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Abstract: Email is one of the most common forms of digital communication. Spam is unsolicited bulk email, while
image spam consists of spam text embedded inside an image. Image spam is used as a means to evade text-
based spam filters, and hence image spam poses a threat to email-based communication. In this research, we
analyze image spam detection using support vector machines (SVMs), which we train on a wide variety of
image features. We use a linear SVM to quantify the relative importance of the features under consideration.
We also develop and analyze a realistic “challenge” dataset that illustrates the limitations of current image
spam detection techniques.

1 INTRODUCTION

Electronic mail or email is one of the most common
forms of digital communication today. Spam can be
defined as unsolicited bulk email. The widespread
use of email makes it an attractive target for spam-
mers. According to a recent report from Syman-
tec (Whitney, 2009), spam now accounts for a stag-
gering 90.4% of all email. Therefore, spam email—
which can include advertisements, malware, phishing
links, adult content, and so on—represents a signifi-
cant threat to the utility of email as a communication
medium.

Initially, spam was virtually always in the form of
text email. Strong classifiers have been developed to
filter such spam, based on content, subject, header,
and so on. For example, Lai and Tsai (Lai and Tsai,
2004) explore four machine learning algorithms that
rely on different parts of an email message. Algo-
rithms including k-nearest neighbors (k-NN), support
vector machines (SVM), and naı̈ve Bayes have been
successfully applied to the text-based spam detection
problem.

With the advent of strong text-based classifiers,
spammers reacted by developing new techniques—
one such technique is image spam. Spam text em-
bedded inside an image can be an effective method to
evade text-based filters (Gao et al., 2008).

In its simplest form, image spam contains text that
has been converted to an image. To detect this type of
image spam, optical character recognition (OCR) can
be used to extract the text, which can then be sub-

jected to text based spam detection techniques. As
a reaction to OCR-based detection, spammers em-
ployed obfuscation techniques, which make OCR less
effective (SpamAssasin, 2005).

Instead of detecting image spam based on OCR,
it is possible to consider a more direct approach ba-
sed on properties of the images themselves. In this
research, we consider such an image spam detection
strategy, where image processing techniques are used
in conjunction with machine learning algorithms.

In this research, we improve slightly on the de-
tection results in (Annadatha and Stamp, 2016) by
considering more features. In addition, we have de-
veloped a synthetic image spam dataset, which provi-
des a challenge (but realistic) test case for proposed
image spam detection schemes.

The remainder of this paper is organized as fol-
lows. In Section 2, we give a brief overview of image
spam and related work. In Section 3, we discuss the
features used in our experiments. Section 4 gives
a brief overview of the machine learning techniques
used in our experiments. In Section 5 we discuss the
process that was used to generate our synthetic data-
set and to evaluate its effectiveness. Section 6 pre-
sents out detection results, while Section 7 gives our
conclusions and suggestions for future work.

2 BACKGROUND

In this section, we briefly consider spam detection
techniques. Then we discuss research that is most clo-
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sely related to the work presented in this paper.

2.1 Spam Detection Techniques

From a high level perspective, spam detection techni-
ques can be loosely split into the following two cate-
gories. In practice, these approaches could be used in
various combinations.

• Content based filtering — Content-based schemes
can be used to filter text spam. These techniques
extract the actual content from within each spam
email and classifiers are built based on keywords,
headers, payload, etc. Machine learning techni-
ques have been extensively used for such classi-
fiers (Dhanaraj and Karthikeyani, 2013).

• Non-content based filtering — Instead of analy-
zing content directly, we can consider other pro-
perties of email. For example, in the case of image
spam, we can analyze image properties. As men-
tioned above, this is the approach that we follow
in this paper.

2.2 Related Work

Machine learning techniques play a prominent role in
spam detection. For most types of spam, a combina-
tion of image processing and machine learning techni-
ques can yield good results.

Kumaresan et al. (Kumaresan et al., 2015) use se-
veral image features to construct image spam clas-
sifiers. They use a combination of support vector
machines (SVM) and particle swarm optimization
(PSO). PSO improves the results by iteratively scan-
ning candidate solutions and moving “particles” in the
search space. Due to its computational complexity,
PSO can only deal with a relatively small dataset as
compared to SVM. The authors of (Kumaresan et al.,
2015) claim an accuracy of 90% on the Dredze dataset
(discussed below) using 300 training images and 380
test images.

Another machine learning based approach is con-
sidered by Annadatha et al. (Annadatha and Stamp,
2016), where the feature set consists of 21 image pro-
perties. Each feature is associated with a weight, ba-
sed on how much it contributes to a linear SVM clas-
sification. Based on these weights, the authors con-
duct various experiments primarily involving feature
selection and feature reduction. These experiments
are conducted on two datasets (Gao et al., 2008; ?)
and, as compared to (Kumaresan et al., 2015), sig-
nificantly more features are used, and the accuracy is
greater on the Dredze dataset. Additionally, an impro-
ved dataset was developed. We have also developed

a challenge dataset, which can be viewed as an im-
provement on the dataset in (Annadatha and Stamp,
2016), in the sense that our image spam is more diffi-
cult to distinguish from benign images.

A detection architecture using neural networks is
considered by Soranamageswari et al. (Soranamage-
swari and Meena, 2010), where the authors use back
propagation neural networks (BPNN) for their image
spam detection experiments. They achieve an accu-
racy of 92.82% on the Spam Archive dataset (Fumera
et al., 2006) using color properties of the images.

Chowdhury et al. (Chowdhury et al., 2015) consi-
der metadata features and they present a comparison
of three machine learning algorithms: Naı̈ve Bayes,
SVM, and BPNN. The results show that neural net-
works achieve the greater accuracy, at the expense of
increased complexity.

Gao et al. (Gao et al., 2010) analyze a “compre-
hensive” image spam technique that employs both
server-side and client-side detection. Their strategy
is based on a set of 23 image features and relatively
complex detection strategies. In contrast, for the re-
search presented in this paper, we utilize 38 features,
of which 20 overlap with those in (Gao et al., 2010).
We employ a straightforward SVM detector, which al-
lows for a detailed analysis of the relative importance
of the various features.

3 IMAGE FEATURES

Spam images are typically computer generated and
hence they tend to lack color properties and composi-
tion features of a normal “ham” image. For instance,
brightness in ham images tend to vary more than in
spam images.

We use image processing techniques to extract a
total of 38 of features from images. Of these 38 fea-
tures, 21 were considered in (Nixon, 2008). Table 1
gives a brief overview of all the features we have ex-
tracted, where the 21 features in (Nixon, 2008) are
denoted with “ † ”. The features under consideration
can be loosely classified into the following five dom-
ains.
• Metadata features — Properties such as image

size, height, width, aspect ratio, compression ra-
tio, and bit depth are the most basic properties of
an image. We consider six metadata features.

• Color features — Various histograms contain use-
ful information about an image. For example,
color histograms contain information about the
usage of red, green, and blue colors. From Figure
1 we see that the RGB channels of ham and spam
images tend to differ significantly.
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(a) Ham

(b) Spam

Figure 1: RGB channels of color histogram.

Additional color features are related to hue, sa-
turation, and value (HSV). The hue defines how
close the color is to red—hue is in the range of 0
to 1, with 0 being red. Saturation is a measure
of the “pureness” of the color, where higher va-
lues of correspond to deeper or richer colors. For
example, white corresponds to 0 saturation. The
value (or intensity) corresponds to brightness. Fi-
gure 2 compares the HSV channels of typical ham
and spam images.

• Texture features — The local binary pattern
(LBP) histogram captures information about the
similarity of each pixel to its neighboring pixels.
The LBP would appear to be a strong feature for
detecting Image spam that is simply text set on a
white background.

• Shape features — We consider a variety of shape
features, including the histogram of oriented gra-
dients (HOG) which describes how the inten-
sity gradient changes in the image. The ed-
ges feature quantifies change in contrast, which
serves to highlight boundaries of features in an
image (Nixon, 2008). Figure 3 shows the Canny
edge filter results for a spam image and a ham
image. Spam images generally contain text, re-
sulting in an increased number of clear edges as

(a) Ham

(b) Spam

Figure 2: HSV channels of HSV histogram.

compared to ham images. Also, the edges in spam
images tend to be smaller as compared to those in
ham images. We consider the number of edges
and average edge length as two separate features.

• Noise features — We consider two noise featu-
res. The Entropy of Noise is the amount of noise
in an image—typically, spam images have less
noise than ham images. The Signal to Noise Ra-
tio (SNR) is defined to be the ratio of the mean
to the standard deviation in the image histogram,
based on a grayscale version of the image under
consideration.

4 SVM MODELS

In this research, we rely on support vector machine
(SVM) analysis. Neural networks and deep learning
are popular today, and these techniques perform well
in many classification tasks. However, when a careful
comparison is done, the differences between deep le-
arning and other machine learning approaches (such
as SVM) is often quite small. For example, in re-
cent research on malware detection based on image
analysis (Yajamanam et al., 2018), it is found that a
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Table 1: Feature set.

Feature Type Feature Description

Metadata

height Height of the image
width Width of image

aspect ratio † Ratio of height and width
compression ratio † How compressed is image

file size Size on disk
image area Area of image

Color

entr-color † Entropy of color histogram
r-mean † Mean of red histogram
g-mean † Mean of green histogram
b-mean † Mean of blue histogram
r-skew † Skew of red histogram
g-skew † Skew of green histogram
b-skew † Skew of blue histogram
r-var † Variance of red histogram
g-var † Variance of green histogram
b-var † Variance of blue histogram
r-kurt † Kurtosis of red histogram
g-kurt † Kurtosis of green histogram
b-kurt † Kurtosis of blue histogram
entr-hsv Entropy of HSV histogram
h-mean Mean hue of HSV histogram
s-mean Mean saturation of HSV histogram
v-mean Mean brightness of HSV histogram
h-var Variance of hue HSV histogram
s-var Variance of saturation HSV histogram
v-var Variance of brightness HSV histogram

h-skew Skew of hue HSV histogram
s-skew Skew of saturation HSV histogram
v-skew Skew of brightness HSV histogram
h-kurt Kurtosis of hue HSV histogram
s-kurt Kurtosis of saturation HSV histogram
v-kurt Kurtosis of brightness HSV histogram

Texture lbp † Entropy of LBP histogram

Shape
entr-hog † Entropy of HOG

edges † Total number of edges in an image
avg-edge-length † Average edge length

Noise snr † Signal to noise ratio
entr-noise † Entropy of noise

Figure 3: Canny edges.

simple k-nearest neighbor technique performs nearly
as well as deep learning techniques based on transfer
learning. And an advantage of SVM models is that
they are extremely informative (in particular, linear
SVMs), enabling us to easily determine the contribu-
tion of individual features, perform feature reduction,
quantify interactions between features, and so on. In
contrast, deep learning models tend to be opaque—
essentially, black boxes that produce classification re-
sults. Therefore, we believe that SVM is an ideal
technique for the research problems that we consider
in this paper.

SVMs are a class of supervised learning algo-
rithms, generally used for classification. SVMs have
been applied to spam detection research in gene-
ral (Lai and Tsai, 2004), and to the image spam de-
tection problem in particular (Annadatha and Stamp,
2016). In this section, we give a brief overview of the
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SVM algorithm.
There key concepts that define the SVM algorithm

are the following (Stamp, 2017).

• Separating hyperplane — In the training phase,
the SVM attempts to divide the labeled input data
into two classes. In the ideal case, the data is line-
arly separable, that is, all data of one class lies on
one side of a separating hyperplane and all data in
the other class falls on the other side of the hyper-
plane.

• Maximize the margin — When constructing an
optimal hyperplane, only a subset of training data
is actually relevant. These special points are
known as support vectors. An optimal hyperplane
is defined as one that maximizes the separation or
margin between the support vectors and the hy-
perplane.

• Work in higher dimensions — In general, the trai-
ning data is not linearly separable in the input
space. By transforming the input data to a hig-
her dimensional feature space, linear separability
can be improved.

• Kernel trick — A kernel function enables us to
map the input space to a higher dimensional fe-
ature space without paying a significant cost in
terms of efficiency.

4.1 Feature Selection

In a linear SVM, weights are determined for each
input-space feature—the higher the weight, the more
significance the SVM classifier places on that feature.
Thus, we can use these weights to rank the features,
and thereby reduce the dimensionality of the problem
without any significant loss in accuracy. In fact, we
can sometimes improve the accuracy through feature
reduction, since some features may be so uninforma-
tive as to essentially act as noise.

In this research, we consider recursive feature eli-
mination (RFE), where we initially train a linear SVM
using all available features. Then we eliminate the fe-
ature with the smallest weight and train another linear
SVM on the reduced feature set. We continue to re-
duce the number of features and retrain the SVM until
the desired number of features has been obtained.

4.2 Scoring Metrics

Accuracy is the number of correct classifications di-
vided by the total number of classifications, that is,

accuracy =
true positive+ true negative

total number of samples
.

In our detection experiments, we use accuracy as one
quantifiable measure of the success (or lack thereof)
of our proposed techniques.

Given the results of any binary classification ex-
periment, the receiver operating characteristic (ROC)
curve is constructed by plotting the true positive rate
versus the false positive rate as the threshold varies
through the range of values. The area under the ROC
curve (AUC) ranges from 0 to 1. An AUC of 1.0 indi-
cates perfect separation, i.e., there exists a threshold
for which no false positives or false negatives occur.
On the other hand, an AUC of 0.5 indicates that the
binary classifier is no better than flipping a fair coin.
In general, the AUC gives the probability that a rand-
omly selected match case scores higher than a rand-
omly selected non-match case (Bradley, 1997; Stamp,
2017).

5 DATASETS

Two existing publicly available datasets have been
used in this research. In addition, we have developed
a realistic dataset that is designed to provide a chal-
lenging test for any proposed image spam detection
scheme. All of these datasets contain both spam and
ham images. For our datasets 1 and 2, the ham and
spam images come from actual email, while the chal-
lenge dataset includes modified spam images.

5.1 ISH Dataset

The developers of Image Spam Hunter (Gao et al.,
2008) collected a large sample of image spam and a
similarly large sample of ham images. We refer to
this data as the ISH dataset. After cleaning the data,
920 spam images and 810 ham images from the ISH
dataset were retained for this research. All of these
images are in jpg format.

5.2 Dredze Dataset

Dredze et. al (Dredze et al., 2007) created an image
spam corpus which is publicly available. Here, we
refer to this set as the the Dredze dataset. After cle-
aning the dataset, we retained 1089 spam and 1029
ham images from the Dredze dataset. As with the ISH
dataset, all images are in the jpg format.

5.3 Challenge Dataset

As discussed above, previous research using publicly
available image spam datasets has obtained strong re-
sults. We also obtain very strong results on these da-
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tasets. However, it is clear that image spam could be
made much more difficult to detect. Therefore, we
have also generated our own challenge dataset. As
the name suggests, the purpose of this dataset is to
provide a challenge to the detection of more advan-
ced forms of image spam, which are likely to be seen
in the near future.

We apply various image processing techniques to
actual spam images to make the images look more
like a ham image. We used the Dredze dataset for our
spam corpus, and we overlay ham images from the
ISH dataset.

We experimented with various approaches to de-
velop our challenge dataset and ultimately found that
a relatively simple and straightforward technique was
most effective. To generate our spam images, we ex-
tract the content of an existing spam image, then sim-
ply overlay it on ham image. Figure 4 shows an ex-
ample of a spam image generated using this approach.
We see that the modified spam image looks like a ham
image.

Figure 4: Challenge dataset example (second approach).

For the remainder of this paper, “challenge data-
set” refers to the spam images that we have generated
using the method discussed above. A straightforward
SVM detection model was tested on our challenge da-
taset. We found that this SVM gave us a classifica-
tion accuracy of 70%, while more complex techni-
ques could only achieve an accuracy of 79%. Since
our goal is to defeat the detection, this straightforward
approach is better.

Figure 5 shows scatterplots of the compression ra-
tio and color entropy for ham, spam, and our chal-
lenge dataset images. From these scatterplots, it is
clear that the ham and challenge dataset images more
closely align, as compared to those of ham and exis-
ting image spam.

Figure 6 shows differences in SVM weights asso-
ciated with features in the ISH dataset, as compared to
the same feature in the challenge dataset. The majo-
rity of these differences are near 0, indicating that the
SVMs place nearly equal reliance on the correspon-
ding features. This provides further evidence that it
may be difficult to distinguish images in the challenge
dataset from the ham images.

(a) Compression Ratio

(b) Entropy of Color Histogram

Figure 5: Feature value comparison scatterplots.

In the next section, we present and analyze our
main experimental results for ham, spam, and our
challenge datasets. These results are based on SVM
classification experiments, and EM clustering experi-
ments.

6 EXPERIMENTS & RESULTS

As previously noted, SVMs have been applied
with success to the text-based spam detection pro-
blem (Dhanaraj and Karthikeyani, 2013). In this
section, we first consider SVMs for image spam de-
tection, and we use SVMs for feature reduction. Fi-
nally, we discuss results from clustering experiments.

Below, we conduct experiments on all of the data-
sets discussed above. We obtain strong results on the
ISH and Dredze datasets. As expected, our results are
poor on the challenge dataset, which indicates that it
will present a significant challenge for research in this
field.
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Figure 6: Comparing features of the ISH and challenge datasets.

6.1 SVM Experiments

We have extracted all 38 features from each ham and
spam sample. We train various SVM classifiers based
on selected subsets of these features. To measure the
effectiveness of each model, a test set—disjoint from
the training set—is passed to the SVM classifier, with
the accuracy and the area under the ROC curve (AUC)
used to quantify success. In this section, we also ex-
periment with feature reduction to determine optimal
subsets of features.

For each SVM experiment, five-fold cross valida-
tion is used. That is, for the dataset under conside-
ration, we partition the ham images into five equal-
sized subsets, which we denote as H1,H2,H3,H4,H5,
and we do the same for the spam images, and we de-
note these subsets as S1,S2,S3,S4,S5. We then train an
SVM classifier on the labeled datasets H1,H2,H3,H4
and S1,S2,S3,S4 with H5 and S5 reserved for tes-
ting the resulting SVM. Then we train an SVM
on H1,H2,H3,H5 and S1,S2,S3,S5 with H4 and S4
used for testing, and so on, until each of the five
pairs (Hi,Si) have been used for testing. The results
of all five “folds” are then combined when determi-
ning the result of the experiment. Cross validation
serves to smooth any bias in the training data, while
also maximizing the number of independent test ca-
ses.

As a first attempt to analyze the importance of
each feature, we calculate SVM scores for each fe-
ature individually. That is, for each feature, we trai-
ned and scored using an SVM based only on that one
feature. Figures 7 (a) through 7 (c) give the SVM
results—in the form of AUC statistics—for each indi-

vidual feature, over all three of the datasets. We see
that dataset 1 generally gives the best results while,
as expected, the challenge dataset is the most challen-
ging from the perspective of individual features.

Next, we give results for SVMs where all 38 fe-
atures are used. Again, we consider the ISH dataset,
the Dredze dataset, and our challenge dataset.

Table 2 shows the accuracy and FPR for each of
the three SVM kernels when tested on the ISH dataset.
Here, we achieve the best results for linear kernel.

Table 2: SVM based on 38 features (ISH dataset).

Kernel Accuracy FPR
Linear 0.97 0.05
RBF 0.96 0.06
Poly 0.95 0.07

Table 3 shows the accuracies and FPR for the
same three SVM kernels when tested on the Dredze
dataset. In this case, we achieve equally strong results
for the linear and RBF kernels.

Table 3: SVM based on 38 features (Dredze dataset).

Kernel Accuracy FPR
Linear 0.98 0.01
RBF 0.98 0.01
Poly 0.95 0.09

Although we obtain good results for both the ISH
and Dredze datasets when using the full 38 features,
we obtain slightly better results for the Dredze data-
set. This shows the strength of the SVM, as the results
for individual features in Figure 7 (a), indicate that the
ISH dataset may be the easier case.

Table 4 shows the accuracies and FPR for each of
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(a) ISH dataset

(b) Dredze dataset

(c) Challenge dataset

Figure 7: AUC for SVM (individual features).

the three SVM kernels when tested on our challenge
dataset. Again, we achieve the best results using the
linear kernel. As expected, the results are much worse
for this challenge dataset, as compared to the ISH and
Dredze datasets.

Table 4: SVM based on 38 features (challenge dataset).

Kernel Accuracy FPR
Linear 0.68 0.38
RBF 0.64 0.38
Poly 0.54 0.79

6.2 Feature Reduction

Since we have a large number of features, our next
step is to explore techniques to reduce this number
while maintaining (or improving) the overall accu-
racy. Also, reducing the number of features will in-
crease the efficiency, which is particularly important
in the detection (or classification) phase.

A linear SVM assigns a weight to each feature,
where the weight directly corresponds to the relative
importance of the feature in the SVM classifier. The-
refore, a naı̈ve approach to feature reduction is to sim-
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ply rank the features based on these weights, elimina-
ting those features with the smallest weights.

However, this is not an ideal strategy as the rela-
tionship between features can change whenever a fe-
ature is eliminated. In this section, we explore recur-
sive feature elimination (RFE), which was discussed
briefly in Section 4.1.

Recall that RFE is a straightforward modification
to the naı̈ve strategy mentioned in the previous para-
graph. In RFE, we generate a linear SVM and eli-
minate the feature that corresponds to the smallest
weight. Then we generate a new SVM based on this
reduced (by one) feature set and again eliminate the
feature that corresponds to the smallest weight. We
continue this process until some stopping criteria is
met (e.g., we reach the desired number of features, or
the accuracy degrades, or we run out of features).

For each dataset, we performed a ranking of all 38
features. Figure 8 (a) shows RFE results for the ISH
dataset. In this case, we achieve a maximum accuracy
of 95.57% when eliminating 13 features.

Figure 8 (b) shows the RFE results for the Dre-
dze dataset. For this particular dataset, the maxi-
mum accuracy is 98.02%, and this occurs when using
only 16 features of the 38 features. In comparison
to the ISH dataset, we require fewer features for the
Dredze dataset and we achieve a higher accuracy.

Finally, Figure 8 (c) gives RFE results for our
challenge dataset. In this case, we achieve a max-
imum accuracy of 69.32% with 26 features which,
again, points to the challenging nature of this dataset.

To summarize, our feature reduction experiments
show that there is redundancy among our 38 features.
This is not surprising, since there are many features
used to measure very similar characteristics. Perhaps
more interesting is the fact that in each case we can
obtain near-optimal results with a small number of fe-
atures. It is also interesting that the accuracy for the
challenge dataset does not exceed 70%.

Next, we present clustering results for our data-
sets. These results provide another perspective on the
inherent challenge of classifying image spam from
each of the sets under consideration.

6.3 EM Clustering

Clustering is an unsupervised machine learning
technique. The essential idea of clustering is to split
the data into sets (or clusters) based on some concept
of distance. The well-known K-means algorithm uses
a simple iterative two-step hill climb which is based
on a direct measure of distance. Expectation maximi-
zation (EM) clustering can be viewed as a generaliza-
tion of K-means, where probability distributions are

(a) ISH dataset

(b) Dredze dataset

(c) Challenge dataset

Figure 8: RFE results.

used to measure “distance” (Stamp, 2017). Another
way to view the difference between K-means and EM
is that the former generates spherical clusters, whe-
reas the latter allows for more general shapes. Typi-
cally, Gaussian distributions are used in EM cluste-
ring, in which case the resulting clusters can take on
elliptical shapes. In our EM experiments, we employ
Gaussian distributions.

In effect, EM determines the parameters of
unknown probability distributions which are used to
determine the clusters. From a high level perspective,
EM clustering consists of iterating the following two
steps.

1. Expectation Step: Recompute the probabilities for
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each datapoint based on the current estimates for
the probability distributions.

2. Maximization Step: Recompute the parameters of
the probability distributions based on the probabi-
lities computed in the expectation step.

Ideally, each cluster will contain only one type of
data. We compute the purity (i.e., uniformity) of the
clusters and use this as our measure of success. The
purity ranges between 0 to 1 with ideal clustering (i.e.,
each cluster contains only one type of data) having a
purity score of 1.0.

For EM clustering with Gaussian distributions and
two clusters, and using all 38 features, we obtain the
results in Figures 9 (a) through 9 (c). Ideally, one
cluster should contain only ham and the other should
contain only spam. As expected, for the ISH data-
set, the results in Figure 9 (1) appear to be reasona-
bly good, while the results for the challenge dataset
in Figure 9 (c) are very poor. However, the results in
Figure 9 (b) for the Dredze dataset are somewhat sur-
prising. Using an SVM, we can classify the samples
in Dredze dataset with an accuracy comparable to the
ISH dataset, but the clustering results for the Dredze
dataset are much worse than those for the ISH dataset.

0 200 400 600 800 1000

Cluster 2

Cluster 1

NumberHam Spam

(a) ISH dataset

0 200 400 600 800 1000

Cluster 2

Cluster 1

NumberHam Spam

(b) Dredze dataset

0 200 400 600 800 1000

Cluster 2

Cluster 1

NumberHam Spam

(c) Challenge dataset

Figure 9: EM clustering results.

Table 5 summarizes the purity scores correspon-
ding to the experiments in Figure 9. These scores
confirm the intuitive observations mentioned in the
previous paragraph.

In the next set of clustering experiments, we com-
bined the ISH and challenge datasets and subjected
this combined set to EM clustering. Note that we
have included the ham set, so there are three classes of
data. Using three clusters, we obtain the EM results
in Figure 10, with the corresponding numeric results
summarized in Table 6. Cluster 2, in particular, indi-
cates that a large percentage of the challenge dataset

is indistinguishable from ham. This provides further
strong evidence that the spam images in the challenge
dataset will be difficult to detect using the features
considered in this paper. That is, the challenge dataset
represents a realistic challenge for future research in
this field.

Table 5: Clustering results.

Dataset Purity
ISH 0.87

Dredze 0.70
Challenge 0.52
Combined 0.62

0 200 400 600 800 1000 1200 1400

Cluster 3

Cluster 2

Cluster 1

NumberHam Spam Challenge

Figure 10: EM with three clusters on combined dataset.

Table 6: Cluster distribution.

Cluster Ham Spam Challenge
1 7 577 4
2 606 0 648
3 197 343 158

We also performed EM clustering with the num-
ber of clusters varying from two to 20. The results of
these experiments are summarized in the form of line
graphs in Figure 11. Intuitively, the purity should in-
crease as we add more clusters—in the extreme, every
sample could be its own cluster, which would yield a
purity of 1.0. Indeed, the purity score does generally
rise as the number of clusters increases. More signi-
ficantly, the gap between each pair of purity scores is
consistent over the range of values tested, indicating
that our results above are not an artifact of the number
of clusters used.
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Figure 11: Purity scores vs number of clusters.
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The results here indicate that even an unsupervi-
sed technique such as EM clustering could be quite
strong against the current crop of image spam. Ho-
wever, if spammers use somewhat more advanced
techniques, it is highly unlikely that the resulting
image spam can be effectively detected using any
combination of the 38 image processing based fea-
tures we have considered in this paper.

7 CONCLUSION

Using samples of real-world ham and spam images,
we showed that machine learning algorithms based on
features extracted by image processing techniques can
be used to construct strong classifiers. Our results on
these real-world datasets improves slightly over the
related work in (Annadatha and Stamp, 2016).

We also showed that it is not difficult to generate
much stronger image spam, in the sense that the de-
tection problem is significantly more challenging. In
addition, we showed that such improved image spam
cannot be reliably detected using the image proces-
sing based features considered here. These results
improve over the challenge dataset presented in (An-
nadatha and Stamp, 2016), in the sense that the chal-
lenge dataset in this paper is significantly more diffi-
cult to distinguish from ham, even when using a richer
and more informative feature set. These results indi-
cate that we will likely need new approaches to detect
image spam in the future.

More research is needed to develop and analyze
improved methods for image spam detection. To this
end, we have developed a large image spam challenge
dataset that we will provide to any researchers in this
field. By experimenting on this challenge dataset,
it will be possible to directly compare results based
on different proposed detection techniques. Additi-
onal experiments involving this dataset using neural
networks and deep learning would be timely, and it
would be interesting to have such a direct compari-
son between the SVM analysis in this paper, and deep
learning techniques.
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