
Towards Efficient Software Protection Obeying Kerckhoffs’s Principle
using Tamper-proof Hardware

Brandon Broadnax1, Matthias Huber2, Bernhard Löwe3,
Jörn Müller-Quade1 and Patrik Scheidecker2

1Karlsruhe Institute of Technology, Karlsruhe, Germany
2FZI Research Center for Information Technology, Karlsruhe, Germany

3Rohde & Schwarz GmbH & Co. KG, Cologne, Germany

Keywords: Software Protection, Kerckhoffs’s Principle, Tamper-Proof Hardware.

Abstract: We propose the first software protection scheme obeying Kerckhoffs’s principle that is suited for practical
implementation. Previous schemes have either been closed source or too inefficient to be considered practically
viable. A key technique of our scheme is to partition the software in such a way that a hacker who knows a set
of parts cannot learn additional ones. To achieve a partition with this property, our scheme exploits the domain
knowledge that is necessary to create the software as well as the inherent complexity of the software’s code. If
a software is sufficiently complex to admit such a partition then we can prove that there are no successful attack
strategies on our scheme other than storing every line of code that has been executed.

1 INTRODUCTION

Software has become an increasingly important com-
mercial factor. Industrial machinery, cars or smart
devices contain more and more software innovations.
As a consequence, software protection has become an
important field of IT security. The goal of software
protection is to make it as hard as possible for a hacker
to construct an unauthorized copy of a software.

Conventional software protection methods such as
requiring serial numbers or software activation codes
are not sufficient to prevent piracy. Modern software
protection schemes use cryptographic methods such as
encryption schemes or digital signatures. The secret
keys are stored in a tamper-proof hardware, a so-called
dongle, which is distributed with the software. The
software therefore only runs properly if the dongle is
attached to the electronic device in use. A hacker who
wants to illegally resell the software has to create a
copy that runs without a dongle. Since a hacker may
also have access to one or several dongle(s), one cannot
prevent him from running the program and storing the
parts of the program code that were executed (memory
dump).

Unfortunately, all protection schemes that are used
in practice rely on keeping their mechanisms secret.
Thus, it is relatively easy for hackers who know these
mechanisms sufficiently well to break such protection

schemes. These schemes thus violate Kerckhoffs’s
principle which requires that a scheme should be se-
cure even if everything about it is public knowledge,
except for cryptographic keys.

Kerckhoffs’s principle, put forward by Auguste
Kerckhoffs in 1883, offers many advantages. For in-
stance, since cryptographic keys can be chosen inde-
pendently for each program, compromized keys have
no impact on another protected program and new keys
can be chosen without having to modify the scheme.
Moreover, since the mechanisms of the protection
scheme do not have to be kept secret, they are open to
public scrutiny.

In theory, there are methods that can be used to
provably guarantee software protection in accordance
with Kerckhoffs’s principle , e.g. (Goldreich and Os-
trovsky, 1996; Lin, 2016). These methods, however,
have been useless in practice so far due to the high
computational overhead of the cryptographic primi-
tives used in these methods.

We propose the first software protection scheme
that obeys Kerckhoffs’s principle and is also suited for
practical implementation. At the core of this scheme
lies a simple assumption: a hacker, although perhaps
skilled at attacking cryptographic mechanisms, is lack-
ing the domain knowledge that is necessary to create
the software product he seeks to copy illegally. For
instance, a hacker may not be familiar with the un-

Broadnax, B., Huber, M., Löwe, B., Müller-Quade, J. and Scheidecker, P.
Towards Efficient Software Protection Obeying Kerckhoffs’s Principle using Tamper-proof Hardware.
DOI: 10.5220/0006906105530558
In Proceedings of the 15th International Joint Conference on e-Business and Telecommunications (ICETE 2018) - Volume 2: SECRYPT, pages 553-558
ISBN: 978-989-758-319-3
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

553



derlying mathematics of a scientific program such as
a computer algebra system. This assumption is sup-
ported by the fact that if a hacker knew the relevant
domain knowledge then he could write the software
himself without having to attack the protection at all.
Hence, this is a necessary assumption for every soft-
ware protection scheme.

This lack of domain knowledge can be exploited
to obtain a secure protection. The main idea is to
partition the program code of a software in such a way
that, given an arbitrary set of parts, it is hard to come
up with the remaining parts if one lacks the domain
knowledge that is necessary to create the software. Of
course, not all programs admit a partition with such a
security property. A program needs to have “sufficient
complexity” for such a partition to be possible.

Identifying which code structures are suitable for
such a partitioning is part of our current research. We
give a brief overview of our current state of research
in section 5.

2 RELATED WORK

An effective software protection scheme has to reach
at least two goals. The first one is obvious: to prevent
an adversary from creating a copy of the program that
runs without a valid license. Since an adversary can
always create an exact copy of the software, the execu-
tion of the software has to be tied to a physical device.
The second goal is closely related to the first one. The
adversary must not learn how the program works. If he
knows the “inner workings” of the protected program
then he can write a functionally equivalent program by
himself. For this reason, software protection and code
obfuscation are often mentioned in the same breath.

Code obfuscation is the process of modifying ma-
chine code in such a way that it becomes unintelligible,
while leaving the functionality of the original program
code unaltered. Various types of code obfuscation
can be found in the literature. Black-Box Obfuscation
(Barak et al., 2001) guarantees that every information
that can be derived from the obfuscated program can
also be learned given black-box access to the original
program. However, it has been shown (Barak et al.,
2001) that black-box obfuscation for arbitrary pro-
grams is impossible (without hardware assumptions).
Only a few applications of black-box obfuscation are
known, e.g. point-functions (Wee, 2005).

Another type of obfuscation is indistinguishability
obfuscation. Indistinguishability obfuscation guaran-
tees that the obfuscated code of two programs having
the same functionality are indistinguishable. Some
candidate indistingushiability obfuscators for arbitrary

programs have been constructed, e.g. (Garg et al.,
2016; Lin, 2016; Lin and Tessaro, 2017). Unfortu-
nately, these constructions are impractical since they
use cryptographic methods (e.g. fully-homomorphic
encryption schemes) that are so far too inefficient for
practical purposes.

Apart from merely modifiying the program code,
other obfuscation techniques using tamper-proof hard-
ware tokens have been explored. Since these hardware
tokens can be implemented by dongles, they are also
of interest for software protection. Hardware tokens
(Katz, 2007) allow black-box obfuscation for all prac-
tically relevant functionalities. However, these con-
structions are not suited for practical implementation
because they treat programs as circuits.

Another technique that has been explored in the
context of software protection is oblivious RAM (Gol-
dreich and Ostrovsky, 1996; Pinkas and Reinman,
2010). Oblivious RAM is a method for hiding the
memory access pattern. Oblivious RAM can be com-
bined with a physically shielded CPU to construct
software protection schemes. Since we assume that
the adversary has full control over the CPU, these
constructions are not applicable in our setting. The
SGX-technology of intel may change this in the future.

Moreover, white-box cryptography provides an-
other type of obfuscation (Joye, 2008). The goal
of white-box cryptography is not to hide what the
program code does but rather to hide the key of the
cryptographic operations (encryption, decryption, etc.)
within the program code. However, known white-box
cryptography solutions, e.g. (Karroumi, 2010), do not
prevent unauthorized copying of the software but only
protect the contents the software operates with.

3 OUR CONSTRUCTION

Our scheme uses an external tamper-proof hardware
(dongle). This device is able to store small amounts
of data, execute some code and decrypt ciphers. In
the following, we will explain the mechanisms of our
scheme in detail.

3.1 Encryption

We use a secret key encryption scheme as a basic
building block in our construction. For performance
reasons, each plaintext m is encrypted with a key k
which in turn is encrypted with the secret key sk of the
dongle. Decryption is carried out by having the dongle
decrypt the key k which can then be used to decrypt
the ciphertext generated with k on the (fast) CPU of
the computer.

SECRYPT 2018 - International Conference on Security and Cryptography

554



3.2 Partitioning a Program

Encrypting the program as a whole with one key would
reveal it entirely after decryption. We therefore parti-
tion the program into several program blocks before
encryption. Each program block is encrypted with a
different key. These keys are encrypted together with
the variant ID using the secret key stored in the dongle
(see figure 1). Program blocks can therefore only be
decrypted with the help of the dongle. Note that a
program block is only decrypted when needed. Since
every code block is encrypted we add an initial boot-
strapping block that sends the first encrypted key to
the dongle.

3.3 Duplication and Modification of
Program Blocks

Given a program block, its input range is partitioned
into several segments. For each segment a copy of the
program block is created. Each copy is modified such
that it still yields correct results within the segment
of the input range it was created for, but yields false
results for any input value outside this segment. We
call this copy a variant of the program block. Further-
more, we introduce wrapper functions that determine
the index of the next variant based on the current input.
Each wrapper function is encrypted with the key of the
dongle (see figure 2).

The creation of variants is an important part of our
protection scheme. In order to achieve a meaningful
notion of security, the set of variants must fulfill the
following requirement:

Variant Security Assumption (VSA). Given a sub-
set of variants {Pi, j}, it is hard for an adversary
to come up with additional variants.

A program has to be sufficiently complex to allow
for creating variants that meet this requirement. In
Section 5, we will sketch some techniques that are
useful for creating variants that fulfill the VSA.

3.4 Traps

Traps are a special class of variants that are added to
the program code (see figure 2). Traps do not belong
to the original program and are never called during
regular executions of the program. If an adversary tries
to decrypt a trap, the dongle locks itself, invalidating
the license. Traps prevent the adversary from simply
decrypting one variant after the other using the dongle.

3.5 Evaluation of the Wrapper
Functions on the Dongle

Code moving is the method of moving the execution
of program code into the dongle. In theory, this tech-
nique provides a nearly perfect solution for software
protection. However, it is inefficient in many cases
because the dongle is a constrained hardware. Due
to these performance issues, code moving cannot be
used extensively. We use code moving only for the
determination of the next program block, i.e., for the
wrapper functions. This prevents an adversary from
learning which code block is a trap by analyzing the
wrapper functions.

3.6 Using the Dongle’s State Memory

Since the dongle knows which variant will be executed
next (because it calculated the index of the next variant,
see Section 3.5), it expects that variant to be decrypted
next. Every other variant that is sent to the dongle
in the next decryption query will force the dongle to
lock itself. We can realize this technique with only a
small amount of memory in the dongle. Note that this
technique also prevents illegal parallel executions of
the protected program (e.g. via a cloud server).

3.7 Applying a Message Authentication
Code

In order to prevent an adversary from manipulating
the encrypted keys, variant IDs or wrapper functions,
we apply a message authentication code (MAC) to the
respective ciphertexts. The key of the MAC is stored
in the dongle.

4 SECURITY

In this section, we give a brief informal security analy-
sis of our scheme.

In the field of software protection, one generally
distinguishes the following two types of adversaries:

Static Adversaries
Static adversaries pursue a strategy that is indepen-
dent of the program code, using the dongle as a
decryption oracle.

Dynamic Adversaries
Dynamic adversaries can run the program and ana-
lyze the structure of the program code (using, e.g.,
a debugger).

Towards Efficient Software Protection Obeying Kerckhoffs’s Principle using Tamper-proof Hardware

555



P P1 P2 P3 . . . Pn

encsk(k1, 1) enck1(P1) . . . encsk(kn, n) enckn(Pn)

Figure 1: A program P is partitioned into n program blocks. Each block is encrypted separately.

wpi

Pi,l. . .tPi,2tPi,1

Figure 2: Traps are added. Wrapper functions determine the next variant.

We can prove that our scheme is secure against the
above-mentioned adversary types given the following
assumptions:

- Secure Encryption: The encryption scheme is IND-
CPA-secure1

- Secure MAC: The message authentication code is
EUF-CMA-secure.1

- VSA: The variant security assumption holds for the
given program.

- Tamper-Proof Hardware: The key stored in the
dongle is hard to extract.

In order to prove security, we have defined a mathe-
matical model tailored to our setting. In the following,
we briefly sketch our model as well as some of the
arguments in the security proof.

Let us first consider static adversaries. First note
that an (arbitrary, even non-static) adversary cannot
send arbitrary code to the decryption oracle (dongle)
since this would require forging the EUF-CMA-secure
MAC because the dongle checks if the MAC tag of
a received message is valid. Therefore, an adversary
can only send encrypted variants to the oracle (more
specifically, the ciphertexts containing the keys and
variant IDs, see section 3.2). However, since the en-
crypted program code contains traps, a static adversary
will fail with high probability (depending on the num-
ber of traps) at retrieving all variants by using the
decryption oracle. Assuming the encryption scheme
is IND-CPA-secure, a static adversary who has invali-
dated the decryption oracle by decrypting a trap cannot
learn additional variants by attacking the encryption
scheme.

Now let us discuss dynamic adversaries. Consider
the attack strategy that simply runs the program and
stores all the variants that have been decrypted during
the program execution (memory dump). This type of
attack is called a Copy-and-Paste attack. This attack
cannot be prevented by our scheme. However, if the
protected program is sufficiently large, then this attack

1See (Katz and Lindell, 2014) for a definition of IND-
CPA security and EUF-CMA security.

is impractical since an adversary would have to run the
program on an impractically large set of input values
in order to retrieve the entire program.

Still, the fact that there exists an attack that is unpre-
ventable makes defining security difficult, as a straight-
forward statement such as “no (dynamic) adversary
can break the scheme” cannot be achieved. However,
one can hope that there is no attack strategy that is
“better” than the Copy-and-Paste strategy.

We have therefore formalized security using the
“Real/Ideal-Paradigm” (Canetti, 2000). The “real
model” captures all possible actions of dynamic adver-
saries given the encrypted program code and a dongle.
The “ideal model”, on the other hand, only allows
Copy-and-Paste attacks. We can show that, given a
program for which the VSA holds (and assuming the
other three afore-mentioned assumptions hold as well),
every adversary in the real model can be mapped to an
equally effective adversary in the ideal model. More
specifically, we can prove that for every real model
adversary there exists an ideal model adversary that re-
trieves the same number of variants, while making the
same number of dongle calls. The latter (same number
of dongle calls) is important because an ideal model
adversary that needs to make significantly more don-
gle calls than a given real model adversary is certainly
not comparable to that real model adversary. Since
ideal model adversaries are impractical for sufficiently
large programs, this provides a meaningful security
definition.

5 TOWARDS REALIZATION

As we have already mentioned, not every software can
be protected effectively with our scheme. A software
can be protected with our scheme only if it admits a
partition into variants for which the VSA holds. Note
that this property may only hold for some sufficiently
complex parts of the program. Typically, such a com-
plex part is exactly the critical part of the software
that is needs to be protected. Moreover, the number of
variants should be large enough so that the entire code

SECRYPT 2018 - International Conference on Security and Cryptography

556



cannot be traversed with a small set of input values.
We are currently exploring which code structures

are suitable for protection. In particular, we are in-
vestigating how variants can be created in such a way
that they fulfill the VSA and if such a variant creation
process can be automatized. In this section, we briefly
sketch some of our current research. We list some tech-
niques that are useful for designing variants in such
a way that the VSA holds and mention some of our
findings on the efficiency of our scheme.

Techniques. In the following, we describe some
techniques that are useful for creating variants that
fulfill the VSA.

• Local optimization: Optimize the code for a partic-
ular input range, e.g., by deleting operations that
are not necessary on a specific interval. For in-
stance, one can delete additions with functions that
are close to zero on a given interval.

• Adding redundant operations: Add redundant op-
erations on a specific interval, e.g., multiplications
with functions that are close to one on a given
interval.

• Approximation: Create variants using approxima-
tion techniques (such as taylor approximation).
Each approximation (variant) only gives local in-
formation about the original function block. If
the original function is complex enough then an
adversary cannot use this local information to de-
duce the entire function since the global behavior
of this function may strongly differ from the local
approximations. Note that it suffices if the original
function is only complex on a particular critical
part of its domain.

• Exploiting branches: Exploit the branched struc-
ture (e.g. if-then-else or switch statements) of the
program code. If each branch contains code that is
not easily implied by other branches, then one can
define a variant for each branch.

• Code Moving: As mentioned earlier, the wrapper
functions of each function block is moved into the
dongle in order to hide the input ranges of vari-
ants. This technique makes it much harder for an
adversary to find new variants. This is because, in
general, knowledge of the input ranges of variants
considerably facilitates finding new variants. In
particular, without knowing the ranges an adver-
sary cannot find out if he has retrieved all variants.

Implementation and Hackers Contest. In order to
assess the practicality of our scheme, we have carried
out various performance experiments together with an

industrial partner specializing in the field of software
protection. As it turned out, the dominating overhead
is the latency of the communication between the com-
puter on which the program is executed and the don-
gle. Variant decryption only plays a minor role. Our
protection scheme does not use significantly more don-
gle calls than the (commercially available) protection
schemes of our industry partner. This indicates that
our scheme is practically viable. However, we still
need to thoroughly benchmark our scheme in order to
assess its exact efficiency.

We have carried out a global hacker contest with
over 300 participants. Each participant received a
small video game created by our industry partner and
protected by our scheme. Every participant was given
a dongle with a valid license that enabled running
the protected program. No submitted solution con-
tained functional program code. We believe that video
games are among the classes of programs that can be
effectively protected by our scheme due to their high
complexity. This is because most modern games have
a high number of “special cases” that are triggered by
the behavior of the user. These special cases can be,
e.g., a mission, a part of the balancing system, or an
easter egg. In general, every complex code structure
seems to be exploitable for variant creation.

6 OUTLOOK

The techniques for secure variant creation mentioned
above are already applicable assuming the developer
aids the variant creation process with his domain
knowledge. Since the variant creation process should
be as cheap and fast as possible, we are currently ex-
ploring ways to automatize secure variant creation.

REFERENCES

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai,
A., Vadhan, S., and Yang, K. (2001). On the (im)
possibility of obfuscating programs. In Advances in
cryptology – CRYPTO 2001, volume 2139, pages 1–18.
Springer.

Canetti, R. (2000). Security and composition of multiparty
cryptographic protocols. Journal of CRYPTOLOGY,
13(1):143–202.

Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A.,
and Zhandry, M. (2016). Secure obfuscation in a weak
multilinear map model. In Theory of Cryptography
Conference, pages 241–268. Springer.

Goldreich, O. and Ostrovsky, R. (1996). Software protection
and simulation on oblivious rams. Journal of the ACM
(JACM), 43(3):431–473.

Towards Efficient Software Protection Obeying Kerckhoffs’s Principle using Tamper-proof Hardware

557



Joye, M. (2008). On white-box cryptography. In Proceed-
ings of the 1st International Conference Security of
Information and Networks, page 7.

Karroumi, M. (2010). Protecting white-box AES with dual
ciphers. In Information Security and Cryptology -
ICISC 2010 - 13th International Conference, Seoul,
Korea, December 1-3, 2010, Revised Selected Papers,
pages 278–291.

Katz, J. (2007). Universally composable multi-party com-
putation using tamper-proof hardware. In Advances
in Cryptology - EUROCRYPT 2007, pages 115–128.
Springer.

Katz, J. and Lindell, Y. (2014). Introduction to modern
cryptography. CRC press.

Lin, H. (2016). Indistinguishability obfuscation from
constant-degree graded encoding schemes. In Ad-
vances in Cryptology - EUROCRYPT 2016, pages 28–
57. Springer.

Lin, H. and Tessaro, S. (2017). Indistinguishability obfus-
cation from trilinear maps and block-wise local prgs.
In Advances in Cryptology - CRYPTO 2017, pages
630–660. Springer.

Pinkas, B. and Reinman, T. (2010). Oblivious ram revisited.
In Advances in Cryptology–CRYPTO 2010, pages 502–
519. Springer.

Wee, H. (2005). On obfuscating point functions. In Proceed-
ings of the thirty-seventh annual ACM symposium on
Theory of computing, pages 523–532. ACM.

SECRYPT 2018 - International Conference on Security and Cryptography

558


