REFERENCES 
Bäck, T. (1996) Evolutionary Algorithms in Theory and 
Practice: Evolution Strategies, Evolutionary 
Programming, Genetic Algorithms, Science. 
Barrière, O. and Lutton, E. (2009) ‘Experimental analysis 
of a variable size mono-population cooperative-
coevolution strategy’, in Studies in Computational 
Intelligence, pp. 139–152. doi: 10.1007/978-3-642-
03211-0_12. 
Brest, J., Zumer, V. and Maucec, M. S. (2006) ‘Self-
Adaptive Differential Evolution Algorithm in 
Constrained Real-Parameter Optimization’, 2006 IEEE 
International Conference on Evolutionary 
Computation, pp. 215–222. doi: 10.1109/CEC.2006.16 
88311. 
Gagn, C. (2012) ‘DEAP : Evolutionary Algorithms Made 
Easy’, Journal of Machine Learning Research, 13, pp. 
2171–2175. doi: 10.1.1.413.6512. 
García-Pedrajas, N., Hervás-Martínez, C. and Muñoz-
Pérez, J. (2003) ‘COVNET: A cooperative 
coevolutionary model for evolving artificial neural 
networks’, IEEE Transactions on Neural Networks, 
14(3), pp. 575–596. doi: 10.1109/TNN.2003.810618. 
Jiang, B. and Wang, N. (2014) ‘Cooperative bare-bone 
particle swarm optimization for data clustering’, Soft 
Computing, 18(6). doi: 10.1007/s00500-013-1128-1. 
Ke, T., Xiaodong, L., P. N., S., Zhenyu, Y., Thomas, W., 
(2010) ‘Benchmark Functions for the CEC’2010 
Special Session and Competition on Large-Scale 
Global Optimization’. Technical report, Univ. of 
Science and Technology of China 1–23. 
Liang, J. J. and Suganthan, P. N. (2005) ‘Dynamic multi-
swarm particle swarm optimizer’, in Proceedings - 
2005 IEEE Swarm Intelligence Symposium, SIS 2005, 
pp. 127–132. doi: 10.1109/SIS.2005.1501611. 
Lin, L., Gen, M. and Liang, Y. (2014) ‘A hybrid EA for 
high-dimensional subspace clustering problem’, in 
Proceedings of the 2014 IEEE Congress on 
Evolutionary Computation, CEC 2014, pp. 2855–2860. 
doi: 10.1109/CEC.2014.6900313. 
Liu, Y. et al. (2001) ‘Scaling up fast evolutionary 
programming with cooperative coevolution’, in 
Proceedings of the 2001 Congress on Evolutionary 
Computation (IEEE Cat. No.01TH8546), pp. 1101–
1108. doi: 10.1109/CEC.2001.934314. 
Mei, Y., Li, X. and Yao, X. (2014) ‘Variable neighborhood 
decomposition for Large Scale Capacitated Arc 
Routing Problem’, in Proceedings of the 2014 IEEE 
Congress on Evolutionary Computation, CEC 2014, pp. 
1313–1320. doi: 10.1109/CEC.2014.6900305. 
Omidvar, M. N. et al. (2014) ‘Cooperative co-evolution 
with differential grouping for large scale optimization’, 
IEEE Transactions on Evolutionary Computation, 
18(3), pp. 378–393. doi: 10.1109/TEVC.2013.22 
81543. 
Potter, M. A. and Jong, K. A. (1994) ‘A cooperative 
coevolutionary approach to function optimization’, pp. 
249–257. doi: 10.1007/3-540-58484-6_269. 
Potter, M. A. and Jong, K. A. De (2000) ‘Cooperative 
Coevolution: An Architecture for Evolving Coadapted 
Subcomponents’, Evolutionary Computation, 8(1), pp. 
1–29. doi: 10.1162/106365600568086. 
Storn, R. and Price, K. (1995) ‘Differential Evolution - A 
simple and efficient adaptive scheme for global 
optimization over continuous spaces’, Technical report, 
International Computer Science Institute, (TR-95-012), 
pp. 1–15. doi: 10.1023/A:1008202821328. 
Yang, Q. et al. (2017) ‘A Level-based Learning Swarm 
Optimizer for Large Scale Optimization’, IEEE 
Transactions on Evolutionary Computation. doi: 
10.1109/TEVC.2017.2743016. 
Yang, Z., Tang, K. and Yao, X. (2008a) ‘Multilevel 
cooperative coevolution for large scale optimization’, 
in 2008 IEEE Congress on Evolutionary Computation, 
CEC 2008, pp. 1663–1670. doi: 10.1109/CEC.2008.46 
31014. 
Yang, Z., Tang, K. and Yao, X. (2008b) ‘Self-adaptive 
differential evolution with neighborhood search’, in 
2008 IEEE Congress on Evolutionary Computation, 
CEC 2008, pp. 1110–1116. doi: 10.1109/CEC.2008.46 
30935. 
Yang, Z., Tang, K. and Yao, X. (2008c) ‘Large scale 
evolutionary optimization using cooperative 
coevolution’, Information Sciences, 178(15), pp. 2985–
2999. doi: 10.1016/j.ins.2008.02.017. 
 
 
 
 
 
 
 
APPENDIX 
Table 1: Runtime of 10000 FEs (in seconds) on the CEC’10 LSGO benchmark problems. 
Func. № F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 
Time 0.396 0.209  0.21  0.52  0.334 0.34 0.309 0.307 1.312 1.134 
Func. № F11 F12 F13 F14 F15 F16 F17  F18  F19 F20 
Time 1.139 0.112 0.126 2.219 2.016 2.04 0.077 0.133 0.072  0.1