
Exploring the Feasibility and Performance of
One-step Three-factor Authentication with Ear-EEG

Max T. Curran1, Nick Merrill1, Swapan Gandhi2 and John Chuang1

1BioSENSE Lab, UC Berkeley School of Information, Berkeley, California, U.S.A.
2Starkey Hearing Research Center, Berkeley, California, U.S.A.

Keywords: Usable Security, Multi-factor Authentication, Wearable Authentication, Passthoughts, Biosensing.

Abstract: Multi-factor authentication presents a robust method to secure our private information, but typically requires
multiple actions by the user resulting in a high cost to usability and limiting adoption. A usable system should
also be unobtrusive and inconspicuous. We present and discuss a system with the potential to engage all
three factors of authentication (inherence, knowledge, and possession) in a single step using an earpiece that
implements brain-based authentication using electroencephalography (EEG). We demonstrate its potential by
collecting EEG data using manufactured custom-fit earpieces with embedded electrodes and testing a variety
of authentication scenarios. Across all participants’ best-performing “passthoughts”, we are able to achieve
0% false acceptance and 0.36% false rejection rates, for an overall accuracy of 99.82%, using one earpiece
with three electrodes. Furthermore, we find no successful attempts simulating impersonation attacks. We
also report on perspectives from our participants. Our results suggest that a relatively inexpensive system
using a single electrode-laden earpiece could provide a discreet, convenient, and robust method for one-step
multi-factor authentication.

1 INTRODUCTION

It is well appreciated by experts and end-users alike
that strong authentication is critical to cybersecurity
and privacy, now and into the future. Unfortunately,
news reports of celebrity account hackings serve as
regular reminders that the currently dominant method
of authentication in consumer applications, single-
factor authentication using passwords or other user-
chosen secrets, faces many challenges. Many major
online services have strongly encouraged their users
to adopt two-factor authentication (2FA). However,
submitting two different authenticators in two sepa-
rate steps has frustrated wide adoption due to its ad-
ditional hassle to users. Modern smartphones, for in-
stance, already support device unlock using either a
user-selected passcode or a fingerprint. These devi-
ces could very well support a two-step two-factor au-
thentication scheme if desired. However, it is easy to
understand why users would balk at having to enter
a passcode and provide a fingerprint each time they
want to unlock their phone.

“One-step two-factor authentication” has been
proposed as a new approach to authentication that can
provide the security benefits of two-factor authenti-

cation without incurring the hassle cost of two-step
verification (Chuang, 2014). In this work we under-
take, to the best of our knowledge, the first-ever study
and design of one-step, three-factor authentication. In
computer security, authenticators are classified into
three types: knowledge factors (e.g., passwords and
PINs), possession factors (e.g., physical tokens, ATM
cards), and inherence factors (e.g., fingerprints and ot-
her biometrics). By taking advantage of a physical
token in the form of personalized earpieces, the uni-
queness of an individual’s brainwaves, and a choice
of mental task to use as one’s “passthought”, we seek
to achieve all three factors of authentication within a
single step by the user.

Furthermore, the form factor of an earpiece com-
bats the flaw of the conspicuous and obtrusive na-
ture of traditional EEG systems worn on the scalp.
Technology worn in the ear is already a socially
accepted practice in many cultures, with examples
like earphones or bluetooth headsets.

We make several distinct contributions in this
work. First, we achieve a 99.82% authentication
accuracy with zero false acceptance rate (FAR) using
personalized custom-fit three-channel EEG earpieces
and a passthoughts authentication paradigm. Second,
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we quantify the improvements over prior art in au-
thentication accuracy due to the use of custom-fit ver-
sus generic earpieces, and the use of multiple electro-
des versus a single electrode. Third, we evaluate mul-
tiple classification strategies that allows us to com-
pare the relative contributions of the inherence fac-
tor and knowledge factor to authentication accuracy.
Fourth, we perform simulation attacks to demonstrate
the method’s robustness against impersonation via
four scenarios where the attacker has access to the
target’s earpiece and/or secret passthoughts. Collecti-
vely, we build a case that passthoughts authentication
using personalized custom-fit earpieces offers a via-
ble and attractive path towards one-step three-factor
authentication.

2 RELATED WORK

2.1 Passthoughts and Behavioral
Authentication

The use of EEG as a biometric signal for user au-
thentication has a relatively short history. In 2005,
Thorpe et al. motivated and outlined the design of
a passthoughts system (Thorpe et al., 2005). Since
2002, a number of independent groups have achie-
ved 99-100% authentication accuracy for small po-
pulations using research-grade and consumer-grade
scalp-based EEG systems (Poulos et al., 2002; Marcel
and Millan, 2007; Ashby et al., 2011; Chuang et al.,
2013). Several recent works on brainwave biometrics
have independently demonstrated individuals’ EEG
permanence over one to six months (Armstrong et al.,
2015; Maiorana et al., 2016) or even over one year
(Ruiz-Blondet et al., 2017).

The concept of in-ear EEG was introduced in
2011 with a demonstration of the feasibility of re-
cording brainwave signals from within the ear canal
(Looney et al., 2011). The in-ear placement can pro-
duce signal-to-noise ratios comparable to those from
conventional EEG electrode placements, is robust to
common sources of artifacts, and can be used in a
brain-computer interface (BCI) system based on au-
ditory and visual evoked potentials (Kidmose et al.,
2013). One previous study attempted to demonstrate
user authentication using in-ear EEG, but was only
able to attain an accuracy level of 80%, limited by the
use of a consumer-grade device with a single generic-
fit electrode (Curran et al., 2016).

Behavioral authentication methods such as key-
stroke dynamics and speaker authentication can be ca-
tegorized as one-step two-factor authentication sche-

mes. In both cases, the knowledge factor (password
or passphrase) and inherence factor (typing rhythm
or speaker’s voice) are employed (Monrose and Ru-
bin, 1997). In contrast, the Nymi band supports one-
step two-factor authentication via the inherence factor
(cardiac rhythm that is supposed to be unique to each
individual) and the possession factor (the wearing of
the band on the wrist) (Nymi, 2017). However, as far
as we know, no one has proposed or demonstrated a
one-step three-factor authentication scheme.

2.2 Usable Authentication

When proposing or evaluating authentication para-
digms, robustness against imposters is often a first
consideration, but the usability of these systems is of
equal importance as they must conform to a person’s
needs and lifestyle to warrant adoption and prolon-
ged use. Sasse et al. describe usability issues with
common knowledge-based systems like alphanume-
ric passwords, in particular that a breach in systems
which require users to remember complex passwords
that must be frequently changed is a failure on the
part of the system’s design, not the fault of the user
(Sasse et al., 2001). Other research analyzed some
of the complexities of applying human factors heu-
ristics for interface design to authentication, and in-
dicate the importance of social acceptability, learna-
bility, and simplicity of authentication methods (Braz
and Robert, 2006). Technologies worn on the head
entail particular usability issues; in their analysis of
user perceptions of headworn devices, Genaro et al.
identified design, usability, ease of use, and obtrusi-
veness among the top ten concerns of users, as well
as qualitative comments around comfort and “looking
weird” (Genaro Motti and Caine, 2014).

Mobile and wearable technologies’ continuous
proximity to the user’s body provides favorable con-
ditions for unobtrusively capturing biometrics for au-
thentication. Many such uses have been proposed that
embrace usability like touch-based interactions (Tartz
and Gooding, 2015; Holz and Knaust, 2015) and wal-
king patterns (Lu et al., 2014) using mobile phones,
as well as identification via head movements and blin-
king in head-worn devices (Rogers et al., 2015). Ho-
wever, these typically draw only from the inherence
factor. Chen et al. proposed an inherence and know-
ledge two-factor method for multi-touch mobile de-
vices based on a user’s unique finger tapping of a
song (Chen et al., 2015), though it may be vulnerable
to “shoulder surfing”: imposters observing and mi-
micking the behavior to gain access.

In the system we propose here we seek to incor-
porate recommendations from this research for im-
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proved usability while maintaining a highly secure
system. The mental tasks we test are simple and
personally relevant; instead of complex alphanume-
ric patterns like a traditional password, a mental acti-
vity like relaxed breathing or imagining a portion of
one’s favorite song are easy for a user to remember
and perform as shown by participant feedback in pre-
vious passthoughts research and in our own results
later in this paper. These mental activities are lar-
gely invisible to “shoulder surfing” attempts by on-
lookers, and furthermore present a possible solution
to “rubber-hose attacks” (forceful coercion to divulge
a password); a thought has a particular expression
unique to an individual, the specific performance of
which cannot be described and thus cannnot be coer-
ced or forcibly unlike for example the combination to
a padlock or fingerprint. Finally, to combat the wea-
rability and obtrusiveness issues of scalp-based EEG
systems used in other brain-based authentication rese-
arch, our system’s form factor of earpieces with em-
bedded electrodes is highly similar to earbud headp-
hones or wireless headsets already commonly worn
and generally socially accepted technologies.

3 METHODS

3.1 Study Overview

Seven male, right-handed participants (P1-P7), five
students and two researchers, were recruited via a uni-
versity mailing list and completed our study protocol
approved by our local ethics review board. Though
this sample is relatively homogenous and greater di-
versity is necessary for a larger real-world feasibi-
lity assessment, this quality interestingly functions to
strengthen the results of a system designed to discri-
minate between users (see Discussion). After parti-
cipants’ 3D ear molds were obtained, the custom-fit
earpieces were manufactured, and their fit and electri-
cal impedances were checked, we proceeded to the
collection of study data. Data collection consisted
of participants completing a demographics question-
naire, a setup period with the OpenBCI system and
earpieces sed for EEG collection with a second impe-
dance check, their performance of nine mental tasks,
and finally a post-experiment questionnaire.

3.2 Earpiece Design and Manufacturing

To produce custom ear impressions we first cleaned
subjects’ ears, placed a cotton ball with a string at-
tached into the ear canal, and injected silicon into the
canals. When the silicon dried after a few minutes, the

Figure 1: Photo of one of the manufactured custom-fit ear-
pieces with three embedded electrodes located in the con-
cha, front-facing (anterior) in the ear canal, and back-facing
(posterior) in the ear canal.

string was pulled to remove the impression from the
ear canal. This impression was then scanned with a
3D scanner and the resulting scan modified to achieve
a comfortable fit and to ensure the intended electrode
sites would make good contact with the skin. Chan-
nels were created in the 3D model to allow wire le-
ads and associated EEG electrodes as well as a plastic
tube to deliver audio. This 3D model was then sent to
a 3D printer after which wires, leads, and associated
AgCl electrodes were installed. The positions of the
earpiece electrodes were simplified from those des-
cribed in (Mikkelsen et al., 2015). We reduced the
number of canal electrodes in order to prevent electri-
cal bridging and positioned them approximately 180
degrees apart in the canal (posterior/back and ante-
rior/front locations in the canal). One other electrode
was placed in the concha. An example of one of the
manufactured earpieces is shown in Figure 1.

3.3 Mental Tasks

We selected a set of mental tasks based on findings
in related work regarding the relative strengths of dif-
ferent tasks in authentication accuracy and usability
as reported by participants (Chuang et al., 2013; Cur-
ran et al., 2016). Furthermore, given the in-ear place-
ment of the electrodes and therefore the proximity to
the temporal lobes containing the auditory cortex, we
tested several novel authentication tasks based speci-
fically on aural imagery or stimuli. The nine authen-
tication tasks and their attributes are listed in Table 1.
Our strategy was to select tasks that captured a diver-
sity across dimensions of external stimuli, involving a
personal secret, eyes open or closed (due to known ef-
fects on EEG), and different types of mental imagery.

PhyCS 2018 - 5th International Conference on Physiological Computing Systems

32



Table 1: The nine authentication tasks and their properties. We selected tasks with a variety of different properties, but
preferred tasks that did not require external stimuli, as the need to present such stimuli at authentication time could present
challenges for usability and user security. Tasks were performed with the participant’s eyes closed unless otherwise noted.

Task Description Stimuli? Secret? Imagery
Breathe Relaxed breathing No No None
Breathe - Open Relaxed breathing with eyes open No No None
Sport Imagine attempting a chosen physical activity No Yes Motor
Song Imagine hearing a song No Yes Aural
Song - Open Song task, with eyes open No Yes Aural
Speech Imagine a chosen spoken phrase No Yes Aural
Listen Listen to noise modulated at 40 Hz Yes No None
Face Imagine a chosen person’s face No Yes Visual
Sequence Imagine a face, number, and word on cues with eyes open Yes Yes Visual

3.4 Data Collection Protocol

All sites were cleaned with ethanol prior to elec-
trode placement and a small amount of conductive
gel was used on each electrode. For EEG recording
we used an 8-channel OpenBCI system (Michalska,
2009) which is open-source and costs about 600 USD;
an alternative to medical-grade EEG systems (which
cost >20,000 USD), with demonstrated effectiveness
(Frey, 2016). The ground was placed at the center of
the forehead, at AFz according to the 10-20 Interna-
tional Standard for Electrode Placement (ISEP), and
reference on the left mastoid (behind the left ear). The
AFz ground location was intentional to not bias left
or right ear recordings, though future systems using
one ear only should test relocating the ground to a
site on one ear (e.g., the earlobe). Six channels were
used for the three electrodes on each earpiece (shown
in Figure 1). For the remaining two channels, one
AgCl ring electrode was placed on the right mastoid
for later re-referencing, and one at Fp1 (ISEP loca-
tion above the left eye) to validate the data collected
in the ears against a common scalp-based placement.
Before beginning the experiment, the data from each
channel was visually inspected using the OpenBCI in-
terface by having the participant clench their jaw and
blink. Audio stimuli were delivered through small tu-
bes in the earpieces.

During the experiment, participants were seated in
a comfortable position in a quiet room facing a laptop
on which the instructions and stimuli were presented
and timings recorded using PsychoPy (Peirce, 2007).
All tasks were performed for five trials each, followed
by another set of five trials each to reduce boredom
and repetition effects. Each trial was 10 seconds in
length, for a total of 10 trials or 100 seconds of data
collected per task. The instructions were read aloud
to participants by the experimenter, and participants
advanced using a pointer held in their lap to minimize
motion artifacts in the data. The experimenter also re-

corded the participant’s chosen secrets for the sport,
song, face, speech, and sequence tasks and reminded
the participant of these for the second set of trials.
After EEG data collection, participants completed a
usability questionnaire assesing each task on 7-point
Likert-type scales on dimensions of ease of use, le-
vel of engagement, repeatability, and likeliness to use
for real-world authentication as well as a few open
response questions. Approximately two weeks after
data collection participants were contacted via e-mail
and asked to recall their choices for those tasks that
involved chosen secrets.

4 ANALYSIS

4.1 Data Validation

We confirm that the custom-fit earpieces were able to
collect quality EEG data via two metrics: low impe-
dances measured for the ear electrodes, and alpha-
band EEG activity attenuation when a participant’s
eyes were open versus closed.

It is important that the electrical impedances
achieved for electrodes are low (<10 kOhm) to obtain
quality EEG signals. Table 2 below summarizes
the impedances across the seven participants’ six ear
channels. With the exception of a few channels in
select participants, impedances achieved were good
overall. Most of the recorded impedances of the ear-
piece electrodes were less than 5 kΩ, a benchmark
used widely in previous ear EEG work, and all except
two were less than 10 kΩ. Nonetheless, the data from
all electrodes were tested in our other data quality test.

For the alpha-attenuation test, data from the bre-
athe task was compared with that of the breathe -
open task. It is a well-known feature of EEG data that
activity in the alpha-band (approx. 8-12 Hz) increases
when the eyes are closed compared to when the eyes
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Table 2: Electrical impedances measured for concha (C),
front (F) and back (B) earpiece electrodes.

Impedances [kΩ]
Left ear Right ear

P C F B C F B
1 4 4 4 <1 4 3
2 9 5 4 3 4 4
3 4 5 4 9 6 9
4 4 5 4 3 16 9
5 9 20 7 3 7 9
6 5 8 2 1 1 9
7 2 9 8 7 5 6

Figure 2: Alpha-attenuation (8-12 Hz range) in left ear and
Fp1 channels, referenced at left mastoid. Red indicates bre-
athing data with eyes open, blue indicates the same task
with eyes closed.

are open. This attenuation is clearly visible even in
just a single trial’s data from our earpieces and mat-
ches that seen in our Fp1 scalp electrode data. Figure
2 shows evidence of alpha attenuation in the left ear
channels compared to Fp1, for one participant as an
example. We see the same validation in the right ear
channels.

4.2 Classification

Since past work has shown that classification tasks
in EEG-based brain-computer interfaces (BCI) are li-
near (Garrett et al., 2003), we used XGBoost, a po-
pular tool for logistic linear classification (Chen and
Guestrin, 2016), to analyze the mental task EEG data.
Compared to other linear classifiers, XGBoost uses
gradient boosting in which an algorithm generates a
decision tree of weak linear classifiers that minimizes
a given loss function. Gradient boosting generally im-
proves linear classification results without manually
tuning hyper-parameters.

To produce feature vectors, we took slices of 100

raw values from each electrode (about 500ms of data),
and performed a Fourier transform to produce power
spectra for each electrode during that slice. We con-
catenated all electrode power spectra together. No di-
mensionality reduction was applied. For each task,
for each participant, 100 seconds of data were col-
lected in total across 10 trials of 10 seconds each, re-
sulting in 200 samples per participant, per task.

We trained the classifier such that positive exam-
ples were from the target participant and target task,
and negative examples were selected randomly from
any task from any other participant. From this cor-
pus of positive and negative samples, we withheld
one third of data for testing. The remaining training
set was used to cross-validate an algorithm over 100
rounds on different splits of the data. The results of
each cross-validation (CV) step was used to iterati-
vely tweak classifier parameters.

For the predictions, the evaluation regards the in-
stances with prediction value larger than 0.5 as po-
sitive instances, and the others as negative instances.
After updating classifier parameters, the classifier was
tested on the withheld test set. Since negative exam-
ples far outweigh positive examples in this dataset,
XGBoost automatically optimized using the error hy-
perparameter. Over a set of E examples containing
EW wrong examples EW ⊂ E, XGBoost’s binary clas-
sification error rate ε is calculated as

ε = EW/E (1)

We calculated false acceptance and false rejection
rates (FAR and FRR, respectively) from these results.
Over false attempts FA of which some subset FAS
were successful, and true attempts TA over which
some subset TAU were unsuccessful:

FAR = FAS/FA (2)

FRR = TAU/TA (3)

To further test the robustness of the system, we
also conducted a “leave one out” process for the best
performing tasks in which each participant’s FAR was
calculated once with each other participant left out
(e.g., CV for P1 with P2 left out, then CV for P1 with
P3 left out, etc., for every participant combination).

5 RESULTS

5.1 Electrode Configuration

For each configuration of electrodes, we calculated
the mean FAR and FRR across all participants using
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Figure 3: Mean FAR and FRR by electrode configuration across all participants and tasks. All electrodes (Fp1, right, and left
ear channels) combined achieved the best FAR score, followed by the right and left ear electrodes combined, respectively.

each task as the passthought (Figure 3). Incorpora-
ting all electrodes data resulted in the lowest FAR,
followed by the combined right and left ear electro-
des, respectively. For left ear (3 electrodes), right ear
(3 electrodes), and both ears (6 electrodes) configu-
rations, every participant had at least one task with
zero FAR and FRR. Among the individual electrodes,
the left canal front electrode produced a mean FAR
of 0.12% and a mean FRR just below 20%. Coun-
ter to our expectations, Fp1 does not perform as well
as most ear electrodes, though overall these reported
FAR rates are <<1%.

For each position, FAR was about ten times lower
than FRR, which is preferable for authentication, as
false authentications are generally more costly than
false rejections.

Our results indicate acceptable accuracy using
data from the left ear alone. This corresponds to a
desirable scenario, in which the device could be worn
as a single earbud. As such, we focus on results from
only the left ear in the following analyses.

5.2 Authentication Results

Using only data from the three left ear electrodes, the
FARs and FRRs of each task for each participant are
shown in Tables 3 and 4, respectively. We find at least
one task for each participant that achieves 0% FAR,
and for five participants a task where both the FAR
and FRR are 0%. Each task achieved perfect 0% FAR
and FRR for at least one participant, notably breathe
and song - open achieved perfect FAR and FRR for
three out of seven participants.

FAR and FRR results by task are shown in Figure
4, averaged across participants. Across all tasks, the
sport task produced the lowest FAR. Specifically, it
produced 0% FAR for all seven participants, with a
corresponding 1.8% FRR. This suggests that the au-
thentication scheme can work very well even if we
limit the passthoughts to just a single task category,

where the users could choose a personalized secret for
that task. Interestingly, tasks like breathe and breathe
- open performed very well despite lacking a perso-
nalized secret, indicating that even when the task may
be the same across participants our classifier was still
able to distinguish between them.

As an omnibus metric, the half total error rate
(HTER) is defined as the average of the FAR and
FRR:

HT ER = (FAR+FRR)/2 (4)

and from this we estimate authentication accuracy,
ACC, as:

ACC = 100∗ (1−HT ER) (5)

Using our best performing tasks’ FARs, avera-
ging 0% and these tasks’ associated FRRs, averaging
0.36%, we obtain an overall authentication accuracy
of 99.82% using data from the three electrodes in the
left ear. For comparison, if we limit ourselves to only
a single electrode (left canal-front), we obtain an au-
thentication accuracy of 90%.

Our “leave one out” analysis with participants’
best tasks maintained 0% FAR across all participant
combinations.

5.2.1 Relative Contributions of Authentication
Factors

Our results thus far establish good performance in our
default training strategy, in which we count as nega-
tive examples recordings from the wrong participant
performing any task. We further performed three ot-
her analyses with differing negative examples which
serve to isolate and test the inherence and knowledge
factors: the correct task recorded from the wrong par-
ticipant (relies on inherence only), the wrong task re-
corded from the correct participant (relies on know-
ledge only), and a combination of these two. Positive
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Table 3: FAR performance of each task for each participant using data from the left ear.

Task P1 P2 P3 P4 P5 P6 P7
Breathe 0 0 0 0 0.0002 0.0004 0
Breathe - open 0 0 0 0 0.0002 0 0
Face 0 0 0 0.0016 0.0030 0 0.0002
Listen 0.0002 0 0.0002 0 0.0026 0 0
Sequence 0 0.0002 0 0.0008 0.0014 0 0.0002
Song 0 0.0001 0 0 0 0.0001 0
Song - open 0 0.0004 0 0 0 0 0
Speech 0 0 0.0006 0.0002 0.0002 0.0006 0
Sport 0 0 0 0 0 0 0

Table 4: FRR performance of each task for each participant using data from the left ear.

Task P1 P2 P3 P4 P5 P6 P7
Breathe 0 0.0125 0 0.0125 0.0125 0.0250 0
Breathe - open 0.0500 0.0125 0.0375 0.1000 0.0375 0 0
Face 0.0125 0.0125 0 0.1125 0.4000 0 0.0375
Listen 0.0750 0.0375 0.0375 0.0500 0.3375 0.0125 0
Sequence 0.0125 0 0 0.0375 0.4000 0.0375 0
Song 0.0375 0.0125 0 0.0375 0.0500 0 0
Song - open 0.0250 0.0250 0.0500 0.0125 0 0 0
Speech 0 0.0125 0.0625 0 0.3375 0 0.0125
Sport 0.0250 0.0250 0 0.0125 0.0375 0.0125 0.0125

Figure 4: FAR and FRR results by task, across all subjects, using data from the left ear only.

Table 5: Four analyses in which classifiers were trained on
differing negative examples paired with resulting mean FAR
and FRR across all participants and tasks. Pc indicates cor-
rect participant, Pi incorrect participant, Tc correct task, Ti
incorrect task, and T∗ any task.

+ Examples - Examples FAR FRR
Pc,Tc Pi,T∗ 0.000074 0.004424
Pc,Tc Pi,Tc 0.000724 0.001522
Pc,Tc Pc,Ti 0.002523 0.039702
Pc,Tc Pi,T∗+Pc,Ti 0.000186 0.052565

examples were always the correct participant perfor-
ming the correct task.

Overall, our default training strategy which enga-
ges both knowledge and inherence factors achieves
the lowest FAR (Table 5). The FAR in the inherence-

only scenario (Table 5 row 2) is ten times higher, and
in the knowledge-only scenario (Table 5 row 3) FAR
is one hundred times higher, though for all scenarios
FAR is less than 1%. However, FRR is lower with
the inherence-only training strategy than the default.
FRR is highest in the combined negative examples
case (Table 5 row 4), though FAR remains low.

5.3 Usability

Before the end of the session, participants comple-
ted a usability questionnaire. Participants were asked
to rate each mental task on four 7-point Likert-type
scales: ease of use, level of engagement, repeatabi-
lity, and likeliness to use in a real-world authentica-
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Table 6: Mental tasks ranked by mean ratings (µ) on 7-point
Likert-type scales across participants in four usability di-
mensions.

Ease of Use Engagement
Task µ Task µ
Breathe 6.75 Sequence 5
Listen 6.75 Song 5
Breathe - Open 6.5 Song - Open 5
Song 5.25 Sport 4.75
Song - Open 5 Face 4.5
Speech 5 Speech 4
Sport 3.5 Breathe 2.5
Face 2.75 Breathe - Open 2.25
Sequence 2.25 Listen 2.25

Repeatability Likeliness to Use
Task µ Task µ
Breathe 7 Song - Open 5
Breathe - Open 6.75 Sequence 4.25
Listen 6.75 Song 4
Song 4.75 Sport 4
Speech 4.75 Breathe - Open 3.75
Song - Open 4.25 Speech 3.75
Face 3 Face 3.5
Sport 3 Listen 3
Sequence 2.5 Breathe 2.75

tion setting. Mean ratings across participants for each
of these dimensions for each task are shown in Table
6.

Participants also ranked the tasks overall from
most (1) to least (9) favorite. Song - open ranked
highest (µ=4.25) followed by a tie between breathe -
open, song, and speech (µ=4.75). Sequence (µ=7.75)
and face (µ=6.75) were ranked least favorite overall.

In addition to the scales and rankings, we inclu-
ded a few open response questions to ascertain attitu-
des around use cases for in-ear EEG and passthoug-
hts, and the comfort of wearing an in-ear EEG device
in everyday life. Participants first read the prompt,
”Imagine a commercially available wireless earbud
product is now available based on this technology that
you’ve just experienced. It requires minimal effort
for you to put on and wear.”, and were asked about
use cases for in-ear EEG and passthoughts. Respon-
ses about in-ear EEG expectedly included authentica-
tion for unlocking a phone or computer and building
access, but also aspects of self-improvement such as
P4’s response ”Help people increase focus and pro-
ductivity”. P5 and P6 also indicated a use for mea-
suring engagement with media like movies and mu-
sic, and relatedly P4 wrote ”music playback optimi-
zed for current mental state and feelings”. In terms
of comfort wearing such a device, participants gene-
rally responded they would be comfortable, though

P5 and P6 stipulated only when they already would be
wearing something in the ears like earphones. Nota-
bly, three participants also added that imagining a face
was difficult and had concerns regarding their ability
to repeat tasks in the same exact way each time.

A final component of usability we assessed was
the ability of the participants to recall their specific
chosen passthoughts. Participants were contacted via
e-mail approximately two weeks after data collection
and asked to reply with the passthoughts they chose
for the song, sport, speech, face, and sequence tasks.
All participants correctly recalled all chosen passt-
houghts, with the exception of one participant who
did not recall their chosen word component for the
sequence task.

6 IMPOSTER ATTACK

While our authentication analysis establishes that pas-
sthoughts achieve low FAR and FRR when tested
against other participants’ passthoughts, this does not
tell us how robust passthoughts are against a spoofing
attack, in which both a participant’s custom-fit ear-
piece, and details of that participant’s chosen passt-
hought, are leaked to an imposter who attempts au-
thentication. We performed four different analyses to
investigate the system’s robustness against imposter
attacks.

First, we tested the ability of an imposter to wear
an earpiece acquired from someone else and achieve
viable impedance values for EEG collection based on
the fit of the pieces in their ears. P1 tried on each
of the other participants’ customized earpieces. The
impedances from each electrode were recorded and
are listed in Table 7 below. Across all cases, the im-
pedances are not only higher (worse), but also devi-
ate significantly from those achieved by the pieces’
intended owners themselves (Table 2). These results
come as no surprise given the uniqueness of ear canal
shapes between individuals (Akkermans et al., 2005),
and point to the possibility that the presentation of a
physical token that provides the correct impedance le-
vels can be used as another demonstration of both the
inherence and possession factors.

Second, to explore the scenario of an imposter at-
tempting to gain access, we chose the case of the most
vulnerable participant, P6, whose earpieces P1, P2,
and P7 had the lowest impedances while wearing (Ta-
ble 7). We collected data using the same data col-
lection protocol, but had the “imposters” refer to P6’s
list of chosen passsthoughts. Each imposter perfor-
med each of P6’s passthoughts (simulating an “in-
side imposter” from within the system). Following
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Table 7: Electrical impedances with P1 wearing each ot-
her participant’s (P) custom-fitted earpieces, for concha (C),
canal-front (F) and canal-back (B).

Impedance [kΩ]
Left ear Right ear

P C F B C F B
2 34.1 10.2 12.8 27.8 16.0 16.3
3 21.1 20.9 19.0 13.5 11.3 19.5
4 14.1 11.9 9.7 11.0 11.1 13.3
5 17.2 21.9 10.3 32.6 12.5 11.6
6 18.7 10.0 8.4 14.8 11.5 8.9
7 91.5 >1000 21.5 33.5 26.4 31.0

Table 8: Left concha (C), canal-front (F) and canal-back (B)
electrode impedances of “imposters” P1, P2, P7 and “PX”
- a person completely outside of the system - wearing P6’s
left earpiece.

Impedance [kΩ]
P C F B
1 18.7 10.0 8.4
2 46.7 35.7 24.8
7 44.5 20.5 26.3
X 70.0 10.5 8.9

the same analysis steps, we generated 200 samples
per task for our imposters, using data from all left ear
electrodes.

Since every participant has one classifier per task
(for which that task is the passthought), we are able
to make 200 spoofed attempts with the correct pas-
sthought on each of P6’s classifiers. We find zero
successful spoof attempts for tasks with a chosen se-
cret (e.g., song or face). In addition, we also do not
find any successful spoof attacks for tasks with no
chosen secret (e.g., breathe). In fact, in all 1,800
spoof attempts (200 attempts for each of the nine clas-
sifiers), we do not find a single successful attack on
any of P6’s classifiers.

Since this participant’s data appeared in the initial
pool, the classifier may have been trained on his or her
recordings as negative examples. As our third ana-
lysis, to explore the efficacy of an outsider spoofing
recordings, we repeated the same protocol with an in-
dividual “PX” who did not appear in our initial set of
participants (an “outside imposter”). Again, we find
zero successful authentications out of 1,800 attempts.

Fourth, our “leave one out” analysis can also be
seen as another set of outside imposter attacks, in
which each participant acts as an outside imposter for
each other participant, but where the imposters have
their own manufactured earpieces and passthoughts.
The best task classifiers achieved FARs of 0% across
all combinations, successfully rejecting the simulated
imposters.

7 DISCUSSION, LIMITATIONS, &
DIRECTIONS FOR FUTURE
WORK

Our findings demonstrate the apparent feasibility of
a passthoughts system consisting of a single earpiece
with three electrodes and a ground/reference, all in
or on the left ear. Notably, the gain in performance
when adding an additional three electrodes from the
right ear is only marginal in our results, suggesting a
single earpiece could suffice though this may change
with larger sample sizes. FARs and FRRs are consis-
tently low across all participants and tasks, with FARs
overall lower than FRRs, a desirable pattern as FAR
is the more critical of the two in terms of accessing
potentially sensitive information. Participants’ best-
performing tasks or passthoughts typically see no er-
rors in our testing. From our various training/testing
schema it emerged that the inherence factor performs
better on its own compared to the knowledge fac-
tor, but the combination of the two achieves the lo-
west FAR indicating measurable benefit of multiple
factors. Furthermore, we were able to achieve these
results by generating feature vectors based on only
500ms of EEG signal (300 voltage readings across the
three electrodes), suggesting that passthoughts can be
captured and recognized quickly. Passthoughts also
appear to be quite memorable given our two-week re-
call follow-up and a few were rated highly repeatable
and engaging. Furthermore, no spoofed attacks were
successful in our analyses.

Compared against the 80% authentication accu-
racy achieved with a single generic-fit electrode (Cur-
ran et al., 2016), we are able to achieve 90% accuracy
with a custom-fit earpiece using data from a single
electrode, and 99.8% accuracy with the same custom-
fit earpiece using three electrodes. This points to the
importance of both the goodness-of-fit of the electro-
des and the number of channels as contributors to au-
thentication performance.

These personalized custom-fit earpieces can also
be easily outfitted with a hardware keypair for signing
authentication attempts, so as to function as a physical
token similar to the way an electronic key fob can be
used to unlock a car, but with additional inherence and
knowledge factors in place.

Several tasks performed exceedingly well among
participants, even tasks like breathe and breathe -
open which did not have an explicit secondary kno-
wledge factor as in song or face. This suggests a pas-
sthoughts system could present users with an array of
task options to choose from without significant loss in
security. While sport performed best in terms of low
FAR and FRR, it was not rated highly in usability di-
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mensions or as a favorite by our participants. Tasks
like breathe - open and song - open however, both
performed well and were rated quite favorably. Inte-
restingly, the sequence task was rated low in ease of
use and repeatability, and as the least favorite among
participants, but was rated highest in likeliness to use
in a real-world setting. Sequence was arguably the
most complex task, and its high rating in likeliness
to use could indicate that users are more likely to use
a task they perceive as more secure even at the cost
of additional effort. This is true afterall for one of
the most common forms of authentication, alphanu-
meric passwords, where increased complexity ensu-
res better performance. The topic of user perceptions
of different passthoughts as means of authentication
warrants its own research.

The difficulty of stealing someone else’s know-
ledge factor emerged in our spoofing attacks. In
conventional password-based systems, once the kno-
wledge factor is divulged, an attacker can essenti-
ally spoof the target with 100% success rate. In
a passthought-based system, even though our target
participant documented their chosen passthought, the
spoofers found ambiguity in how these passthoughts
could be expressed. For example, for the face task,
the spoofers did not know the precise face the original
participant had chosen. For the song tasks, though the
song was known, the spoofers did not know what part
of the song the original participant had imagined, or
how it was imagined. This experience sheds light on
passthoughts’ highly individual nature and suggests
there may be intrinsic difficulty in spoofing attempts.
Future work should examine this effect more expli-
citly to elucidate the effect of knowledge task specifi-
city on defense against imposters.

Performance on Fp1 was not as high as perfor-
mance in the ear, despite Fp1’s popularity in past
work on passthoughts (Chuang et al., 2013). One
plausible explanation is that several of our mental
tasks involved audio (real or imagined), which we
would expect to be better observed from the auditory
cortex near the ears, as opposed to frontal lobe activity
(e.g., concentration) that might be more easily picked
up near Fp1. Future work should continue to investi-
gate what classes of mental tasks best lend themselves
to in-ear recording.

The sample size of our study, while small, is com-
parable to that of other EEG authentication studies
(Ashby et al., 2011; Marcel and Millan, 2007; Pou-
los et al., 2002; Chuang et al., 2013; Curran et al.,
2016) and other custom-fit in-ear EEG research (Kid-
mose et al., 2013; Mikkelsen et al., 2015). The fitting
and manufacturing of custom-fit earpieces for each re-
cruited participant was the main limitation to increa-

sing our sample size. This may very well pose a li-
mitation in the proliferation and adoption of such a
technology as well, although recently there have been
developments in at-home kits for creating one’s own
custom-fitted earpieces (Voix et al., 2015) that could
help overcome this barrier.

The relative homogeneity of our participant pool
can be seen as a strength of the reported results, given
that system is meant to distinguish between individu-
als. For future studies however, we should expand
the size and diversity of participants, encompassing
users and use cases which this system would be parti-
cularly applicable such as those with extreme security
needs and/or persons with disabilities which may pre-
vent them from performing other authentication met-
hods, e.g. those that require the use of one’s hands,
voice, or particular bodily movement patterns.

An important question surrounds how passthoug-
hts might be cracked. Generally, we do not under-
stand how an individual’s passthought is drawn from
the distribution of EEG signals an individual produces
throughout the day. Given a large enough corpus of
EEG data, are some passthoughts as easy to guess as
password1234 is for passwords? Future work should
perform statistical analyses on passthoughts, such as
clustering (perhaps with t-SNE) to better understand
the space of possible passthoughts. This work will
allow us simulate cracking attempts, and to develop
empirically motivated strategies for prevention, e.g.,
locking users out after a certain number of attempts.
This work could also reveal interesting tradeoffs be-
tween the usability or accuracy of passthoughts and
their security.

Applications for a system like the one we propose
here span any use case for authentication, but some
may be particularly well-suited. As has been the mo-
tivation for much of the original and ongoing BCI
research and development, brain-based systems like
this one are nearly universally accessible for use by
a wide variety of people with different bodies. As
previously mentioned, one’s particular passthought is
immune to observation and so is apt for use in public
spaces or times when malicious observation is likely,
and would be extremely difficult to coerce (or even
willingly share). To aid in adoption, this system could
be aligned with currently used technology of similar
form factors, for example speakers could be placed in-
side our current custom-fit pieces to produce working
“hearables” that could be used as ordinary headpho-
nes.

A key limitation to this work is that our experi-
ments were conducted in a controlled laboratory set-
ting with participants in a stationary, sitting position.
Future work should examine EEG data collected from
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a variety of different user states: ambulatory or dis-
tracting settings, during physical exertion or exercise,
under the influence of caffeine or alcohol, etc., as well
as over longer periods of time or in multiple recording
sessions. While these additional conditions may limit
the performance of the system, it is interesting to con-
sider which if any limiations might be advantageous
in some way. For example, a system that prevents or
allows access only when a user is in a certain state
of mind or setting, or enforces a biologically-based
expiration that requires classifier re-training and thus
offers protection in a scenario where a user’s original
EEG pattern was somehow leaked or surreptitiously
stored.

Finally, our work leaves room for some clear user
experience improvements. Future work should test
the performance of this system using dry electrodes,
which are commonly found in consumer EEG devi-
ces and have shown recent promise for ear EEG sy-
stems (Kappel et al., 2018), as eliminating the need
for conductive gel would very likely improve com-
fort and usability and it is unlikely any system invol-
ving gel will be widely adopted. Future work should
also attempt a closed-loop (or online) passthought sy-
stem, in which users receive immediate feedback on
the result of their authentication attempt. A closed-
loop BCI system would assist in understanding how
human learning effects might impact authentication
performance, as the human and machine co-adapt.

8 CONCLUSION

We build a case that using personalized, custom-fit
ear-EEG earpieces in conjunction with a passthoughts
authentication paradigm offers a viable and attractive
path to one-step three-factor authentication. The ear-
piece form factor provides a discreet yet robust met-
hod for acquiring EEG signals, and we are able to
achieve a 99.82% authentication accuracy using a sin-
gle earpiece with three small electrodes, showing the
potential for integration with technology already used
in everyday life (like earphones). By expanding our
corpus of EEG readings (in population size, time, and
diversity of settings), we can better understand the un-
derlying distribution of EEG signals and security pro-
perties of passthoughts, as well as interrogate usabi-
lity issues that may arise in different contexts.
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