
Virtualization: Past and Present Challenges

Bruno Rodrigues1, Frederico Cerveira2, Raul Barbosa2 and Jorge Bernardino1,2

1Polytechnic Institute of Coimbra, Superior Institute of Engineering of Coimbra, Coimbra, Portugal
2CISUC, Department of Informatics Engineering, University of Coimbra, P-3030 290, Coimbra, Portugal

Keywords: Virtualization, Security, Dependability, Performance, Cloud Computing.

Abstract: Virtualization plays an important role in cloud computing by providing the capability of running multiple
operating systems and applications on top of the same underlying hardware. However, there are limitations
in current virtualization technologies, which are inherited by cloud computing. For example, performance,
security and dependability. While these challenges remain, the adoption of virtualization in the different
fields will be limited. This paper presents a survey in the past and open virtualization challenges, such as
nested virtualization, reliability and security.

1 INTRODUCTION

Virtualization plays an ever-widening role in today’s
society as can be seen from its applications, ranging
from critical embedded systems (Heiser, 2008) (such
as automotive (Wolf, n.d.) (Lee et al., 2016) and
aeronautical applications (Joe et al., 2012)) to big
private and public datacenters (e.g., cloud computing
(Xing and Zhan, 2012)).

Despite virtualization being extensively used,
there are still open challenges (Adams and Agesen,
2006) that present a barrier to adoption by customers
that require strict security and dependability
guarantees.

Ultimately, virtualization adds another layer of
software (i.e., the hypervisor and other smaller
components), which inevitably carries its own bugs
(Lacoste and Debar, n.d.). This layer is of utmost
importance as it is located right above the hardware,
meaning that it has direct and unchecked control over
the hardware and is a single point-of-failure (SPOF)
of the system.

Co-location of virtual machines over the same
hardware also exposes the clients of virtualization to
dependability and security threats. On the one hand,
transient and permanent hardware faults will now be
amplified and propagated across the clients of the
system. On the other hand, malicious clients can
launch rogue virtual machines to carry denial of
service (Yan et al., 2016), information disclosure or
privilege escalation attacks (Lombardi and Di Pietro,
2011) on co-located virtual machines (e.g., by

exploiting shared hardware resources, such as the
CPU cache).

Research in recent years has proposed approaches
to solve some of the previously mentioned problems,
particularly with regards to hardware fault-tolerance
(Cully et al., 2008), hypervisor rejuvenation (Bagdi et
al., 2017a), and security (Wang and Jiang, 2010).

In this paper, we survey the most important
challenges that virtualization has overcome in the past
and present the open challenges that are being
extensively researched, along with the solutions
available in literature. Throughout this paper,
abbreviations are used such as OS which stands for
operating system, VM which stands for virtual
machine, ISA which stands for instruction set
architecture and CPU which stands for central
processing unit.

The structure of this paper is as follows. Section 2
provides the main concepts about virtualization.
Section 3 presents the past challenges faced by
virtualization, i.e., the challenges already overcome
by virtualization, while in Section 4 we present the
open challenges to virtualization, i.e., the challenges
being currently faced by virtualization. Finally,
Section 5 presents the main conclusions and some
future work.

2 CONCEPTS OF
VIRTUALIZATION

Virtualization can be defined as a layer of indirection

Rodrigues, B., Cerveira, F., Barbosa, R. and Bernardino, J.
Virtualization: Past and Present Challenges.
DOI: 10.5220/0006910707550761
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 755-761
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

755

between abstract view and implementation of
resources (Aboulnaga, n.d.).

The advantages brought by virtualization can be
summarized as cost reductions in hardware and
power consumption, better hardware utilization
(Colsani et. al., 2008) (i.e., less idle time) and good
resource elasticity (i.e., request and pay for the
resources required if operating over a private or
public cloud) (Herbst et al., n.d.). In summary, it
allows a single computer to host several clients and
their jobs.

Figures 1 and 2 show the difference between a
virtualized and a non-virtualized system. Figure 1
shows hardware utilization of 10-20% without
virtualization, due to various services being spread
over multiple physical machines that are over-
provisioned and under-used. Whereas Figure 2
shows that virtualization can increase hardware
utilization (to around 70%) by consolidating those
services over a single physical machine.

Figure 1: Hardware usage without virtualization (Colsani
et. al., 2008).

Figure 2: Hardware usage with virtualization (Colsani et.
al., 2008).

Virtual machines can be divided into two main
categories, namely process virtual machines and
system virtual machines (Berghmans, 2010). On the
one hand, process virtual machines can only run a
single program at a time and for example, a process
of an operating system, is a process VM, because

one process can only run one program at a time. On
the other hand, system virtual machines provide a
complete system environment by virtualizing the
ISA layer (Berghmans, 2010). System virtual
machines allow a physical hardware system to be
shared among multiple, isolated guest operating
systems simultaneously (Berghmans, 2010). These
system virtual machines are mainly hypervisors such
as Xen, VirtualBox and VMWare.

Just like virtual machines, virtualization per se
can also be divided into different types, namely full
virtualization, paravirtualization and hybrid-
virtualization.

Full virtualization is the most common
virtualization mode and implies that guest operating
systems are not aware that they are being
virtualized; therefore, there is no direct
communication between the VMs and the hypervisor
(Rose, 2004). This mode has the benefit of allowing
unmodified operating systems to be virtualized
(Barham et al., 2003), so it works even with closed-
source OSs, such as Windows.

The second type of virtualization –
paravirtualization – requires the kernel of guest
operating systems to be modified in order to support
virtualization (Rose, 2004). This is usually done by
removing privileged instructions and replacing them
with hypercalls (Barham et al., 2003) that ask the
hypervisor directly for resources.

This virtualization mode has the benefit of
having better performance (Barham et al., 2003),
result of the direct communication path between
hypervisor and VM.

The last type of virtualization – hybrid
virtualization – combines the two aforementioned
types of virtualization and takes the best of them into
one single mode of virtualization. It employs para-
virtualization for I/O, interrupt controllers, and timer
to simplify the system and optimize performance.
(Nakajima and Mallick, 2007). For CPU
virtualization, it allows one to use the same code as
in the original kernel (Nakajima and Mallick, 2007).

3 PAST CHALLENGES

In this section, we present past challenges to
virtualization. While past obstacles once proved to
be serious limitations to widespread adoption and
merited efforts from researchers and industry to be
overcome, they are now a solved question, whereas
present obstacles are still a subject of active research
and pose a risk for the remaining users that have not
yet migrated to virtualization, such as, the owners of

ICSOFT 2018 - 13th International Conference on Software Technologies

756

highly-critical, dependable or secure systems.
One of the most central obstacles faced by

virtualization since its ascension to widespread
popularity, was the fact that the x86 processor
architecture was not fully virtualizable using the
common approaches at the time (Barham et al.,
2003) (e.g., trap-and-emulate). In its origin,
virtualization was used in the scope of massive
mainframes, and its application to commodity
hardware was not a main goal.

Trap-and-emulate technique requires the CPU
generates a trap whenever an attempt to execute a
privileged instruction in user mode is made. The
biggest problem is that x86 CPUs did not generate
those traps, so the hypervisor did not have a way to
know when the guest OS tried to execute a
privileged instruction. Instead, the execution of that
instruction simply failed silently, and the guest OS
was mistakenly led to think its privileged instruction
execution was successful thus reacting accordingly.

To solve this issue, researchers have come up
with a virtualization technique called binary
translation. This technique uses a new piece of
software to detect the privileged instructions and
replace at run-time that code with a less privileged
one but which tries to do the same thing (Adams and
Agesen, 2006).

With this new technique the x86 architecture
becomes fully virtualizable, because the hypervisor
is not dependent on the traps generated by the CPU
to know when the guest OS tries to execute a
privileged instruction. Instead, the hypervisor will
spy the execution flow of the guest OS. In fact,
VMWare ESXi (a well-known bare-metal/type 1
hypervisor from VMWare) uses binary translation

(“Virtualization system including a virtual
machine monitor for a computer with a segmented
architecture,” 1998).

To summarize, researchers have used several
techniques, such as binary translation, paravirtuali-
zation and more recently, hardware-assisted
virtualization, to make both x86 and x86_64
architectures fully virtualizable.

4 OPEN VIRTUALIZATION
CHALLENGES

In this section we explore the open challenges faced
by virtualization, that represent the most active
research areas under the main topic of virtualization.
We group the challenges in the following topics:
nested virtualization, reliability and security.

4.1 Nested Virtualization

Nested virtualization refers to the ability of running
a virtual machine within another, having this general
concept extendable to an arbitrary depth (Tan et al.,
2012) (“Virtualization,” 2018).

In other words, nested virtualization refers to
running one or more hypervisors inside another
hypervisor (“Virtualization,” 2018).

It poses an open challenge because most
hypervisors still do not support this feature, and
those who do often have performance and stability
problems. Nested virtualization has a broad range of
applications, from testing, to security (Greamo and
Ghosh, 2011) and fault tolerance (Cully et al., 2008)
(Tan et al., 2012).

In the case of fault tolerance, it is used by several
tools, like TinyChecker (Tan et al., 2012) and
HyperFresh, (Bagdi et al., 2017b) that protect
against both software (e.g., hypervisor) and
hardware failure.

In security, nested virtualization can be used by
antivirus software (Greamo and Ghosh, 2011) to
execute malicious software in a sandbox that is
isolated from the original system. We can have our
antivirus running in a virtualized environment and it
can use another level of virtualization (nested
virtualization) to test whether a software is malicious
or not. Figure 3 shows a classical setup which is
using nested virtualization. Right above the
hardware we have our first hypervisor (which is
known as a Layer 0 hypervisor), then above this
hypervisor we have VMs (which are called Layer 1
VMs) and inside those VMs we have another
hypervisor (which does not need to be the same as
the first one and which is called Layer 1 hypervisor)
and finally above the second hypervisor we have our
nested VMs (which are called Layer 2 VMs).

Figure 3: Nested virtualization setup (Berghmans, 2010).

Virtualization: Past and Present Challenges

757

However, nested virtualization has drawbacks in
terms of performance, which arise due to the
multiple layers of virtualization and the increase in
vmentry (flow of execution goes from the hypervisor
to the VM) and vmexit (flow of execution goes from
the VM to the hypervisor) events (Michael et al.,
2013). If nested virtualization is implemented
poorly, we can have a huge decrease in performance
compared to only one degree of virtualization,
because of the huge number of vmentry and vmexit
(Michael et al., 2013). Modern techniques that
promise to increase this aspect, try to decrease the
number of vmentry and vmexit (Michael et al.,
2013). Figure 4 shows the execution flow of a nested
virtualization setup and it shows the vmentry and
vmexit in a nested virtualization environment.

Figure 4: Flow of execution in a nested virtualization
setup (“Unsafe Nested Virtualization on Intel CPU”,
2018).

4.2 Reliability

An obstacle to reliability that is inherent to
virtualization is related with the fact that multiple
clients become consolidated over the same physical
hardware and virtualization software (e.g.,
hypervisor). This means that, not only the physical
hardware itself but also the virtualization software,
becomes a single point-of-failure (SPOF). When one
of these components fails (e.g., due to a transient
hardware fault affecting the CPU, or a software bug
in the hypervisor that is activated) there is the
possibility that multiple (or even all) of the clients
are affected, thereby amplifying the impact of fault.

To reduce a part of the problem (i.e., the fact that
the hypervisor becomes a SPOF), systems
administrators can use tools like TinyChecker (Tan
et al., 2012) or HyperFresh (Bagdi et al., 2017b),
which have been specifically designed to solve this
issue. It follows the principle that, as the upper
hypervisor is a complex piece of software it is more
likely to have software bugs, TinyChecker adds
another layer below the original hypervisor, which
monitors the state of the hypervisor and takes

corrective measures when required. Since
TinyChecker is significantly smaller (with respect to
lines of code) than any other hypervisor, it is
expected to have fewer software bugs and therefore
becomes a smaller SPOF.

TinyChecker interposes the control and data
exchange between the hypervisor and the guest
VMs, so that it can transparently detect hypervisor’s
failure and recover the system without losing the on-
going work in per-exit level (Tan et al., 2012) (per-
exit level means a VM does not lose its data when
TinyChecker reboots the buggy hypervisor, because
the state of the VM is held in the memory of
TinyChecker). When a failure is detected,
TinyChecker will reboot the hypervisor while
preserving the state of the VMs in memory (Tan et
al., 2012). This can be achieved by the three parts of
TinyChecker: access recorder, memory protector and
failure detector.

The access recorder responds for recording the
entire communication context between VMs and
hypervisor (Tan et al., 2012). The duty of the
memory protector is to guarantee the integrity of the
critical data (Tan et al., 2012). During the
TinyChecker initialization stage, the critical area in
memory will be set to readable but non-writable to
the hypervisor (Tan et al., 2012). The critical areas in
hypervisor are the metadata for managing VMs, such
as p2m table or running domain list. VM’s memory
is another critical area which has also been protected
by TinyChecker after its allocation(Tan et al., 2012).
In short, the memory protector has protected the
critical memory from hypervisor’s arbitrary
modification (Tan et al., 2012).

The failure detector is the core part of
TinyChecker which is going to detect and confirm
the hypervisor failure’s occurrence (Tan et al., 2012).
This module works with information from both the
access recorder and the memory protector. Figure 5
shows in a graphical way, the working mode of
TinyChecker described above.

Figure 5: TinyChecker setup (Tan et al., 2012).

To solve the second and last part of the problem
(i.e., the fact that the hardware infrastructure

ICSOFT 2018 - 13th International Conference on Software Technologies

758

becomes a SPOF), systems administrators can use
tools like Remus (Cully et al., 2008).

Remus was created primarily with the intention
of providing generic fault tolerance against hardware
faults to non-virtualized workloads. Soon its
performance caught the attention from users of
virtualization, which integrated Remus into their
existing systems. Remus takes advantage of
virtualization to encapsulate the workload into a VM
and easily migrate it across different physical hosts.

It provides an extremely high degree of fault
tolerance, to the point that a running system can
transparently continue execution on an alternate
physical host in the face of failure with only seconds
of downtime, while completely preserving guest
state such as active network connections (Cully et
al., 2008).

Remus’ approach encapsulates protected
software in a virtual machine, asynchronously
propagates changed state to a backup host and uses
speculative execution to concurrently run the active
VM slightly ahead of the replicated system state
(Cully et al., 2008). Remus provides OS- and
application-agnostic high availability on commodity
hardware (Cully et al., 2008), thus being a very
cheap solution to deploy hardware high availability.
Remus’ three main goals are: generality,
transparency and last but not the least, seamless
failure recovery (Cully et al., 2008).

The first one aims at giving high availability
regardless of the application being protected or the
hardware on which it runs (Cully et al., 2008). The
second goal aims at giving high availability without
having to either modify the application or the OS
source code (Cully et al., 2008), because it might not
even be available for modification. The last one
states that no externally visible state should ever be
lost in the case of single-host failure (Cully et al.,
2008). Figure 6 explains, in a graphical manner, the
working mode of Remus described above.

The conjunction of the aforementioned tools
enables an improvement in reliability by taking
advantage of virtualization in varied manners.
Nevertheless, the reliability of virtualized systems is
not a closed topic and new approaches are being
investigated that aim to provide better protection at a
lower performance cost.

4.3 Security

With the consolidation of multiple clients in the
same hardware, the possibility for side-channel
attacks between virtual machines is not negligible
(Bazm et al., 2017).

In fact, several papers have already demonstrated
attacks that successfully extract sensitive
information (e.g., cryptographic keys) through
timing attacks (Ristenpart et al., 2009), or that cause
performance degradation through resource
exhaustion (Zhang et al., 2017). Adopted solutions
to these problems can be applied at various levels,
ranging from hardware to the application (Bazm et
al., 2017), however the hypervisor-level is perhaps
the most adequate, as it can provide mitigation that
covers all the clients but does not need their
interaction (i.e., the client does not need to change
his application to protect against these attacks).
Examples of solutions that have been applied to
hypervisors are locking cache lines (Costan and
Devadas, 2016) or page coloring (Wang and Lee,
2008) (Shi et al., 2011) (Jin et al., 2009).

Another security problem which is characteristic
to cloud computing, is the possibility for a rogue
cloud provider to eavesdrop or manipulate a client’s
virtual machine without his knowledge (Claycomb
and Nicoll, 2012). To enable computation with some
integrity and confidentiality guarantees, even in
presence of an untrusted hypervisor, secure enclaves,
powered by hardware extensions (Intel SGX (Costan
and Devadas, 2016) and AMD SEV (AMDSEV,

Figure 6: Remus high-level architecture (Cully et al., 2008).

Virtualization: Past and Present Challenges

759

2018)), have been proposed and are an active area of
research by the industry.

These enclaves shift the trust from the cloud
operator to the hardware manufacturer and use
cryptographic algorithms to attest to the user that the
code and data that he provided is being executed in a
secure enclave that cannot be probed by external
agents without being noticed. As disadvantages they
usually bring significant performance overheads and
are nonetheless susceptible to some attacks
(Weichbrodt et al., 2016).

5 CONCLUSIONS AND FUTURE
WORK

Virtualization is at an advanced stage now, however
there is still much to do in order to make this
technology safer, faster, easier and better.

In this paper, we surveyed virtualization, with a
main emphasis on its past and current challenges as
well as solutions, to help in the improvement of this
technology, giving a view of what already exists,
what is being currently done in the field and what
can be done in the future.

Virtualization will continue to increase in
security, performance and popularity in the nearby
future. The future work in the area will surely fall
under one of the previous mentioned topics: VM
protection against failure (either by improving the
already existing tools or by creating new ones); VM
performance (mainly through the improvement of
the existing virtualization techniques); cloud
virtualization and data security (either by improving
the existing tools or by implementing new ones).

REFERENCES

Aboulnaga, A., n.d. Virtualization and Databases: State of
the Art and Research Challenges 45.

Adams, K., Agesen, O., 2006. A comparison of software
and hardware techniques for x86 virtualization. ACM
SIGARCH Comput. Archit. News 34, 2–13.

AMDSEV - https://github.com/AMDESE/AMDSEV
(accessed 26/04/2018)

Bagdi, H., Kugve, R., Gopalan, K., 2017a. HyperFresh:
Live Refresh of Hypervisors Using Nested
Virtualization, in: Proceedings of the 8th Asia-Pacific
Workshop on Systems. ACM, p. 18.

Bagdi, H., Kugve, R., Gopalan, K., 2017b. HyperFresh:
Live Refresh of Hypervisors Using Nested
Virtualization, in: Proceedings of the 8th Asia-Pacific
Workshop on Systems. ACM, p. 18.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.,

 Ho, A., Neugebauer, R., Pratt, I., Warfield, A., 2003.
Xen and the art of virtualization, in: ACM SIGOPS
Operating Systems Review. ACM, pp. 164–177.

Bazm, M.-M., Lacoste, M., Südholt, M., Menaud, J.-M.,
2017. Side Channels in the Cloud: Isolation
Challenges, Attacks, and Countermeasures.

Berghmans, O., 2010. Nesting virtual machines in
virtualization test frameworks (PhD Thesis). Master’s
thesis, University of Antwerp.

Claycomb, W.R., Nicoll, A., 2012. Insider threats to cloud
computing: Directions for new research challenges, in:
Computer Software and Applications Conference
(COMPSAC), 2012 IEEE 36th Annual. IEEE, pp.
387–394.

Colsani, G., Giusti, G., Pássera, P., Protti, D., (2008)
‘Virtualization Technology Introduction’.

Costan, V., Devadas, S., 2016. Intel SGX Explained.
IACR Cryptol. EPrint Arch. 2016, 86.

Cully, B., Lefebvre, G., Meyer, D., Feeley, M.,
Hutchinson, N., Warfield, A., 2008. Remus: High
availability via asynchronous virtual machine
replication, in: Proceedings of the 5th USENIX
Symposium on Networked Systems Design and
Implementation. San Francisco, pp. 161–174.

Greamo, C., Ghosh, A., 2011. Sandboxing and
Virtualization: Modern Tools for Combating Malware.
IEEE Secur. Priv. 9, 79–82. https://doi.org/10.1109/
MSP.2011.36

Heiser, G., 2008. The role of virtualization in embedded
systems, in: Proceedings of the 1st Workshop on
Isolation and Integration in Embedded Systems. ACM,
pp. 11–16.

Herbst, N.R., Kounev, S., Reussner, R., n.d. Elasticity in
Cloud Computing: What It Is, and What It Is Not 6.

Jin, X., Chen, H., Wang, X., Wang, Z., Wen, X., Luo, Y.,
Li, X., 2009. A simple cache partitioning approach in
a virtualized environment, in: Parallel and Distributed
Processing with Applications, 2009 IEEE
International Symposium On. IEEE, pp. 519–524.

Joe, H., Jeong, H., Yoon, Y., Kim, H., Han, S., Jin, H.W.,
2012. Full virtualizing micro hypervisor for spacecraft
flight computer, in: 2012 IEEE/AIAA 31st Digital
Avionics Systems Conference (DASC). Presented at
the 2012 IEEE/AIAA 31st Digital Avionics Systems
Conference (DASC), pp. 6C5-1-6C5-9. https://doi.org/
10.1109/DASC.2012.6382393

Lacoste, A.W.M., Debar, H., n.d. KungFuVisor: Enabling
Hypervisor Self-Defense.

Lee, C., Kim, S.-W., Yoo, C., 2016. VADI: GPU
virtualization for an automotive platform. IEEE Trans.
Ind. Inform. 12, 277–290.

Lombardi, F., Di Pietro, R., 2011. Secure virtualization for
cloud computing. J. Netw. Comput. Appl., Advanced
Topics in Cloud Computing 34, 1113–1122.
https://doi.org/10.1016/j.jnca.2010.06.008

Michael, D. D. I., Harper, R. A., Liguori, A. N., 2013.
Nested virtualization performance in a computer
system.

Nakajima, J., Mallick, A.K., 2007. Hybrid-virtualization—
enhanced virtualization for Linux, in: Proceedings of

ICSOFT 2018 - 13th International Conference on Software Technologies

760

 the Linux Symposium. Citeseer, pp. 87–96.
Ristenpart, T., Tromer, E., Shacham, H., Savage, S., 2009.

Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds, in: Proceedings
of the 16th ACM Conference on Computer and
Communications Security. ACM, pp. 199–212.

Rose, R., 2004. Survey of system virtualization
techniques.

Shi, J., Song, X., Chen, H., Zang, B., 2011. Limiting
cache-based side-channel in multi-tenant cloud using
dynamic page coloring, in: Dependable Systems and
Networks Workshops (DSN-W), 2011 IEEE/IFIP 41st
International Conference On. IEEE, pp. 194–199.

Tan, C., Xia, Y., Chen, H., Zang, B., 2012. Tinychecker:
Transparent protection of vms against hypervisor
failures with nested virtualization, in: Dependable
Systems and Networks Workshops (DSN-W), 2012
IEEE/IFIP 42nd International Conference On. IEEE,
pp. 1–6.

Virtualization system including a virtual machine monitor
for a computer with a segmented architecture, 1998.

Virtualization- https://en.wikipedia.org/wiki/Virtualization
(accessed 16/04/18).

Wang, Z., Jiang, X., 2010. HyperSafe: A Lightweight
Approach to Provide Lifetime Hypervisor Control-
Flow Integrity, in: 2010 IEEE Symposium on Security
and Privacy. Presented at the 2010 IEEE Symposium
on Security and Privacy, pp. 380–395.
https://doi.org/10.1109/SP.2010.30

Wang, Z., Lee, R. B., 2008. A novel cache architecture
with enhanced performance and security, in:
Proceedings of the 41st Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE
Computer Society, pp. 83–93.

Weichbrodt, N., Kurmus, A., Pietzuch, P., Kapitza, R.,
2016. AsyncShock: Exploiting synchronisation bugs
in Intel SGX enclaves, in: European Symposium on
Research in Computer Security. Springer, pp. 440–
457.

Wolf, M., n.d. Virtualization Technologies for Cars 10.
Xing, Y., Zhan, Y., 2012. Virtualization and cloud

computing, in: Future Wireless Networks and
Information Systems. Springer, pp. 305–312.

Yan, Q., Yu, F. R., Gong, Q., Li, J., 2016. Software-
defined networking (SDN) and distributed denial of
service (DDoS) attacks in cloud computing
environments: A survey, some research issues, and
challenges. IEEE Commun. Surv. Tutor. 18, 602–622.

Unsafe Nested Virtualization on Intel CPU -
https://www.slideshare.net/DeepTokikane/unsafeneste
d-virtualization-on-intel-cpu-83409391 (accessed
25/04/2018).

Zhang, T., Zhang, Y., Lee, R. B., 2017. DoS Attacks on
Your Memory in Cloud, in: Proceedings of the 2017
ACM on Asia Conference on Computer and
Communications Security. ACM, pp. 253–265.

Virtualization: Past and Present Challenges

761

