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Abstract: We present a method to determine the individual alpha (α) peak frequency (IAF) of EEG segments. The
algorithm uses information over previous time-windows to determine the current IAF. First, the 1/ f trend of
the spectrum is estimated by an iterative curve-fitting procedure and then removed from the spectrum. Finally,
local maxima are identified in the corrected spectrum. If an α peak is ambiguous, i.e. when several peaks are
observed due to different physiological α activations or to a noisy spectral activity, the algorithm selects the
most probable one based on the peaks detected in previous time windows. This approach allows the detection
of small α activities and ensures a precise and stable detection of the α peak, without offline analysis or a
prior estimation of a reference spectrum. This is particularly important for real-time applications like α-based
neurofeedback for which a precise and stable feedback is required for an efficient learning.

1 INTRODUCTION

Alpha (α) waves, discovered by Hans Berger in 1929
(Berger, 1929), constitute the dominant oscillatory
electroencephalographic activity (EEG) of awake hu-
mans in resting state. Nevertheless, the α frequency
band may display several spectral microstructures
with different characteristics, corresponding to diffe-
rent activities such as the α spindles, or the mu, sigma,
tau and occipital α rhythms. Although several met-
hods have been developed to characterize α power
changes associated with various brain states or neuro-
logical diseases, the robust detection of these different
α activities is a challenging research area.

A standard method to detect α peaks (Pα) in EEG
spectrum consists in finding the frequency at which
the power spectral density (PSD) is maximal within
the α frequency range of 8-13 Hz (αB) (Klimesch,
1999; Kropotov, 2016). However, this approach may
incorrectly detect the lower bound of αB (Corcoran
et al., 2018) if a clear peak is not present (Anokhin
and Vogel, 1996) or a PSD too noisy.

In the literature, it is common to compute the α
center of gravity (αCG) in αB or in the individual α
frequency (IAF) range when several α peaks are ob-
served (Klimesch et al., 1990; Klimesch, 1997; Chi-
ang et al., 2011). However, finding the individual α

band (IAB) is not so trivial and several off-line strate-
gies exist, as those proposed by Klimesch (Klimesch
et al., 1990; Klimesch, 1999).

Other methods, like the peak attenuation (Post-
huma et al., 2001) and the channel reactivity based
(CRB) (Goljahani et al., 2012) methods, can be used
to define this IAB. These methods imply a PSD es-
timates comparison in αB between two conditions.
However, the α waves behavior is not always as ex-
pected and if both PSD estimates share a part of the
same spectral information in αB, IAB will be shorten
(Corcoran et al., 2018).

Curve-fitting techniques have also been used to
find the Pα(s) and their characteristics like the fre-
quency. Chiang and colleagues for instance (Chiang
et al., 2008), proposed a parametric method to au-
tomate the detection and the characterization of the
Pα(s) with a Gaussian function, fine-tuned across se-
veral electrodes.

Corcoran and colleagues (Corcoran et al., 2018)
has recently developed a non-parametric technique to
detect the IAF and the IAB. They define the peaks in
αB as the downward going zero crossings points in
the first derivative of the PSD. If several peaks are de-
tected, either a dominant peak is highlighted after se-
veral strategies based on a PSD fitted regression mo-
del and a set threshold, or the αCG is computed af-

Grosselin, F., Attal, Y. and Chavez, M.
A Robust Method for the Individual Alpha Frequency Detection in EEG.
DOI: 10.5220/0006895700350040
In Proceedings of the 6th International Congress on Neurotechnology, Electronics and Informatics (NEUROTECHNIX 2018), pages 35-40
ISBN: 978-989-758-326-1
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

35



ter an estimation of the IAB from the first derivative
of the PSD. This procedure is applied on each elec-
trode and the frequency of Pα or the αCG are avera-
ged across them.

To estimate the IAF, some authors first remove the
1/ f trend of the log-transformed PSD - estimated by
a least-squares method or an Af−λ model fitting (Ca-
plan et al., 2001; Whitten et al., 2011) - before de-
tecting the local maxima in αB (Haegens et al., 2014;
Dickinson et al., 2018). This procedure reduces the
bias in the detection of local maxima within the α
range. Then, a Gaussian curve fitting procedure is
used to find the Pα(s) in αB.

The method presented here is a combination of
some of these previous approaches. It is designed to
detect the IAF in real-time. The originality of our ap-
proach is that, instead of only considering the infor-
mation of other electrodes to fine-tune the detection
of the IAF, the frequency values of the Pα detected in
previous time-windows are used to determine the IAF
at the current window. In this way, the IAF is more
stable across the successive time-windows. This is
useful for real-time application like α-based neuro-
feedback for which the stability of the targeted acti-
vity is required for an efficient learning.

To explain our algorithm, we first present how
the spectral trend is estimated to correct the PSD and
obtain a primary estimation of the Pα by a local max-
ima detection. Then, we describe how we determine
the α frequency if Pα is ambiguous - when several
peaks are detected in αB either due to a noisy spectral
activity, or several α activations (Chiang et al., 2011).
In this case, we take into account the frequency of
the Pαs detected in the previous time-windows. Fi-
nally, to illustrate the stability of the detection, we
compare the α frequency distribution obtained by our
method (RTadapt-IAF) in three subjects, with those
obtained from a more standard one (max-IAF) (Kli-
mesch, 1999). Percentage of EEG data for which a
frequency is detected as the IAF is also compared for
several data lengths.

2 METHODS

2.1 Spectral Trend Estimation

The PSD is firstly estimated with the Welch’s met-
hod between 2 and 30Hz, on EEG segments of L se-
conds with an overlap of 50%. Then, the PSD is log-
transformed (log-PSD) and smoothed iteratively until
a stable model of spectral trend (PSDtrend) is rea-
ched. At the 1st iteration, PSDtrend is equal to the
log-PSD.

PSDtrend at the iteration i (PSDtrendi) is fit in
log-log coordinates to a Af−λ model (Mi) by a linear
regression, where A, λ and f are the parameters of
the model and the frequencies, respectively (Whitten
et al., 2011; Gao et al., 2017). At each iteration i,
all the frequency bins (binF) with a PSDtrendi value
higher than the expected Mi are set to the Mi value,
and i is incremented. PSDtrendi+1 is finally estima-
ted by fitting PSDtrendi in log-log coordinates to the
new model Mi+1.

At each iteration i, the root mean square error (er-
rFit) between PSDtrendi and PSDtrendi−1 is compu-
ted. If this error has a difference with the previous
computed error lower than 0.05, PSDtrendi−1 is con-
sidered as the background spectral trend (PSDtrend f ).

The main steps of the proposed estimation proce-
dure are summarized in Algorithm 1.

Algorithm 1: Background spectral trend estimation proce-
dure in RTadapt-IAF.
Input: PSDtrend0, the log-transformation of the estimate
of the signal s segmented on L-second segments with an
overlap of 50%, between 2 and 30 Hz.
Output: PSDtrend f , the background spectral trend esti-
mate.

1: Fit PSDtrend0 with a Af−λ model (M0) in log-log coor-
dinates

2: Initialize errFiti(i = 0) to Infinity
3: Set breakProc to False
4: while breakProc is False do
5: for each frequency bin b of binF do
6: if PSDtrendi(b) > Mi(b) then
7: PSDtrendi(b) = Mi(b)
8: end if
9: end for

10: i = i+1
11: Fit PSDtrendi with a Mi model in log-log coordina-

tes
12: Compute the root mean square error (errFiti) bet-

ween PSDtrendi and PSDtrendi−1
13: if abs(errFiti−1 − errFiti) 6 0.05 then
14: PSDtrend f = PSDtrendi−1
15: breakProc = True
16: end if
17: end while
18: return PSDtrend f

2.2 First Estimation of the Alpha
Activity

The 1/ f trend of the spectrum is removed from the
log-PSD by subtracting PSDtrend f from the log-PSD.
We note this difference d0. All the negative values
of d0 are set to the values of PSDtrend f . A first es-
timation of Pα(s) is obtained by detecting the local
maxima between 6 Hz (B1α) and 13 Hz (B2α). We
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extended this research to 6 Hz to be able to capture lo-
wer α activity. The local maxima are detected as the
downward going zero crossings points in the first de-
rivative of d0, called d1 (Corcoran et al., 2018). The
ensemble of these local maxima {C} are considered
as the candidate Pα(s).

2.3 Determination of the IAF

For each EEG segment, three situations can be obser-
ved:

1. No peak: No local maxima were detected on the
PSD. It means that no α peak is detected. As a
consequence, the IAF is not computed.

2. Singular peak: The only candidate peak detected
on the PSD is considered as the individual α peak.
The IAF is obtained from this peak and kept for
the analysis of successive windows in a vector
(histFreq). histFreq can contain the IAF values
from different channels.

3. Two peaks or more: If histFreq contains several
points (> N), the number of candidate peaks is
first reduced {Cs} by (1st criteria):

{Cs}= {C(k)}/ ∀k∈ binF,binF(k)∈ [µ−σ : µ+σ]
(1)

where µ and σ are the averaged value and the
standard deviation of histFreq, respectivley.

If only one peak is retained, its frequency is consi-
dered as the more probable IAF based on the his-
tory of IAFs. Otherwise, a 2nd criteria is used to
discriminate a predominant peak.
The 2nd criteria searches the predominant peak ba-
sed on the peaks’ amplitudes as proposed in (Cor-
coran et al., 2018). Considering Pα1 and Pα2,
the highest (respectively the second highest) Pαs in
terms of power, IAF is the frequency of Pα1 if:

Pα1 x T hP > Pα2 (2)

where T hP denotes the minimal proportion of the
power of Pα1, which must exceed the power of all
other Pαs values.
This 2nd criteria is used to discriminate a predomi-
nant peak from {C} if none of the candidate peaks
respect the 1st criteria, or if the size of vector his-
tFreq is not high enough. The 2nd criteria can be
also applied on the subset {Cs} of the candidate
peaks selected by the 1st criteria.

If none of these criteria is sufficient to discrimi-
nate a peak from the others, we estimate the IAF by
computing the αCG between frequency bounds (f1

Figure 1: Schema representing the main steps of the IAF
estimation procedure in RTadapt-IAF.

and f2) defined by:

f 1 = argmax
f∈binF

({B1α−2; argmin
B1α−2<g<L fα

(d0(g)> 0)})
(3)

f 2 = argmin
f∈binF

({ argmax
H fα<g<B2α+2

(d0(g)> 0);B2α +2})
(4)

with:
Lfα, the lowest frequency among {C} or {Cs},
Hfα, the highest frequency among {C} or {Cs}.

The main steps of the proposed IAF determina-
tion procedure are summarized in Fig. 1.

3 RESULTS ON REAL DATA

To illustrate the detection of the IAF with the pro-
posed method, we used a dataset recorded at 500Hz
sampling rate with surface electrodes (Acticap, Brain-
Products GmbH, Germany) for N = 32 scalp positi-
ons according to the international 10-20 system. Re-
ference and ground electrodes are localized in A1 and
A2 positions respectively. This dataset consists in
EEG data of different subjects who where instructed
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Figure 2: Log-PSD of S1, S2 and S3 between 2 and
20 Hz. The gray area highlights the frequency range where
RTadapt-IAF searches the IAF (between B1α and B1α).

to be in resting but alert state, with their eyes closed
during one minute. According to the declaration of
Helsinki, written informed consent was obtained from
subjects after explanation of the study, which was ap-
proved by the ethical committee CPP-IDF-VI of Paris
(no 2016-A00626-45).

From this dataset, we selected activities located in
P3 from three subjects (S1, S2 and S3) with very deif-
ferent α peaks (see Fig. 2). Each 1-minute recordings
were down-sampled at Fs = 250 Hz and preprocessed
with a notch filter and a bandpass filter (cutoff fre-
quencies 2-30 Hz) to remove power-line (50/60 Hz)
interferences and slow drifts. Then, they are segmen-
ted in different windows lengths ranging from L = 2
to L = 60 s. This allows to compare the IAF de-
tected for different lengths of segmented data. The
results of RTadapt-IAF are compared with those of
max-IAF (Klimesch, 1999), which simply detects the
frequency at the maximum value of the PSD between
6 and 13 Hz.

To assess the stability of the IAF detection, we
first compare the distributions of IAF values detected
in the PSD of 4-second segments for each of the ap-
proaches (see Fig. 3). The median value of the IAF
for each subject is respectively around 8.7 Hz (S1),
10.25 Hz (S2) and 10.75 Hz (S3). Notice that for
S1 and S2 the distributions are similar with both met-
hods. The distribution of the IAF in S3 displays, ho-

Figure 3: Boxplots of the IAFs detected on 4-second seg-
ments for three different subjects Si. The boxplots for max-
IAF are presented in green. Those for RTadapt-IAF are pre-
sented in purple.

wever, a larger variability with max-IAF compared to
RTadapt-IAF. This can be explained by the difficulty
of max-IAF to correctly detect Pα if its amplitude is
lower than that observed at the lower bound of the α
band. Because RTadapt-IAF is based on an history
of the previous detected α peaks, ambiguous or small
Pα can be highlighted. We can also observe that, the
median value of the IAF for each subject is slightly
higher with the proposed approach compared to max-
IAF. As mentioned above, max-IAF is based on a sim-
ple research of the maximum value in the uncorrected
PSD, whereas RTadapt-IAF detects the local maxima
in a trend-corrected PSD. Fig. 3 shows that the va-
riability of values obtained with RTadapt-IAF is, in
average, lower than the values estimated by the max-
IAF procedure.

To complete these results, we study the percen-
tage of segments of L-seconds of duration for which
a given frequency is detected as the IAF in the three
subjects (see Fig. 4). For each method, we evaluate
if we are able to visually discriminate the frequencies
reported in Fig. 2 and 3. We use different window
lengths L to assess the effect of data length on the ef-
ficiency of each method to detect the IAF in the PSD.

With max-IAF, three frequencies are always de-
tected, independently of the segment size: just after
6 Hz, around 9 Hz and around 10.5 Hz. Notice that,
because of the 1/ f behavior of EEG spectrum, the de-
tected values around 6 Hz may simply correspond to
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Figure 4: Percentage of segments for which a frequency is detected as the IAF over all the three subjects. These results are
presented for max-IAF (left plot) and RTadapt-IAF (right plot).

the lower bound of the α band, whose power is ge-
nerally larger than the power of Pα. The second fre-
quency around 9 Hz is detected by the two methods.
From results in Fig. 2 and 3, we can suppose that this
frequency represents the IAF of S1.

Finally, we also notice that max-IAF is not able to
distinguish the IAFs observed at 10.25 and 10.75 Hz
in S2 and S3. In contrast, RTadapt-IAF clearly dis-
criminates both frequencies in segmented data longer
than 32 s. These two patterns are around 10.25 Hz
and 10.8 Hz which can be associated to the S2’s and
S3’s IAF (based on Fig. 2 and 3). From these results
we can conclude that, for long data segments (larger
than 32 s), the proposed approach is able to better dis-
criminate two IAFs relatively closed. Nevertheless,
RTadapt-IAF is also able to compensate the 1/f trend
and detect small values of Pα, even for very short data
lengths (2 s).

4 DISCUSSION AND
CONCLUSION

In this work we have presented a method to charac-
terize, from EEG segments, the frequency of the α
peak. The iterative procedure allows to obtain an
accurate estimate of the 1/f trend of the spectrum.
This estimate is sensitive to small α activations. In-
terestingly, if Pα displays several peaks, our approach
can determine the most confident Pα. In particular,
the Pα values detected in successive time windows are
used to define the most probable frequency for a given
EEG segment. Instead of using the previous detected
IAF values of the current channel, those from each
channel can be used to improve the robustness of the
detection.

The stability of the IAF detection in the propo-
sed method was illustrated by comparing the distribu-
tion of the IAFs obtained with RTadapt-IAF and with
the standard procedure (max-IAF) (Klimesch, 1999)
for three different subjects with the observation of the
spectrum of each subject (Fig. 2). These preliminary
results, with some subjects, show that, compared with
our approach, the IAFs detected with max-IAF yields
a larger variability. Furthermore, if Pα values are too
small, max-IAF tends to detect the lower α bound as
an α peak (because of the global 1/ f behavior of the
spectrum).

To evaluate the ability of our approach to distin-
guish IAFs as a function of the data length, we have
computed the percentage of segments for which a fre-
quency is detected as the IAF across several subjects.
These preliminary results show that close values of
IAFs can be clearly distinguished in EEG segments
longer than 32 s. A fine spectral resolution may be
an important criteria in the detection of the IAF in
particular to differentiate several α activations and/or
follow the evolution of the IAF across the time. Our
approach proposes a way to compute a more stable
IAF that does not require neither an offline analysis
nor a prior estimation of a reference spectrum. This
may be particularly useful in α-based on-line appli-
cations like neurofeedback, for which a detection of
small α synchronisation events is necessary to give an
accurate feedback to the user. It is also important to
consider the stability of this IAF to ensure successful
leaning during the neurofeedback task.

To go further in the real-time characterisation
of Pα, it could be interesting to compute the time-
varying evolution of other features as the amplitude,
the width and the area of the individual α peak.
RTadapt-IAF needs to be compared with other met-
hods of IAF detection with more subjects. Nevert-
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heless, our preliminary results suggest an interesting
approach to robustly detect the IAF, even in real-time
and for small α activations.
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