
Implicit Data Integrity: Protecting User Data without MACs

Michael Kounavis, David Durham, Sergej Deutsch and Saeedeh Komijani
Intel Labs, Intel Corporation, 2111, NE 25th Avenue, Hillsboro, OR 97124, U.S.A.

Keywords: Data Integrity, Implicit Integrity, Pattern Detectors, Entropy, Entropy Index, Symmetric Encryption.

Abstract: We address the problem of detecting data corruption, without producing, storing or verifying mathematical
summaries of the content, as it is typically done today. Data corruption may be either due to natural means or
due to the malicious modification of content by some attacker or malware. Today, data corruption detection
is supported by producing and using security metadata such as Message Authentication Codes (MACs),
Integrity Check Values (ICVs), checksums etc. The methodology we study, called ‘implicit data integrity’
avoids the use of such metadata. It supports the detection of corruption in a novel way based on the observation
that regular unencrypted user data typically exhibit patterns. When some encrypted content becomes corrupted
and is decrypted, it may no longer exhibit patterns. It is the absence or presence of patterns in decrypted
content which denotes whether some content is modified or not. We present a number of pattern detectors and
algorithms which can successfully support implicit data integrity at quantifiable security levels. We also
demonstrate that our patterns and algorithms can characterize the overwhelming majority of client and server
workload data. We present security analysis and performance results coming from over 111 million
representative client workload cache lines and 1.47 billion representative server workload cache lines. We
also present synthesis results showing the efficiency of the hardware implementations of some of our
algorithms.

1 INTRODUCTION

1.1 The Concept of Implicit Data
Integrity

We address the problem of detecting data corruption
without producing, storing or verifying mathematical
summaries of the content. By ‘mathematical
summaries of the content’ we mean integrity
metadata such as Message Authentication Codes
(MACs), Integrity Check Values (ICVs), Cyclic
Redundancy Codes (CRCs) or checksums that can be
used for detecting whether some content has been
unintentionally or maliciously modified. Content can
be modified by natural means (e.g., due to noisy
channels or interference), by software bugs (e.g., due
to bugs corrupting memory regions) or intentionally
(e.g., due to malware or man-in-the-middle attacks).

Today, the standard way of supporting data
integrity is by using integrity metadata. Integrity
metadata can be cryptographically strong, as in the
case of MACs (SHA-256, 2012), (SHA-3, 2016),
(HMAC, 2008), (KMAC, 2016), or weak(er) but
efficient as in the case of checksums, CRCs, or Reed-
Solomon codes. Furthermore, some types of metadata

may support error correction, whereas other types of
metadata may not. What is common in all such
metadata is their associated latency, storage and
communication bandwidth overheads.

Overheads are due to the unavoidable content
expansion resulting from producing and storing the
metadata. In storage systems, for instance, extra space
may be required for storing and accessing ICVs,
Reed-Solomon codes or MACs. The cost of such
metadata in terms of extra storage space is typically
non-negligible. In computing systems with
cryptographic protection of memory (McKeen, 2013)
each cache line needs to be protected by a separate
MAC value. In this way, a separate MAC value needs
to be also read in every data read operation. This
design choice may result in wasting significant
memory access bandwidth resources in a processor,
as each data read operation may need to be realized
as two memory read operations in the worst case. In
computer communication systems that need to
reliably transmit data from a source to a destination
end-point, integrity metadata need to be transmitted
as well. The transmission of such metadata, whether
checksums, CRCs, or MACs may further consume
significant communication bandwidth resources.

Kounavis, M., Durham, D., Deutsch, S. and Komijani, S.
Implicit Data Integrity: Protecting User Data without MACs.
DOI: 10.5220/0006905105430552
In Proceedings of the 15th International Joint Conference on e-Business and Telecommunications (ICETE 2018) - Volume 2: SECRYPT, pages 543-552
ISBN: 978-989-758-319-3
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

543

Figure 1: Implicit Data Integrity.

In this paper we study an alternative methodology
that avoids the use of some security metadata
altogether. he methodology we study employs
pattern-based algorithms in order to support data
corruption detection without content expansion. The
main idea, which we study in this paper comes from
the work by Durham et. al. (Durham, 2013, 2015) and
is illustrated in Figure 1. If some content exhibits
patterns (i.e., has low entropy), then such content can
be distinguished from random data. Let’s consider
that this content is encrypted, as shown in the figure,
where the encryption algorithm is a wide block cipher
and a good pseudo-random permutation. Thus, it can
successfully approximate a random oracle (Hall,
1998), (Gilboa, 2015). The cipher text which is
produced in this way is no longer distinguishable
from random data, under certain reasonable
assumptions about the adversary. Any corruption on
the cipher text results in a new cipher text value,
which is different from the original one.
Furthermore, any decryption operation on this new
cipher text value results in a corrupted plaintext value
which is different from the original one as well. As
decryption is the inverse operation of encryption, the
decryption algorithm also approximates a random
oracle. Because of this reason, the corrupted plaintext
value is also indistinguishable from random data with
very high probability.

From a system realization stand-point, the
corrupted plaintext is indistinguishable from random
data due to the fact that wide block ciphers, such as
(Ferguson, 2009), typically perform strong mixing of
their input bits. Due to an ‘avalanche effect’
associated with the decryption oracle, even a single
bit change in the cipher text affects all bits of the
decrypted plaintext. Therefore, checking the entropy
of the result of a decryption operation can be a reliable
test for detecting corruption for some data. We refer
to such methodology as ‘implicit data integrity’ or
just ‘implicit integrity’.

1.2 Challenges

One of the main challenges in building systems that
are based on the principles of implicit integrity is how
to define ‘high’ or ‘low’ entropy. It is not
straightforward how to determine that some content’s
entropy is ‘low enough’ or ‘high enough’ so as to
safely deduce that the original content has not been
corrupted. The standard definition of entropy may not
be easily applicable to corruption detection because
message sizes may be small (e.g., messages may be
memory cache lines of 512 bits), or the sizes of
symbols where deterministic behavior is
demonstrated may vary significantly (e.g.,
deterministic behavior may be observed over sets of
nibbles, bytes, words or double words). A good
corruption detection system must use algorithms that,
on the one hand, characterize the overwhelming
majority of the user data as ‘not random’ or ‘of low
entropy’. On the other hand, the same algorithms
when applied to corrupted plaintext values must
characterize such values as ‘random’ or ‘of high
entropy’ with probability very close to 1. Building a
system that meets these requirements is hard. In this
paper we present a solution that successfully
addresses this problem. Our solution is not the only
one that has been proposed in this space (Durham
2013, 2015 2016). However, our solution gives the
best results when compared to alternatives. In fact, it
is the most optimal solution known to us and,
according to our results, state-of-the-art for the
aforementioned problem.

1.3 Contributions of This Paper

The paper makes two contributions toward building
systems based on the principle of implicit integrity.
A first contribution is an experimentally derived
set of pattern detectors which characterize the
overwhelming majority of unencrypted uncompres-
sed user data and can be used together with wide
block ciphers for building practical working systems
supporting implicit integrity. A second contribution
of this paper is a proposal of a new entropy measure,
called entropy index, which is more appropriate for
small size quantities (e.g., 512 bits, 1024 bits) and can
be used for quantifying the security levels offered by
pattern detectors.

A related approach is described in reference
(Durham, 2013) which introduces the idea of implicit
integrity. This approach avoids specifying how
pattern detectors operate. We significantly expand
upon the idea of reference (Durham, 2013), providing
new components for implicit integrity. Another

plaintext

content
(e.g., cache line)

encryption

ciphertext

corruption

corrupted
ciphertext

decryption

corrupted
plaintext

modified content

distinguishable
from

random

no longer
distinguishable

from
random

SECRYPT 2018 - International Conference on Security and Cryptography

544

related proposal is described in reference (Durham,
2016). In this work, the content of a small size entity
(e.g., a cache line) is deemed ‘not random’ if it
demonstrates 4 or more 16-bit words equal to each
other. Compared to this solution, our solution is more
generic. It further increases the percentage of client
and server workload data that can be protected using
the implicit integrity methodology significantly. For
memory workloads, the observed increase is from
82% to 91% for client data, and from 78% to 84% for
server data, while supporting a level of security of 31
bits. These results are collected from 111 million
representative client workload cache lines and from
1.47 billion representative server workload cache
lines.

1.4 Other Considerations

From this discussion, it becomes evident that not all
data can be protected using implicit integrity. We
envision implementations that protect the
overwhelming majority of user data that exhibit
patterns using the implicit integrity methodology and
the remaining data using standard techniques.
Furthermore, we show that implicit integrity can be
supported at various security levels, which are as
measurable as MAC lengths are. In one example, for
instance, the security level supported by our solution
can be at 31 bits. By ‘31 bits’ of security we mean that
the probability of having a corrupted plaintext value
being characterized as ‘of low entropy’ is 2 for
some small security margin . The security level
offered is associated with an ‘entropy index’ value
characterizing the input data, which is defined in the
next section of the paper. The higher an entropy index
value is, the more difficult is for an attacker to corrupt
some data. All security considerations are with
respect to an adversary who performs on-line attacks
by corrupting cipher text values. By ‘on-line attacks’
we mean attacks where the detection of even a single
corruption event exposes an attack. Finally, we note
that the solution described in this paper is applicable
to any type of data, including memory, data
communication data and storage data. The following
description is independent of the data types where our
solution applies.

The paper is structured as follows. In Section 2 we
provide an overview of the algorithms discussed in
this paper. In Section 3 we discuss related work and
contrast our approach to the known state-of-the-art. In
Section 4 we provide details on our approach. Finally
in Section 5 we provide some concluding remarks.

2 PATTENS AND ALGORITHMS
FOR IMPLICIT INTEGRITY

2.1 Experimentally Derived Pattern
Detectors

The two contributions of this paper are illustrated in
figures 2 and 3 respectively. The first contribution,
shown in Figure 2, is a collection of experimentally
derived pattern detectors that support implicit
integrity using a set of thresholds T1, T2, …, T8. This
is the simplest of our contributions, and a rather
straightforward algorithm to start the exploration of
this space. The second contribution of figure 3 is an
algorithm that performs pattern checks similar to
those of the algorithm of figure 2, but using entropy
index values.

The algorithm of Figure 2, called Extended
Pattern Matching (EPM), employs many different
styles of pattern checks. The security levels
associated with these pattern checks are discussed in
Sections 2.2 and 4. One type of pattern checks detects
entities among the input data that are equal to each
other. Entities can be nibbles, bytes, words (16-bit) or
double words (32-bit). Another type of pattern checks
concerns entities among the input data which are not
only equal to each other, but are also placed in
continuous index positions. This second type of
pattern checks is not necessarily the same as the first
one. For example, one can associate these two types
of pattern checks with different thresholds and, by
doing so, build two different pattern detectors. Yet
another type of pattern checks detects entities that
take special values. Special values are values that are
frequently encountered in regular user data but are
infrequently encountered in random or corrupted
plaintext data. For example, in memory cache lines
obtained from client data workloads, a high
percentage of bytes take the values of 0x00 or 0xFF.

A last type of pattern checks detects entities, the
value histogram of which demonstrates a sum of n
highest entries (i.e., frequencies) being higher than a
threshold. The intuition behind this type of pattern
check is that there are several types of input
messages, the content of which is not as random as
that of encrypted data, but also does not demonstrate
patterns at the byte or word granularity. One example
of such content is media data, where nibble values
may be replicated, but data do not demonstrate
significant byte or word replications. Experimental
studies over 111 million client cache lines and 1.47
billion server cache lines have shown that there are
millions of cache lines demonstrating a limited set of

Implicit Data Integrity: Protecting User Data without MACs

545

Figure 2: EPM that uses threshold values.

byte equalities, but a substantially higher number of
nibble equalities. A pattern check that computes the
maximum number of nibbles that are equal to each
other is not appropriate in this case, as we have shown
that such pattern check is limiting both in terms of the
percentage of user data it is applicable to, and in terms
of the security level it offers. An alternative pattern
check that computes whether the sum of the n highest
nibble frequencies exceeds a threshold is more
efficient. If the input data consist of cache lines, this
pattern check works best for n = 2. By checking
whether the sum of the two highest nibble frequencies
exceeds a threshold, a more flexible pattern detector
can be built, which on the one hand encompasses
significantly more regular user inputs, and on the
other hand is associated with an event that is
infrequent among random data.

The types of pattern checks outlined above can be
applied in many different types of data values and can
be further combined resulting in stronger pattern
detectors. The diagram of Figure 2 illustrates one
example where 8 pattern checks are employed. The

following computations are performed in order to be
determined whether the resulting numbers or
frequencies exceed a threshold: (i) the computation of
the maximum number of bytes being equal; (ii) the
computation of the maximum number of adjacent
bytes being equal; (iii) the computation of the
maximum number of bytes that take special values
from a set V; (iv) the computation of the maximum
number of words being equal; (v) the computation
of the sum of the two highest double word
frequencies; (vi) the computation of the sum of the
two highest nibble frequencies; (vii) the computation
of the sum of the two highest most significant nibble
frequencies; and (viii) the computation of the sum of
the two highest least significant nibble frequencies.

The resulting numbers/frequencies are compared
against thresholds T1, T2, …, T8 and the responses
form a vector of eight Boolean values. These values
undergo a logical OR operation. The result of this
logical OR operation is the final response on whether
the input is of low entropy or not. Essentially, the
algorithm of Figure 2 checks whether there exists at

max number
of adjacent bytes that are equal
exceeds a second threshold T2?

number
of bytes that are equal
exceeds a threshold T1?

number of bytes that take special
values from a set V exceeds a

third threshold T3?

number
of 16-bit words that are equal
exceeds a fourth threshold T4?

sum of two highest
32-bit double word frequencies

exceeds a fifth threshold T5?

sum of two highest
nibble frequencies

exceeds a sixth threshold T6?

sum of two highest most
significant nibble frequencies

exceeds a seventh threshold T7?

sum of two highest least
significant nibble frequencies

exceeds an eight threshold T8?

YES/NO

YES/NO

YES/NO

YES/NO

YES/NO

YES/NO

YES/NO

YES/NO

logical
OR of all

responses

output:
characterization of

input data as
‘low entropy’ data

or not

input data
(e.g., memory

cache line)

SECRYPT 2018 - International Conference on Security and Cryptography

546

Figure 3: EPM that uses entropy index values.

least one pattern check from among the set employed,
according to which the observed entities which
exhibit the pattern exceed a threshold. If such pattern
check exists, the input is characterized of low
entropy, otherwise it is not.

2.2 The Concept of the Entropy Index

Our second contribution is illustrated in Figure 3.
This is an extension of Extended Pattern Matching
that does not require the use of thresholds. Instead,
the algorithm computes the number of entities that
exhibit a pattern in some data and converts this
number into an ‘entropy index’ value. In what
follows we define the concept of an entropy index.
Let’s consider a pattern p of type π (e.g., maximum
number of bytes being equal). If some input data x of
fixed length L demonstrates pattern p and exactly N
entities from x exhibit this pattern (e.g., the maximum
number of bytes being equal is exactly N) we denote
this fact as: ∈ (,) (1)

We define an entropy index value E associated with
the pattern type π and entity number N as the negative
logarithm of the probability that ∈ (,) given
that x is random (e.g, x is obtained from the output of
a random oracle). (,) = −log Prob[x ∈ p(π, N)	| ← trunc (), ← $] (2)

where by trunc () we mean a function that truncates
its input returning only L bits of it.

According to the definition above, the probability
of seeing the pattern (,) in a random data value
x is equal to 2-E. Entropy index E is measured in bits.
Furthermore, the expected number of random values
we need to inspect until we find one that demonstrates
the pattern (,) is 2E. As a result, the entropy
index E associated a pattern type π and an entity
number N is also equal to the logarithm of the
expected number of random values we need to inspect
until we find one value x such that 	 ∈ (,).

The Extended Pattern Matching variant of Figure
3 employs the same pattern checks as the algorithm
of Figure 2 with one exception. The pattern checks do

compute the max number
of adjacent bytes

that are equal

compute the max number
of bytes that are equal

compute the max number of
bytes that take special values

from a set V

compute the max number
of 16-bit words that are equal

compute the sum of the two
highest 32-bit double word

frequencies

compute the sum of the two
highest nibble frequencies

compute the sum of two highest
most significant nibble

frequencies

compute the sum of the two
highest least significant nibble

frequencies

N1

input data is of
‘low entropy’ data

or not

compute
entropy index E1

from N1

compute
entropy index E2

from N2

compute
entropy index E3

from N3

compute
entropy index E4

from N4

compute
entropy index E5

from N5

compute
entropy index E6

from N6

compute
entropy index E7

from N7

compute
entropy index E8

from N8

E1

compute
entropy index

E = max {E1,…,E8}

Is E ≥ Ethreshold?

input data
(e.g., memory

cache line)

E2

E3

E4

E5

E6

E7

E8

N2

N3

N4

N5

N6

N7

N8

Implicit Data Integrity: Protecting User Data without MACs

547

Figure 4: Pass rates of the SPM and EPM algorithms.

not return Boolean responses. Rather, the pattern
checks return the actual numbers of the entities that
exhibit patterns Ν1, Ν2, …, Ν8. Each of these numbers
is converted to an entropy index value. The
computation of every entropy index value depends on
the type of the pattern check used and on the number
of entities that exhibit the pattern in the data. In
Section 4 we provide examples of how entropy index
values can be computed for different types of pattern
checks. The entropy index values Ε1, Ε2, …, Ε8
obtained this way undergo a stage that selects the
maximum of these. If the maximum entropy index E
exceeds a threshold, then the input is characterized as
demonstrating low entropy, otherwise it is not.

The algorithm of Figure 3 essentially searches for
the rarest of the patterns that are exhibited by the input

data. The rarest of the patterns is the one that appears
with the smallest probability among random data and
is associated with the highest entropy index value. As
the algorithm converts numbers Ν1, Ν2, …, Ν8 into
entropy index values Ε1, Ε2, …, Ε8, the algorithm
does not need to directly operate on thresholds that
characterize the data entities exhibiting the patterns.
Instead, the algorithm of Figure 3 operates on a single
entropy index threshold, which has practical
significance. This threshold reflects the expected
number of efforts required by an adversary in order to
produce the rarest of the patterns considered in the
figure by corrupting cipher text data. Such probability
is associated with the highest entropy index value.

0
10
20
30
40
50
60
70
80
90

100

ha
do

op
_w

or
dc

ou
nt

ha
do

op
_w

or
ds

or
t

au
di

o_
pl

ay
ba

ck
bl

ac
kj

ac
k-

ve
ga

s
na

vi
t-

gp
s

of
fic

e-
im

pr
es

s
of

fic
e-

sp
re

ad
sh

ee
t

of
fic

e-
w

rit
er

pi
ct

ur
e-

an
im

at
e

tr
an

sc
od

in
g

3d
ga

m
e

vi
de

o-
pl

ay
ba

ck
sp

ec
po

w
er

ed
in

bu
rg

h
ad

ob
e-

fla
sh

hd
r-

ex
po

se
hd

r_
ph

ot
o-

m
at

rix
itu

ne
s

m
ed

ia
sh

ow
ph

ot
os

ho
p-

el
em

en
ts

pr
em

ie
re

-e
le

m
en

ts
dr

ag
-n

-d
ro

p
w

in
do

w
-m

ed
ia

-p
la

ye
r

fir
ef

ox
3d

m
ar

kv
an

ta
ge

Pa
ss

 R
at

e
(%

)

Extended Pattern Matching and ICV Cache Hit Rates

Extended Pattern Matching Rate ICV Cache Hit Rate

0
10
20
30
40
50
60
70
80
90

100

ha
do

op
_w

or
dc

ou
nt

ha
do

op
_w

or
ds

or
t

au
di

o_
pl

ay
ba

ck
bl

ac
kj

ac
k-

ve
ga

s
na

vi
t-

gp
s

of
fic

e-
im

pr
es

s
of

fic
e-

sp
re

ad
sh

ee
t

of
fic

e-
w

rit
er

pi
ct

ur
e-

an
im

at
e

tr
an

sc
od

in
g

3d
ga

m
e

vi
de

o-
pl

ay
ba

ck
sp

ec
po

w
er

ed
in

bu
rg

h
ad

ob
e-

fla
sh

hd
r-

ex
po

se
hd

r_
ph

ot
o-

m
at

rix
itu

ne
s

m
ed

ia
sh

ow
ph

ot
os

ho
p-

el
em

en
ts

pr
em

ie
re

-e
le

m
en

ts
dr

ag
-n

-d
ro

p
w

in
do

w
-m

ed
ia

-p
la

ye
r

fir
ef

ox
3d

m
ar

kv
an

ta
ge

AV
ER

AG
E

Pa
ss

 R
at

e
(%

)

Standard Pattern Matching and ICV Cache Hit Rates

Standard Pattern Matching Rate ICV Cache Hit Rate

SECRYPT 2018 - International Conference on Security and Cryptography

548

3 RELATED WORK

Message authentication is typically accomplished
using cryptographic algorithms that involve hashing
(SHA-256, 2012), (SHA-3, 2016), symmetric (AES,
2001), or asymmetric encryption. Today’s techniques
require additional storage or bandwidth for storing a
mathematical summary of the message which is
authenticated. An alternative approach is implicit
integrity, which is first described in reference
(Durham, 2013). Reference (Durham, 2013)
introduces the idea of implicit integrity without
specifying how pattern detectors are designed and
operate. The degree of success of this approach
depends on the design and implementation of the
pattern detectors utilized. Similar to implicit integrity
is also the idea of ‘Robust Authenticated Encryption’
(RAE) (Hoang, 2015), which typically involves some
message expansion. In this approach, some
redundancy λ is typically added to the message which
is being protected.

A related proposal described in reference
(Durham, 2016), concerns a pattern detector that
detects whether 4 or more 16-bit words are equal to
each other in a cache line. Compared to this solution,
ours is more general, avoids the use of fixed
thresholds, and increases the percentage of data that
are protected with implicit integrity significantly. In
memory systems, such increase is from 82% to 91%
on client data, and from 78% to 84% on server data,
while supporting the same level of security (31 bits).
These results are collected from 111 million
representative client workload cache lines and from
1.47 billion representative server workload cache
lines. Pass rate comparisons between the solution of
reference (Durham, 2016) and our solution are shown
in Figure 4. By ‘pass rates’ we mean the percentages
of data that demonstrate specific patterns such as
those of Figures 2 and 3.

In the figure, we refer to the solution of reference
(Durham, 2013) as Standard Pattern Matching
(SPM). Our solution is referred to as Extended Pattern
Matching (EPM). The pass rates for many different
client workloads are shown in the figure. As is
evident from the figure, there are many typical client
workloads (e.g., Microsoft® Office, transcoding,
video player) the pass rates of which range between
75%-80% using Standard Pattern Matching. These
pass rates are boosted to 98% when Extended Pattern
Matching is employed. Overall, the average pass rate
with Standard Pattern Matching is 80%. The average
pass rate with Extended Pattern Matching is 91%. For
server data, the corresponding pass rate values are
78% and 84% respectively.

Figure 4 also shows pass rates for data that are not
protected using the implicit integrity methodology
but for which Integrity Check Values (ICVs) are
stored in a quickly accessible cache unit. It is assumed
that in addition to the implicit integrity methodology,
an ICV cache unit is employed to protect those cache
lines which do not demonstrate patterns. A 4 KB ICV
cache unit is used for the charts of Figure 4. Average
pass rates for the two algorithms are 97% and 99%
respectively in this case.

4 SECURITY ANALYSIS AND
IMPLEMENTATION

In our work we assume that the security levels
supported by our algorithms are significantly smaller
than the sizes of the input messages. For on-line
attacks such assumption is not limiting. Neither the
security offered is limiting, as in on-line attacks the
adversary has only one chance to succeed. An
unsuccessful attack exposes the adversary, resulting
in a possible re-encryption of the data with a new key.
For example, for memory cache lines of 512 bits we
can safely support security levels up to 64 bits using
our methodology. The reason why is because
attackers do not in reality attack ideal primitives such
as random oracles but block ciphers that perform
encryption and decryption. The analysis presented in
this paper focuses on adversaries that aim in
producing outputs exhibiting patterns when attacking
systems that output truly random data. Block ciphers,
on the other hand, are permutations and do not output
truly random data. In fact, it is well known that block
ciphers can be distinguished from random oracles for
sufficiently large query budgets (Hall, 1998), (Gilboa,
2015). In order for our analysis to be valid, we limit
the adversary query budgets and their associated
security levels to values for which block cipher
outputs are practically indistinguishable from the
truncated outputs of random oracles. For example, the
64-bit limit we mention above derives from the
analysis found in references (Hall, 1998), (Gilboa,
2015).

4.1 Security of the Byte and Word
Equality Patter Detectors

Byte and word equality checks are applicable to the
protection of memory and storage data because many
data units in computing systems contain code or data
structures which demonstrate significant byte or word
value replications. The entropy index E associated

Implicit Data Integrity: Protecting User Data without MACs

549

with a data unit consisting of n bytes, which
demonstrates m bytes being equal to each other is
given by:

≅ −log 	(1256 ∙ 1 − 1256) (3)

Similarly the entropy index E associated with a
data unit consisting of n 16-bit words, which
demonstrates m words being equal to each other is
given by:

≅ −log 	(165536

∙ 1 − 165536) (4)

In order for an adversary to successfully attack the
byte or the word equality pattern detector, the
adversary needs to produce corrupted plaintext data
demonstrating m or more equal byte/word values. We
consider a simple adversary model, where the
adversary repeatedly attempts to corrupt some
ciphertext, so as to produce plaintext that
demonstrates patterns. The only requirement we
introduce for the adversary is that the number of
adversary queries should be bounded so that the
system which is being attacked (e.g., a wide block
cipher) should be practically indistinguishable from a
truncated output random oracle. The advantage of
such adversary is equal to the probability of seeing
some specific patterns among random data plus the
advantage of distinguishing the real cryptographic
system used (i.e., a pseudo-random permutation)
from a truncated output random oracle. The security
analysis, which will follow, will be focused on the
probability of seeing specific patterns among random
data.

For random data, byte or word equalities are
observed with probability computed as the birthday
collision probability associated n elements, m
collisions and 256 or 65536 birthdays for bytes and
words respectively. Such probability can be
approximated in many ways, for example using a
number of recent analytical results (Klamkin, 1967),
(Suzuki, 2006), (Kounavis, 2017). Using the
approximation from reference (Kounavis, 2017) we
obtain:

() ≅ 1 − 	 − − 1

∙ 1256 ∙ 255256

(5)

and

() ≅ 1 − 	 − − 1

∙ 165536 ∙ 6553565536

(6)

The advantage of an adversary who corrupts
ciphertext values, hoping that his corruptions will
pass undetected, Adv(C), is computed from the
probabilities P(bytes-equal) (n, m) and P(words-equal) (n, m)
as follows: () ≤ ()(,) +	 (),

for byte equalities () ≤ ()(,) +	 (),
for word equalities

(7)

where Adv(D) is the advantage of distinguishing the
cryptographic system used from a truncated output
random oracle.

The birthday collision probabilities presented in
equations 5 and 6 are a little higher than the
probability values 2-E associated with the entropy
index values given above. This is because these
birthday collision probabilities include all events
where there are more than m values being equal in a
data unit. In Tables 1 and 2, we show the cumulative
entropy index distribution computed over 111 million
cache lines for the byte and word equality pattern
checks respectively. The corresponding threshold
values associated with each entropy index value are
also shown.

As is evident from the tables, entropy index values
corresponding to reasonably high security levels (e.g.,
32 bits, 24 bits) for implicit integrity are associated
with high pass rates in regular client data cache lines.
This is demonstrated by both the byte equality and the
word equality pattern checks. For example, for the
security level of 32 bits, the percentage of cache lines
that demonstrate this entropy index or higher is
85.28% if the byte equality pattern check is used. For
the security level of 24 bits, the percentage of cache
lines that demonstrate this entropy index value or
higher is increased to 91.48%.

SECRYPT 2018 - International Conference on Security and Cryptography

550

Table 1: Entropy index distribution for the byte equality
pattern check.

minimum
entropy index

(bits)

corresponding
threshold

% of cache
lines

8 5 97.27
16 7 93.55
24 8 91.48
32 10 85.28
40 11 83.30

Table 2: Entropy index distribution for the word equality
pattern check.

minimum
entropy index

(bits)

corresponding
threshold

% of cache
lines

8 3 87.37
16 3 87.37
24 4 82.26
32 4 82.26
40 5 77.70

4.2 Security of a Detector That
Combines All Pattern Checks

The entropy index and security levels associated with
other types of pattern checks can be computed using
similar analytical tools from probability theory. The
pass rates for a scheme that combines all
aforementioned pattern checks are shown in Table 3.
For the 32-bit security level, the combined scheme
demonstrates a pass rate of 91.11%. For the 24-bit
security level the combined scheme demonstrates a
pass rate of 94.48%.

When different pattern checks are combined, an
attacker succeeds if the attacker produces any of the
considered patterns over some corrupted plaintext.
Due to this fact, the overall security level supported
by the combined pattern detector is not equal to the
maximum entropy index characterizing the patterns,
but lower by some small parameter , which needs to
be taken into account.

Table 3: Entropy index distribution for a scheme that
combines all pattern checks of Figures 2 and 3.

minimum
entropy index

(bits)

patterns
considered

% of cache
lines

8 all (1-8) 98.13
16 all (1-8) 96.50
24 all (1-8) 94.48
32 all (1-8) 91.11
40 all (1-8) 88.88

Table 4: Synthesis results for the Extended Pattern
Matching algorithm of Figure 2.

patterns cycles μm2 cells
equal words 2 3523 15.8K

eq. words, adj. eq. bytes,
bytes with spec. values,

most sig. nibbles
3 7179 32.1K

eq. words, eq. bytes, 3 14350 64.2K
eq. words, eq. bytes,

most sig. nibbles 3 17119 76.6K

all 8 patterns 4 26218 117.3K

4.3 Hardware Realization

Implementing the aforementioned pattern checks
efficiently in hardware is feasible. This section is
focused on the hardware implementation of the
pattern detectors of Figure 2, as these are the most
area and latency efficient. For the byte and word
equality patterns, interconnect wiring is required,
which connects every byte or word in a data unit with
every other byte or word. The necessary amount XOR
gates can be employed to perform comparisons
between such entities, followed by a layer of AND
gates and counters that compute the number of
matches associated with each entity. The pattern
detectors that compute the sum of the two highest
nibble frequencies are the most complex. These
circuits can be implemented using a combination of
decoders, counters and trees of comparators. Each
nibble value is first passed to a decoder circuit which
generates 16 lines, each corresponding to a different
nibble value from 0 to 15. The decoder outputs
corresponding to the same nibble value are added to
each other. There are 16 different summation outputs
from this stage. These outputs constitute the
histogram of nibble values produced from the input
data. Our synthesis results produced using Intel’s ®
14 nm process technology (Jan, 2015) and the
frequency of 1.67 GHz are shown in Table 4.

5 DISCUSSION

One issue that needs addressing is how to detect
corruption if data do not exhibit patterns. As we
demonstrated above, patterns can be found in up to
91% of client workload cache lines and 84% of server
workload cache lines. Whereas such data can be
protected using implicit integrity, the remaining 9%-
16% of the data need protecting also.

Such design issue can be easily addressed.
Implementations can protect the overwhelming

Implicit Data Integrity: Protecting User Data without MACs

551

majority of user data that exhibit patterns using
implicit integrity and the remaining data using
standard techniques. There is nothing in the implicit
integrity methodology, discussed here, that prevents
it from being used together with other independent
integrity mechanisms such as MACs. Such solutions
can co-exist with implicit integrity.

If some decrypted content exhibits patterns, then
there is some assurance that no corruption has
occurred. If no patterns are exhibited, however, a
search can be made for a MAC associated with the
content. If no MAC is found then the data is deemed
corrupted. Otherwise, an integrity check is made
using the returned MAC. Such implementation can
use a content addressable memory unit or a hash table
for accessing and managing MACs. Further
investigation on hardware and operating system
changes required in order to support implicit integrity
are the subject of future work.

Finally, a reasonable question that can be asked is
why not simply compress the data and augment it by
a MAC in the now free space. Compressing and
decompressing in combinatorial logic, for some
patterns such as the nibble-based ones, can be in fact
quite costly. Ongoing research of ours shows that the
client cache lines that can be compressed at
reasonable cost are significantly fewer than those
protected via implicit integrity (78% as opposed to
91%). Such analysis is the subject of future work.

REFERENCES

D. Durham and M. Long, “Memory Integrity”, United
States Patent, No. 9,213,653, December 2013.

D. Durham, et. al., “Memory Integrity with Error Detection
and Correction”, United States Patent, No. 9,990,249,
December 2015.

D. Durham, S. Chhabra, M. Kounavis, S. Deutsch, K.
Grewal, J. Cihula and S. Komijani, “Convolutional
Memory Integrity”, United States Patent Application,
No. 20170285976, 2016.

SHA256, “Secure Hash Standard”, Federal Information
Processing Standards Publication FIPS PUB 180-4,
2012.

SHA-3, “SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions”, Federal Information
Processing Standards Publication FIPS PUB 202,
2015.

HMAC, “The Keyed-Hash Message Authentication Code
(HMAC)”, Federal Information Processing Standards
Publication FIPS PUB 198-1, 2008.

KMAC, “SHA-3 Derived Functions: cSHAKE, KMAC,
TupleHash and ParallelHash”, NIST Special
Publication 800-185, 2016.

AES, “Advanced Encryption Standard (AES)”, Federal
Information Processing Standards Publication FIPS
PUB 197, 2001.

N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare,
T. Kohno, J. Calas and J. Walker, “The Skein Hash
Function Family”, available online at http://www.
skein-hash.info/sites/default/files/skein1.2.pdf, 2009.

F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas, H.
Shafi, V. Shanbhogue and U. Savagaonkar, “Innovative
instructions and software model for isolated execution”,
Proceedings of the Workshop on Hardware and
Architectural Support for Security and Privacy (HASP),
2013.

C. Hall, D. A. Wagner, J. Kelsey and B. Schneier, “Building
PRFs from PRPs”, CRYPTO 1998: 370-389.

S. Gilboa and S. Gueron, “Distinguishing a truncated
random permutation from a random function”, IACR
Cryptology ePrint Archive 2015: 773 (2015).

M. S. Klamkin and D. J. Newman, “Extensions on the
Birthday Surprise” Journal of Combinatorial Theory,
Vol. 3, pp. 279-282, 1967.

K. Suzuki, D. Tonien, K. Kurosawa and K. Toyota,
“Birthday Paradox for Multi-collisions”, International
Conference on Information Security and Cryptology,
pp. 29-40, 2006.

M. Kounavis, S. Deutsch, D. Durham and S. Komijani,
“Non-recursive computation of the probability of more
than two people having the same birthday”, ISCC 2017:
1263-1270.

C. Jan et al., “A 14 nm SoC Platform Technology Featuring
2nd Generation Tri-Gate Transistors, 70 nm Gate Pitch,
52 nm Metal Pitch, and 0.0499 μm2 SRAM Cells,
Optimized for Low Power, High Performance and High
Density SoC Products”, pp. 12-13, Sym. on VLSI Tech.,
2015.

V. T. Hoang, T. Krovetz and P. Rogaway, “Robust
Authenticated-Encryption AEZ and the Problem That It
Solves”, EUROCRYPT, 2015.

SECRYPT 2018 - International Conference on Security and Cryptography

552

