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Abstract: Virtualization plays an important role in cloud computing by providing the capability of running multiple 
operating systems and applications on top of the same underlying hardware. However, there are limitations 
in current virtualization technologies, which are inherited by cloud computing. For example, performance, 
security and dependability. While these challenges remain, the adoption of virtualization in the different 
fields will be limited. This paper presents a survey in the past and open virtualization challenges, such as 
nested virtualization, reliability and security. 

1 INTRODUCTION 

Virtualization plays an ever-widening role in today’s 
society as can be seen from its applications, ranging 
from critical embedded systems (Heiser, 2008) (such 
as automotive (Wolf, n.d.) (Lee et al., 2016) and 
aeronautical applications (Joe et al., 2012)) to big 
private and public datacenters (e.g., cloud computing 
(Xing and Zhan, 2012)).  

Despite virtualization being extensively used, 
there are still open challenges (Adams and Agesen, 
2006) that present a barrier to adoption by customers 
that require strict security and dependability 
guarantees.  

Ultimately, virtualization adds another layer of 
software (i.e., the hypervisor and other smaller 
components), which inevitably carries its own bugs 
(Lacoste and Debar, n.d.). This layer is of utmost 
importance as it is located right above the hardware, 
meaning that it has direct and unchecked control over 
the hardware and is a single point-of-failure (SPOF) 
of the system.  

Co-location of virtual machines over the same 
hardware also exposes the clients of virtualization to 
dependability and security threats. On the one hand, 
transient and permanent hardware faults will now be 
amplified and propagated across the clients of the 
system. On the other hand, malicious clients can 
launch rogue virtual machines to carry denial of 
service (Yan et al., 2016), information disclosure or 
privilege escalation attacks (Lombardi and Di Pietro, 
2011) on co-located virtual machines (e.g., by 

exploiting shared hardware resources, such as the 
CPU cache).  

Research in recent years has proposed approaches 
to solve some of the previously mentioned problems, 
particularly with regards to hardware fault-tolerance 
(Cully et al., 2008), hypervisor rejuvenation (Bagdi et 
al., 2017a), and security (Wang and Jiang, 2010). 

In this paper, we survey the most important 
challenges that virtualization has overcome in the past 
and present the open challenges that are being 
extensively researched, along with the solutions 
available in literature. Throughout this paper, 
abbreviations are used such as OS which stands for 
operating system, VM which stands for virtual 
machine, ISA which stands for instruction set 
architecture and CPU which stands for central 
processing unit. 

The structure of this paper is as follows. Section 2 
provides the main concepts about virtualization. 
Section 3 presents the past challenges faced by 
virtualization, i.e., the challenges already overcome 
by virtualization, while in Section 4 we present the 
open challenges to virtualization, i.e., the challenges 
being currently faced by virtualization. Finally, 
Section 5 presents the main conclusions and some 
future work. 

2 CONCEPTS OF 
VIRTUALIZATION 

Virtualization can be defined as a layer of indirection 
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between abstract view and implementation of 
resources (Aboulnaga, n.d.).  

The advantages brought by virtualization can be 
summarized as cost reductions in hardware and 
power consumption, better hardware utilization 
(Colsani et. al., 2008) (i.e., less idle time) and good 
resource elasticity (i.e., request and pay for the 
resources required if operating over a private or 
public cloud) (Herbst et al., n.d.). In summary, it 
allows a single computer to host several clients and 
their jobs.  

Figures 1 and 2 show the difference between a 
virtualized and a non-virtualized system. Figure 1 
shows hardware utilization of 10-20% without 
virtualization, due to various services being spread 
over multiple physical machines that are over-
provisioned and under-used. Whereas Figure 2 
shows that virtualization can increase hardware 
utilization (to around 70%) by consolidating those 
services over a single physical machine.  

 

Figure 1: Hardware usage without virtualization (Colsani 
et. al., 2008). 

 

Figure 2: Hardware usage with virtualization (Colsani et. 
al., 2008). 

Virtual machines can be divided into two main 
categories, namely process virtual machines and 
system virtual machines (Berghmans, 2010). On the 
one hand, process virtual machines can only run a 
single program at a time and for example, a process 
of an operating system, is a process VM, because 

one process can only run one program at a time. On 
the other hand, system virtual machines provide a 
complete system environment by virtualizing the 
ISA layer (Berghmans, 2010). System virtual 
machines allow a physical hardware system to be 
shared among multiple, isolated guest operating 
systems simultaneously (Berghmans, 2010). These 
system virtual machines are mainly hypervisors such 
as Xen, VirtualBox and VMWare.  

Just like virtual machines, virtualization per se 
can also be divided into different types, namely full 
virtualization, paravirtualization and hybrid-
virtualization. 

Full virtualization is the most common 
virtualization mode and implies that guest operating 
systems are not aware that they are being 
virtualized; therefore, there is no direct 
communication between the VMs and the hypervisor 
(Rose, 2004). This mode has the benefit of allowing 
unmodified operating systems to be virtualized 
(Barham et al., 2003), so it works even with closed-
source OSs, such as Windows.  

The second type of virtualization – 
paravirtualization – requires the kernel of guest 
operating systems to be modified in order to support 
virtualization (Rose, 2004). This is usually done by 
removing privileged instructions and replacing them 
with hypercalls (Barham et al., 2003) that ask the 
hypervisor directly for resources. 

This virtualization mode has the benefit of 
having better performance (Barham et al., 2003), 
result of the direct communication path between 
hypervisor and VM. 

The last type of virtualization – hybrid 
virtualization – combines the two aforementioned 
types of virtualization and takes the best of them into 
one single mode of virtualization. It employs para-
virtualization for I/O, interrupt controllers, and timer 
to simplify the system and optimize performance. 
(Nakajima and Mallick, 2007). For CPU 
virtualization, it allows one to use the same code as 
in the original kernel (Nakajima and Mallick, 2007). 

3 PAST CHALLENGES 

In this section, we present past challenges to 
virtualization. While past obstacles once proved to 
be serious limitations to widespread adoption and 
merited efforts from researchers and industry to be 
overcome, they are now a solved question, whereas 
present obstacles are still a subject of active research 
and pose a risk for the remaining users that have not 
yet migrated to virtualization, such as, the owners  of  
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highly-critical, dependable or secure systems.  
One of the most central obstacles faced by 

virtualization since its ascension to widespread 
popularity, was the fact that the x86 processor 
architecture was not fully virtualizable using the 
common approaches at the time (Barham et al., 
2003) (e.g., trap-and-emulate). In its origin, 
virtualization was used in the scope of massive 
mainframes, and its application to commodity 
hardware was not a main goal.  

Trap-and-emulate technique requires the CPU 
generates a trap whenever an attempt to execute a 
privileged instruction in user mode is made. The 
biggest problem is that x86 CPUs did not generate 
those traps, so the hypervisor did not have a way to 
know when the guest OS tried to execute a 
privileged instruction. Instead, the execution of that 
instruction simply failed silently, and the guest OS 
was mistakenly led to think its privileged instruction 
execution was successful thus reacting accordingly. 

To solve this issue, researchers have come up 
with a virtualization technique called binary 
translation. This technique uses a new piece of 
software to detect the privileged instructions and 
replace at run-time that code with a less privileged 
one but which tries to do the same thing (Adams and 
Agesen, 2006).  

With this new technique the x86 architecture 
becomes fully virtualizable, because the hypervisor 
is not dependent on the traps generated by the CPU 
to know when the guest OS tries to execute a 
privileged instruction. Instead, the hypervisor will 
spy the execution flow of the guest OS. In fact, 
VMWare ESXi (a well-known bare-metal/type 1 
hypervisor from VMWare) uses binary translation  

(“Virtualization system including a virtual 
machine monitor for a computer with a segmented 
architecture,” 1998). 

To summarize, researchers have used several 
techniques, such as binary translation, paravirtuali-
zation and more recently, hardware-assisted 
virtualization, to make both x86 and x86_64 
architectures fully virtualizable. 

4 OPEN VIRTUALIZATION 
CHALLENGES 

In this section we explore the open challenges faced 
by virtualization, that represent the most active 
research areas under the main topic of virtualization. 
We group the challenges in the following topics: 
nested virtualization, reliability and security.  

4.1 Nested Virtualization 

Nested virtualization refers to the ability of running 
a virtual machine within another, having this general 
concept extendable to an arbitrary depth (Tan et al., 
2012) (“Virtualization,” 2018).  

In other words, nested virtualization refers to 
running one or more hypervisors inside another 
hypervisor (“Virtualization,” 2018). 

It poses an open challenge because most 
hypervisors still do not support this feature, and 
those who do often have performance and stability 
problems. Nested virtualization has a broad range of 
applications, from testing, to security (Greamo and 
Ghosh, 2011) and fault tolerance (Cully et al., 2008) 
(Tan et al., 2012).  

In the case of fault tolerance, it is used by several 
tools, like TinyChecker (Tan et al., 2012) and 
HyperFresh, (Bagdi et al., 2017b) that protect 
against both software (e.g., hypervisor) and 
hardware failure.  

In security, nested virtualization can be used by 
antivirus software (Greamo and Ghosh, 2011) to 
execute malicious software in a sandbox that is 
isolated from the original system. We can have our 
antivirus running in a virtualized environment and it 
can use another level of virtualization (nested 
virtualization) to test whether a software is malicious 
or not. Figure 3 shows a classical setup which is 
using nested virtualization. Right above the 
hardware we have our first hypervisor (which is 
known as a Layer 0 hypervisor), then above this 
hypervisor we have VMs (which are called Layer 1 
VMs) and inside those VMs we have another 
hypervisor (which does not need to be the same as 
the first one and which is called Layer 1 hypervisor) 
and finally above the second hypervisor we have our 
nested VMs (which are called Layer 2 VMs). 

 

Figure 3: Nested virtualization setup (Berghmans, 2010). 
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However, nested virtualization has drawbacks in 
terms of performance, which arise due to the 
multiple layers of virtualization and the increase in 
vmentry (flow of execution goes from the hypervisor 
to the VM) and vmexit (flow of execution goes from 
the VM to the hypervisor) events (Michael et al., 
2013). If nested virtualization is implemented 
poorly, we can have a huge decrease in performance 
compared to only one degree of virtualization, 
because of the huge number of vmentry and vmexit 
(Michael et al., 2013). Modern techniques that 
promise to increase this aspect, try to decrease the 
number of vmentry and vmexit (Michael et al., 
2013). Figure 4 shows the execution flow of a nested 
virtualization setup and it shows the vmentry and 
vmexit in a nested virtualization environment.  

 

Figure 4: Flow of execution in a nested virtualization 
setup (“Unsafe Nested Virtualization on Intel CPU”, 
2018). 

4.2 Reliability 

An obstacle to reliability that is inherent to 
virtualization is related with the fact that multiple 
clients become consolidated over the same physical 
hardware and virtualization software (e.g., 
hypervisor). This means that, not only the physical 
hardware itself but also the virtualization software, 
becomes a single point-of-failure (SPOF). When one 
of these components fails (e.g., due to a transient 
hardware fault affecting the CPU, or a software bug 
in the hypervisor that is activated) there is the 
possibility that multiple (or even all) of the clients 
are affected, thereby amplifying the impact of fault. 

To reduce a part of the problem (i.e., the fact that 
the hypervisor becomes a SPOF), systems 
administrators can use tools like TinyChecker (Tan 
et al., 2012) or HyperFresh (Bagdi et al., 2017b), 
which have been specifically designed to solve this 
issue. It follows the principle that, as the upper 
hypervisor is a complex piece of software it is more 
likely to have software bugs, TinyChecker adds 
another layer below the original hypervisor, which 
monitors the state of the hypervisor and takes 

corrective measures when required. Since 
TinyChecker is significantly smaller (with respect to 
lines of code) than any other hypervisor, it is 
expected to have fewer software bugs and therefore 
becomes a smaller SPOF. 

TinyChecker interposes the control and data 
exchange between the hypervisor and the guest 
VMs, so that it can transparently detect hypervisor’s 
failure and recover the system without losing the on-
going work in per-exit level (Tan et al., 2012) (per-
exit level means a VM does not lose its data when 
TinyChecker reboots the buggy hypervisor, because 
the state of the VM is held in the memory of 
TinyChecker). When a failure is detected, 
TinyChecker will reboot the hypervisor while 
preserving the state of the VMs in memory (Tan et 
al., 2012). This can be achieved by the three parts of 
TinyChecker: access recorder, memory protector and 
failure detector.  

The access recorder responds for recording the 
entire communication context between VMs and 
hypervisor (Tan et al., 2012). The duty of the 
memory protector is to guarantee the integrity of the 
critical data (Tan et al., 2012). During the 
TinyChecker initialization stage, the critical area in 
memory will be set to readable but non-writable to 
the hypervisor (Tan et al., 2012). The critical areas in 
hypervisor are the metadata for managing VMs, such 
as p2m table or running domain list. VM’s memory 
is another critical area which has also been protected 
by TinyChecker after its allocation(Tan et al., 2012). 
In short, the memory protector has protected the 
critical memory from hypervisor’s arbitrary 
modification (Tan et al., 2012).  

The failure detector is the core part of 
TinyChecker which is going to detect and confirm 
the hypervisor failure’s occurrence (Tan et al., 2012). 
This module works with information from both the 
access recorder and the memory protector. Figure 5 
shows in a graphical way, the working mode of 
TinyChecker described above. 

 

Figure 5: TinyChecker setup (Tan et al., 2012). 

To solve the second and last part of the problem 
(i.e., the fact that the hardware infrastructure 
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becomes a SPOF), systems administrators can use 
tools like Remus  (Cully et al., 2008).   

Remus was created primarily with the intention 
of providing generic fault tolerance against hardware 
faults to non-virtualized workloads. Soon its 
performance caught the attention from users of 
virtualization, which integrated Remus into their 
existing systems. Remus takes advantage of 
virtualization to encapsulate the workload into a VM 
and easily migrate it across different physical hosts.  

It provides an extremely high degree of fault 
tolerance, to the point that a running system can 
transparently continue execution on an alternate 
physical host in the face of failure with only seconds 
of downtime, while completely preserving guest 
state such as active network connections (Cully et 
al., 2008).  

Remus’ approach encapsulates protected 
software in a virtual machine, asynchronously 
propagates changed state to a backup host and uses 
speculative execution to concurrently run the active 
VM slightly ahead of the replicated system state 
(Cully et al., 2008). Remus provides OS- and 
application-agnostic high availability on commodity 
hardware (Cully et al., 2008), thus being a very 
cheap solution to deploy hardware high availability. 
Remus’ three main goals are: generality, 
transparency and last but not the least, seamless 
failure recovery (Cully et al., 2008).  

The first one aims at giving high availability 
regardless of the application being protected or the 
hardware on which it runs (Cully et al., 2008). The 
second goal aims at giving high availability without 
having to either modify the application or the OS 
source code (Cully et al., 2008), because it might not 
even be available for modification. The last one 
states that no externally visible state should ever be 
lost in the case of single-host failure (Cully et al., 
2008). Figure 6 explains, in a graphical manner, the 
working mode of Remus described above. 

The conjunction of the aforementioned tools 
enables an improvement in reliability by taking 
advantage of virtualization in varied manners. 
Nevertheless, the reliability of virtualized systems is 
not a closed topic and new approaches are being 
investigated that aim to provide better protection at a 
lower performance cost. 

4.3 Security 

With the consolidation of multiple clients in the 
same hardware, the possibility for side-channel 
attacks between virtual machines is not negligible 
(Bazm et al., 2017). 

In fact, several papers have already demonstrated 
attacks that successfully extract sensitive 
information (e.g., cryptographic keys) through 
timing attacks (Ristenpart et al., 2009), or that cause 
performance degradation through resource 
exhaustion (Zhang et al., 2017). Adopted solutions 
to these problems can be applied at various levels, 
ranging from hardware to the application (Bazm et 
al., 2017), however the hypervisor-level is perhaps 
the most adequate, as it can provide mitigation that 
covers all the clients but does not need their 
interaction (i.e., the client does not need to change 
his application to protect against these attacks). 
Examples of solutions that have been applied to 
hypervisors are locking cache lines (Costan and 
Devadas, 2016) or page coloring (Wang and Lee, 
2008) (Shi et al., 2011) (Jin et al., 2009). 

Another security problem which is characteristic 
to cloud computing, is the possibility for a rogue 
cloud provider to eavesdrop or manipulate a client’s 
virtual machine without his knowledge (Claycomb 
and Nicoll, 2012). To enable computation with some 
integrity and confidentiality guarantees, even in 
presence of an untrusted hypervisor, secure enclaves, 
powered by hardware extensions (Intel SGX (Costan 
and Devadas, 2016) and AMD SEV (AMDSEV,  
 

 

Figure 6: Remus high-level architecture (Cully et al., 2008). 
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2018)), have been proposed and are an active area of 
research by the industry.  

These enclaves shift the trust from the cloud 
operator to the hardware manufacturer and use 
cryptographic algorithms to attest to the user that the 
code and data that he provided is being executed in a 
secure enclave that cannot be probed by external 
agents without being noticed. As disadvantages they 
usually bring significant performance overheads and 
are nonetheless susceptible to some attacks 
(Weichbrodt et al., 2016).  

5 CONCLUSIONS AND FUTURE 
WORK 

Virtualization is at an advanced stage now, however 
there is still much to do in order to make this 
technology safer, faster, easier and better. 

In this paper, we surveyed virtualization, with a 
main emphasis on its past and current challenges as 
well as solutions, to help in the improvement of this 
technology, giving a view of what already exists, 
what is being currently done in the field and what 
can be done in the future. 

Virtualization will continue to increase in 
security, performance and popularity in the nearby 
future. The future work in the area will surely fall 
under one of the previous mentioned topics: VM 
protection against failure (either by improving the 
already existing tools or by creating new ones); VM 
performance (mainly through the improvement of 
the existing virtualization techniques); cloud 
virtualization and data security (either by improving 
the existing tools or by implementing new ones). 
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