-
cal network that routes packages through a maximum
of 2 switches. We have executed all scenarios on a
Core i7-6500U with 8GB DDR3 RAM, SATA-SSD,
and Gigabit Ethernet. As browsers we use Google

Chrome (version 63.0.3239.132) and Firefox (version
57.0.1) on Fedora 27 (Linux Kernel 4.14.11).

We described all needed steps to repeat the exper-
iment inside the Readme file of the Github reposi-
tory https://github.com/rmeissn/WebRTC-Broadcast-
Performance-Test. This repository also contains all
measured data in one of its branches. The different
scenarios need minor code modifications, that are im-
plemented and described as branches of the reposi-
tory.

3.2 Results

A often cited value for the maximum number of con-
nected peers per browser tab is 256 peers6. We
showed in scenario 1 that the maximum number of
connected peers per browser tab can be higher. We
expect that there is only a soft limit determined by
hardware and software capabilities, like the maximum
number of simultaneous network connections. Due
to hardware limitations, we were not able to measure
more than 280 peers. Our scenario (1) was to dis-
able audio and video streams, so only a data channel
is opened up. This reduced CPU, RAM and network
usage of the test setup to a minimum. We furthermore
observed that there is no significant delay increase for
rising peer numbers, no significant impact on RAM
usage and only a minor impact on CPU usage, namely
≈21% per 200 connected peers. The exact results are
depicted in figure 3. As is visible in this figure, the
delay increases about linear to the number of peers.

In a second scenario (2) we tested for the maxi-
mum number of peers for audio streaming and data
transmission. As the audio stream will be encoded
the same number of times as peers are connected (see
(W3C, 2018)), the limiting factor for the number of
peer connections is the processing capability of the
presenters computer. We were able to connect up to
70 peers before WebRTC started to adjust the audio
quality (see network and CPU usage in figure 4). The
overall delay is a little higher than in figure 3, but still
low enough to speak of real-time streaming and in-
creases on a linear scale, as in scenario 1. Due to
hardware limitations at the load generating machine
we were only able to connect up to 110 peers, before
the machine reached its capacity. According to the
results the presenter machine is able to connect more
peers and we anticipate about 140 possible connec-
tions before the presenter machine runs into hardware

6Maximum WebRTC connections per tab: https://stackover
flow.com/questions/16015304/webrtc-peer-connections-li
mit or https://stackoverflow.com/questions/41194545/maxi
mum-number-of-rtcpeerconnection/41205991#41205991
and see section 4

A Decentralized and Remote Controlled Webinar Approach, Utilizing Client-side Capabilities: To Increase Participant Limits and Reduce
Operating Costs

157

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100 110

d
e
la

y
 i
n
 m

s

Peers

delay

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100 110
 0

 20

 40

 60

 80

 100

d
e
la

y
 i
n
 m

s

cp
u
 i
n
 %

Peers

cpu usage

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100 110
 0

 1.6

 3.2

 4.8

 6.4

 8

d
e
la

y
 i
n
 m

s

m
e
m

 i
n
 G

B

Peers

memory usage

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100 110
 0

 300

 600

 900

 1200

 1500

d
e
la

y
 i
n
 m

s

n
e
t

in
 K

B
/s

Peers

network usage

Figure 3: Simultaneously connected peers as of the data only scenario (1).

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100 110

d
e
la

y
 i
n
 m

s

Peers

delay

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100 110
 0

 20

 40

 60

 80

 100

d
e
la

y
 i
n
 m

s

cp
u
 i
n
 %

Peers

cpu usage

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100 110
 0

 1.6

 3.2

 4.8

 6.4

 8

d
e
la

y
 i
n
 m

s

m
e
m

 i
n
 G

B

Peers

memory usage

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100 110
 0

 300

 600

 900

 1200

 1500

d
e
la

y
 i
n
 m

s

n
e
t

in
 K

B
/s

Peers

network usage

Figure 4: Measurements as of the data transmission and audio streaming scenario (2).

caused performance issues, e.g. because of too much
memory consumption.

As of the third scenario (3) we tested for the max-
imum number of peers for video streaming, audio
streaming and data transmission. As the video and
audio streams are encoded the same number of times
as peers are connected (see (W3C, 2018)), the limit-
ing factor for the number of peer connections is the
same as in scenario 2, but we expected a significantly
lower number of possible connections than for sce-
nario 2. A significant delay started to occur at 12 con-
nected peers, as well as visible codec adjustments (see
network and CPU usage in figure 5). The presenter
machine reached its processing limits at 14 connected
peers, resulting in visible jitter effects of the video
stream at the peers.

These results show that without a TURN server7,
the first two scenarios (1, 2) are the only two scenarios
that are suitable for a larger number of peers. The re-
sults also show that our remote controlling approach

7A server that relays streams to peers

is superior (in terms of resource usage) to screencast-
ing (video streaming) with the same technology, as
about seven times more peers are able to connect be-
fore any codec adjustments are implied. About ten
times before the presenter machine reaches its pro-
cessing limits. Thus these results reveal the benefits of
our chosen remote-control approach, outlined in sec-
tion 2.2. Our findings also align with the results of
Muaz Kahns tests, that are presented in section 4. All
of the presented competing solutions from section 4
are using a video streaming approach. Some of them
also use WebRTC and might be thus used in a de-
centralized scenario too (without a turn server). Nev-
ertheless we expect them to match the performance
characteristics of scenario 3, as they rely on video
streaming. We have further discussed benefits and
possible downsides of our solution in sections 2 and
4.

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

158

-200

 0

 200

 400

 600

 800

 2 4 6 8 10 12 14 16 18

d
e
la

y
 i
n
 m

s

Peers

delay

-200

 0

 200

 400

 600

 800

 2 4 6 8 10 12 14 16 18
 0

 20

 40

 60

 80

 100

d
e
la

y
 i
n
 m

s

cp
u
 i
n
 %

Peers

cpu usage

-200

 0

 200

 400

 600

 800

 2 4 6 8 10 12 14 16 18
 0

 1.6

 3.2

 4.8

 6.4

 8

d
e
la

y
 i
n
 m

s

m
e
m

 i
n
 G

B

Peers

memory usage

-200

 0

 200

 400

 600

 800

 2 4 6 8 10 12 14 16 18
 0

 1000

 2000

 3000

 4000

 5000

d
e
la

y
 i
n
 m

s

n
e
t

in
 K

B
/s

Peers

network usage

Figure 5: Measurements as of the data transmission, audio and video streaming scenario (3).

4 RELATED WORK

Based on the vision for modern education in section
1 we compare our solution to tools that meet three
criteria: open-source, free of cost and browser-based.
Video conferencing tools may be pooled into one cat-
egory. The ones that match our criteria are: Jitsi, Jan-
gouts, Spreed WebRTC, and Nextcloud Talk. There
are no information available about participant lim-
its for a and whether data is shared peer-to-peer or
end-to-end encrypted for these tools, even though we
assume so for the the last two as of the used tech-
nologies. Google Hangouts (that also uses WebRTC)
for instance supports up to 10 participants per con-
ference on their free plan8. Nextcloud Talk, Jangouts,
and Spreed WebRTC need dedicated hosting of server
components before these are usable, which forms a
technological burden. As of accessibility and inclu-
siveness aspects, no special features are supported and
we did not find basic accessibility support the source
codes.

Another category is specialized webinar software.
The only available tool that matches our criteria
is BigBlueButton (BBB). BBB satisfies accessibil-
ity level A success criteria of WCAG 2.09. Further-
more BBB supports all features of the former cate-
gory, as well as a live whiteboard, shared notes, break-
out rooms, manual closed captioning and the possibil-
ity to record a session. BBB is an exceptional webinar
software and supports more features than our solution
does. Nevertheless needs a dedicated hosting, which
forms a technological burden. A downside of BBB

8Participant limits of Google Hangout: https://productfor
ums.google.com/forum/#!topic/hangouts/vuVoVNDFVeI

9BBB accessibility information: https://bigbluebutton.org/
accessibility/

is the usage of the technology Flash. Flash has been
discontinued by Adobe, is regularly associated with
security issues, and is not open-source. Furthermore
BBB does not build upon peer-to-peer or end-to-end
encrypted connections, but has a server based relay
data flow.

Some research engages into the same technolo-
gies and similar approaches. Muaz Khan developed
several WebRTC experiments that showcase a broad-
cast like solution for audio and video via WebRTC.
He states at his experiments that there is a maximum
peer limit of 256 peers10 and stated via an email con-
versation that none of his experiments provides the
possibility to broadcast a video stream to more than
10 peers, due to CPU and network limits.

Pinikas et al. include in (Pinikas et al., 2016) an
approach to send commands via WebRTC data chan-
nels to peers in order to trigger functionalities. They
have focused on a IoT scenario and have introduced a
custom on top protocol specifically for IoT devices.
They did not justify the need for a custom proto-
col and how this relates to their high level demo, in
which they share virtual whiteboard sessions among
all peers.

Zhao et al. present in (Zhao et al., 2016) a solu-
tion to stream video data via WebRTC data channels
without the need to encode the stream for every peer
separately, named MPEG DASH. This is lowering the
CPU and memory usage of the streaming peer, but is
not usable without third-party browser plugins as of
July 2018.

10Peer Limit: https://github.com/muaz-khan/WebRTC-Exp
eriment/tree/master/webrtc-broadcasting

A Decentralized and Remote Controlled Webinar Approach, Utilizing Client-side Capabilities: To Increase Participant Limits and Reduce
Operating Costs

159

5 SUMMARY

We have presented in this paper a hybrid approach to
teach online in a lecture hall style. Our tool is aligned
with the vision of modern education, the EU project
SlideWiki and offers educators, as well as students
an alternative to expensive and proprietary competi-
tor solutions. The tool is focused on interactive lec-
tures, accessibility and inclusiveness, security, as well
as privacy. We showed that the current implemen-
tation is suited for courses up to approximately 140
participants and we provided novel resource and limit
measurement results for a WebRTC broadcast sce-
nario. Furthermore we showed that by sending data
that allows clients to replicate the same screen as the
presenter sees, we extended the participant limit of a
webinar about 10 times. We have tested our proof of
concept to work as of various courses at participating
institutions of the SlideWiki project.

5.1 Future Work

We have presented in this paper technological limits
of a broadcast WebRTC usage and conceptually new
ideas to webinar solutions. Thus we created a founda-
tion to start other evaluations of the presented concept
in the area of paedagogy, like outlined in section 3.

Muaz Khan (see section 4) showed that it is pos-
sible to use peers as relay peers in a broadcast sce-
nario, effectively lowering the hardware requirements
of the broadcaster as not all peers need to be directly
connected to it. This eliminate the need to host a
TURN server and leverage’s computational power of
the peer network even more. We expected this solu-
tion to increase the measured limits from section 3
tremendously, but it may need additional logic, like
network optimization algorithms.

Another imaginable approach is to use a speech to
text engine to transcribe the presenters voice, transmit
the transcript to the peers and to use a text to speech
(TTS) engine to regenerate audio output, instead of
transmitting an audio stream. According to our test
results, a data channel only setup is the most efficient
one and thus allows the highest number of connected
peers. E.g. Google presented in a recent (yet unpub-
lished) research paper (Shen et al., 2017) a TTS en-
gine that is mostly indistinguishable from a human
voice and that might be usable in this scenario.

The mentioned signaling server is the only re-
maining part of the network or process that is con-
sidered central and needs to be hosted. Paik et al.
showed in (Paik and Lee, 2015) a method to transfer
the signaling process to a distributed hash table. This
eliminates several use-case specific signaling servers

and introduces a decentralized way to handle signal-
ing. Based on their results, it seems like a promising
solution to secure the signaling process.

ACKNOWLEDGEMENTS

This work was partly supported by the European
Union’s Horizon 2020 research and innovation pro-
gram for the SlideWiki Project under grant agreement
No 688095.

REFERENCES

Mason, G. S., Shuman, T. R., and Cook, K. E. (2013). Com-
paring the effectiveness of an inverted classroom to a
traditional classroom in an upper-division engineering
course. IEEE Transactions on Education, 56(4):430–
435.

Paik, J. H. and Lee, D. H. (2015). Scalable signaling pro-
tocol for web real-time communication based on a
distributed hash table. Computer Communications,
70:28–39.

Pinikas, N., Panagiotakis, S., Athanasaki, D., et al. (2016).
Extension of the webrtc data channel towards remote
collaboration and control. In Proceedings of AmiEs
’16.

Raymond, A., Jacob, E., Jacob, D., et al. (2016). Peer learn-
ing a pedagogical approach to enhance online learn-
ing: A qualitative exploration. Nurse education today,
44:165–169.

Shen, J., Pang, R., Weiss, R. J., et al. (2017). Natural tts syn-
thesis by conditioning wavenet on mel spectrogram
predictions. arXiv preprint arXiv:1712.05884.

Singh, V., Lozano, A. A., and Ott, J. (2013). Performance
analysis of receive-side real-time congestion control
for webrtc. In 20th International Packet Video Work-
shop, pages 1–8. IEEE.

Strayer, J. F. (2012). How learning in an inverted classroom
influences cooperation, innovation and task orienta-
tion. Learning Environments Research, 15(2):171–
193.

W3C (2018). W3c editor’s draft specification for webrtc.
Last access time: 16 January 2018.

Zhao, S., Li, Z., and Medhi, D. (2016). Low delay mpeg
dash streaming over the webrtc data chan-

nel. In IEEE ICMEW, pages 1–6. IEEE.

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

160

