Cloud-RA: A Reference Architecture for Cloud Based
Information Systems

Jalal Kiswani, Sergiu M. Dascalu and Frederick C. Harris, Jr

Department of Computer Science and Engineering, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV, U.S.A.

Keywords:

Abstract:

Software Reference Architecture, Cloud Computing, Cloud Applications, Software as a Service,
Microservices Architecture.

Software architecture is an essential phase of the software development process, as it significantly increases the
success rate of software projects and enables achieving their quality attributes and goals. However, implement-
ing software architecture is not a straightforward process, and requires specialized expertise and knowledge
-in both domain and technology- to achieve its requirements. To overcome this complexity, many tools have
been developed to make the architecture process systemic, predictable and repeatable. These tools include
architectural styles, architectural patterns, and reference architectures. In fact, these tools encourage sharing
of experience and reducing the architecture process cost. In addition, tools such as reference architecture can
make non-expert architects and developers start with ready-made architecture templates as is,” or with mini-
mal customization. On the other hand, cloud computing is everywhere, and many applications are developed
as cloud applications in what is called Software as a Service delivery model. In this paper, we propose Cloud-
RA, a reference architecture for developing cloud-based multi-tenant information systems. In particular, it
includes the problem, motivation, and proposed architecture. We hope this proposed work can be the bases for
future cloud application reference architectures.

1 INTRODUCTION

Cloud Computing is one of the hottest trends in Infor-
mation Technology nowadays (Armbrust et al., 2009).
It changed how organizations from different domains
perform their business (Economist, 2008). Cloud
Computing service providers offer services in three
different delivery models: Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as
a Service (Mell et al., 2011).

SaaS is based on developing software systems that
can be used by different tenants (i.e., customers) at
the same time. In fact, designing applications in a
way that enables all customers to share the same in-
stance of the deployed application is the preferred ap-
proach of developing cloud applications. This ap-
proach is preferred because it enables full utiliza-
tion of cloud resources and more efficient scalabil-
ity. The approach of having all customers using the
same instance is called Single-Instance Multi-Tenant
approach (SIMT) (Guo et al., 2007).

Designing and developing SIMT applications is more
complicated than traditional monolithic applications
for many reasons. In particular, multi-tenant support,

Kiswani, J., Dascalu, S. and Jr, F.
Cloud-RA: A Reference Architecture for Cloud Based Information Systems.
DOI: 10.5220/0006863608490854

billing, and monitoring are not easy to achieve. In
addition, and with high-competition in the startups’
ecosystem, the time to market and faster response to
changes are required to achieve more profits and en-
sure more business sustainability. For these and many
other reasons, a new architectural style was devel-
oped: Microservices Architecture (MsA) (Fowler and
Lewis, 2018a).

MsA is based on having applications developed as
separate loosely-coupled services (i.e., components)
that are independently deployable, and able to com-
municate with other services over lightweight proto-
cols such as HTTP. In addition, every service man-
ages its own data storage; in fact, no direct access
to other services data-store is allowed (Fowler and
Lewis, 2018a). Also, MsA services are designed
around business capabilities (Richardson, 2018). Fur-
thermore, they can be developed in any technology
(e.g., Java, Python, C++), and can be added and re-
moved at any time without affecting the whole system
functionality (Killalea, 2016).

Designing software applications -and more specifi-
cally cloud applications- based on MsA can exploit
the full benefits of Cloud Computing of elasticity and

849

In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 849-854

ISBN: 978-989-758-320-9

Copyright © 2018 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

SE-CLOUD 2018 - Special Session on Software Engineering for Service and Cloud Computing

global software engineering (Beecham et al., 2014).
Even though MsA has many advantages, it is not a
free lunch. Primary concerns are design and devel-
opment complexity, long learning curve, and lack of
expertise and tools (Richardson, 2018).

On the other hand, Information Systems (IS) is a par-
ticular category of software applications. IS enables
controlled access to a broad base of shared informa-
tion, such as library management systems and patient
record systems (Sommerville, 2015). In such appli-
cations, the relational database is the most commonly
used engine. However, due to the vast number of
database tables in these applications, having user in-
terface views for managing most of these tables is
mandatory, which includes Create, Read, Update, and
Delete (CRUD). Developing these functionalities in-
creases the development cost and time, and introduces
other risks. However, utilizing a metadata-driven ap-
proach for building such application can reduce these
risks dramatically. In fact, it can enable higher quality
and consistency (Kiswani et al., 2017).
Consequently, developing multi-tenant cloud-based
information systems by utilizing MsA is challenging
and requires specialized expertise. Thus, having an
approach for enabling a more efficient way of design-
ing and developing such applications may reduce the
development time and cost, and be beneficial for both
researchers and practitioners.

Many tools in the software architecture discipline
were developed to make it predictable, systematic,
and repeatable. Architectural Styles, Architectural
Patterns, and Reference Architectures are examples

of these tools (Len Bass, 2012).

Architectural styles and architectural patterns solve
partial problems of software systems. Client-Server,
Publish-Subscribe, and Layered Architecture are ex-
amples of architectural styles. While Model-View-
Controller (MVC) and State-Logic-Display (i.e.,
Three-Tier) are examples of architectural patterns
(Taylor et al., 2010).

In the other hand, in the reference architecture ap-
proach, a complete architecture is used for specific
types of solutions and domains. An example is the
Microsoft Industry Reference Architecture for Bank-
ing (Microsoft, 2012). Furthermore, lists of common
reference architecture are documented and explained
in literature (Humberto Cervantes, 2016).

For the preceding reasons, we propose Cloud-RA ref-
erence architecture. In particular, Cloud-RA is a tem-
plate architecture that can be used to build cloud in-
formation systems based on MsA. Furthermore, it in-
cludes multi-tenant support, billing, and monitoring.
Also, it includes cross-cutting services such as se-
curity, auditing, and logging. Moreover, it includes
a metadata-driven approach that can reduce develop-
ment time and increase software overall quality.

This paper is organized into 4 sections. This sec-
tion covers the introduction. Then, it is followed by
Section 2, which includes the background and related
work. Section 3 includes the proposed work. Finally,
Section 4 concludes the paper and identifies several
directions of future work.

Software system 1 Software system 2 Software system 3 Software system 4
Application —
Client Application
Presentation Presentation
Application
Business logic Business logic
Server
Data access Service 1 = Service2 = Service 3
Database Database Database Database

Figure 1: Examples of monolithic software systems.

850

Cloud-RA: A Reference Architecture for Cloud Based Information Systems

2 BACKGROUND

Organizations from all domains implement software
applications with different scales for both internal and
external use. Governments implement software sys-
tems to enable internal administration management
with thousands of users. At the same time, they might
implement an online software system to enable smart-
government online services for citizens and residents.
Another example is that of a scientific community
may implement a group-scoped system for scientific
Big Data management while enabling visualization
features for external entities.

The monolithic approach of software development
was the dominant model, in particular, building soft-
ware applications as a single deployable unit (Fowler
and Lewis, 2018a). In the past, this approach was
practical since software size was relatively small and
consisted of a low number of software components
and functionality. In addition, this approach was com-
mon due to its convenience and ease of development.
Moreover, the systems were only used by a limited
number of users, with relatively long-term and sta-
ble requirements. Figure 1 shows some examples of
monolithic applications.

However, things have changed, with the Internet,
smartphones, Big Data, Cloud Computing, and the
startups’ ecosystem. Moreover, time to market and
response to new requirements became more critical.
Scalability has reached limits that were never pos-
sible and required before, with hundreds of millions
of concurrent users accessing the same service at the
same time. In addition, Internet of Things (IoT)
also affected this wave, which increased the num-
ber of devices accessing online services exponentially
(Economist, 2008).

With all these factors, the monolithic approach of
software applications development may be a severe
bottleneck. In fact, it may affect the organization’s
existence. The high-risks produced by adopting this
approach includes a high cost of implementation and
scalability, heavyweight testing and deployment pro-
cesses, and complexity of development. Moreover,
factors such as global software engineering (Ebert
et al., 2016), and the need to use different technol-
ogists in the same project (e.g., Angular for front-
end, Python for presentation tier, and Spring-Boot
for backend) increased the challenge of selecting the
monolithic approach, where the same technology is
the main theme for most of the applications. Fur-
thermore, various front-end technologies such as mo-
bile devices, browsers, desktop applications, and IoT
devices require lighter communication and full sepa-
ration between front-end and back-end technologies

(Laplante et al., 2008).

Even with the existence of techniques and concepts
such as Object Oriented Programming (OOP), de-
sign patterns (Gamma, 1995), reusable components
development, application frameworks, and software
product lines (Linda M. Northrop, 2012), building the
modern requirements of software systems is still chal-
lenging (Garlan, 2014).

Service Oriented Architecture (SOA) is an approach
of software architecture and development driven by
the academia and practitioners (Turner et al., 2003).
In particular, it is a software constructions model that
aims to change how the software systems are built. Its
central idea is based on separating an application into
smaller self-contained components, which are encap-
sulated, independently deployable, and communicate
over a standard protocol. The common used protocol
for SOA is Simple Object Access Protocol (SOAP)
based web services. However, SOA did not get high
traction because of its heavy-weight nature, in par-
ticular, communication, development and configura-
tion complexity, tools and technologies. Moreover,
the frequent use of SOA applications was for medium
to large-scale information systems that require a rela-
tional database as the central persistence mechanism
of application data. In fact, a unified instance of the
database was used, which limits the flexibility, where
developers were constraints in terms of taking design
decisions, and created a bottleneck on architectural
and database design decisions.

Consequently, a new architectural style has evolved:
Microservices Architecture (MsA). In MsA, a soft-
ware application is built as small, lightweight,
reusable and self-deployable components that com-
municate over a lightweight protocol. In fact, these
components can be developed using any technology.
Moreover, every service has its business logic, stor-
age engine, and persistent mechanism. Therefore, de-
velopers have full decisions control over the design,
technology, and implementation of their services. The
common used protocol in MsA is the Representa-
tional State Transfer (REST). REST is a lightweight
version of SOAP web-services. In particular, it works
as a layer that operates directly over the HTTP proto-
col (Fowler and Lewis, 2018a).

The microservices architecture overcomes many is-
sues, and challenges over the monolithic and SOA
approaches. However, it requires a particular early
architecture and design, mainly for the services and
their interfaces. Notably, these decisions may affect
the overall success of the project. In fact, arguments
about whether to start monolithic or microservices are
increasing day after day (Tilkov, 2018) (Fowler and
Lewis, 2018b).

851

SE-CLOUD 2018 - Special Session on Software Engineering for Service and Cloud Computing

Even though MsA can be implemented in traditional
on-site applications, its full advantage can directly be
gained if implemented in Cloud Applications. Cloud
Applications are the applications deployed on Cloud
Computing environments such as Infrastructure as a
Service (IaaS) or Platform as a Service (PaaS) and are
publicly accessible over the Internet by their intended
users (Gorelik, 2013). As explained earlier, adopting
MsA on the cloud is more efficient than Monolithic or
SOA. In addition, implementing the quality attributes
of scalability, high availability, auditability, monitora-
bility, and traceability, will achieve the full benefits of
Cloud Computing. In fact, including these quality at-
tributes along with MsA in an application is termed as
Cloud Native Applications (Balalaie et al., 2016).

3 PROPOSED REFERENCE
ARCHITECTURE

This section presents Cloud-RA a proposed reference
architecture for developing cloud-based multi-tenant
information systems. In particular, it describes the re-
quired layers and their components, and the motiva-
tion for them.

3.1 Cloud-RA Layers

To achieve higher separation of concerns and modu-
larity, the layered architectural style was used to de-
sign the higher level architecture of Cloud-RA. As
shown in Figure 2, Cloud-RA consists of 5 layers:

Application services

Metadata driven services

I

Figure 2: Layers of Cloud-RA.

1. Edge Services: Edge services are the front-line
of cloud applications that are exposed to applica-
tion clients. In fact, no access to the layers below
is allowed from outside applications. In modern
cloud software systems, client applications can
be web browsers, rich client applications, smart-
phones or smart-device clients. Consequently, en-
abling universal devices access over a lightweight
standard protocol is crucial.

852

2. Application Services: This layer includes the
application business logic services. These ser-
vices include the domain logic and the functional
requirements.

3. Metadata Services: This layer contains the
services required for dynamic generation of user
interface and data access functionality (Kiswani
et al., 2017).

4. Cloud Application Infrastructure Services:
This includes the services required to enable cloud
applications features such as multi-tenant support,
monitoring, and analytics.

5. Cross-cutting Services: This layer includes the
services that are required for all the other layers,
such as configurations, security, and utilities.

3.2 Cloud-RA Microservices

As presented in the previous section, Cloud-RA con-
sists of four horizontal layers and one cross-cutting
layer. All the internal components of these layers are
based on the Microservices Architecture. In particu-
lar, every service is self-deployable and possesses its
own data storage. The microservices of Cloud-RA
(Figure 3) are:

1. API Gateway: It is the core component of the
Edge-Services and acts as the front-end proxy that
accepts requests from external clients. Its main
goal is to direct the requests to the appropriate
service instances, where multiple instances of the
same service could be projected to achieve the
benefit of light-weight horizontal scalability of
cloud-applications. In addition, it might include
front-end security features.

2. Multi-tenant: This microservice handles the
multi-tenant support of clients transparently. In
particular, it is designed to enable transparent sup-
port for multi-tenant, with the illusion of having a
separate dedicated deployment for every tenant.

3. Billing: Manages the usage and billing for each
customer. Examples of billing criteria may be
based on calculating the usage based on the num-
ber of transactions, the number of users, or data-
size.

4. Monitoring: This microservice monitors the ap-
plication activity for the cases of normal load,
overload, and attacks. This service may be useful
for evaluating the infrastructure needs, detection
of security attacks, or identify software design is-
sues and bottlenecks.

Cloud-RA: A Reference Architecture for Cloud Based Information Systems

Application Clients

Cross-cutting Services

Browser Smart-phone Rich client

Security
T

ToT Device

$

API Gateway Service

L2

Application Logic Services

"'-._._‘______,__,_/
Database
e
Auditing
e
‘*-._._‘_‘—'__'_/
Database
\"‘-———-'-‘d

Service 1 Service 2

Database

Service 3 Caching

‘-._,_‘______'__,_/
Database

Cloud Infrastructure Services

Multi-tenant

Billing

Monitoring

Database

Analytics

Utilities

Database

Figure 3: Microservices of Cloud-RA.

. Analytics: Analyses the application data dynami-
cally. This can be used for dashboard-like func-
tionality in the application. It may include an
internal data warehouse that contains aggregated
data collected from other services. This data may
be then exposed for further analysis and visualiza-
tion.

. Security: This microservice manages the security
aspects of the applications. It includes the authen-
tication and authorization functionality. In addi-
tion, it may include the required encryption, de-
cryption, and hashing implementations.

. Auditing: Provides auditing support for business
level transactions. In fact, having automated au-
diting features is significant in most applications
(e.g., financial and governmental) for compliance
and internal and external auditing.

. Caching: Acts as a shared in-memory stor-
age across all services for performance reasons.
Caching for common required data that have a
high percentage of access can dramatically in-
crease system performance and scalability. Also,
having a dedicated service for caching man-
agement makes it easier to enhance the soft-
ware design to upgrade from single-host cache to
distributed-caching technique.

. Configuration: Provides common configuration

10. Utilities:

for all Cloud-RA components.

Common utilities that can be called
from any service, such as getting server date, time,
and their formats.

4 CONCLUSIONS

The work presented in this paper is a proposed ref-
erence architecture for cloud-based information sys-
tems. This could be the base architecture that could
be modified according to the specific software project
requirements.

However, since the microservices architectural style
is relatively new, and the cloud computing trends are
still evolving, there will be a need for new reference
architectures to cover the new features and require-
ments.

In addition, reference architectures for other cate-
gories of cloud-based applications are essential. Ex-
amples of such categories are Big Data and IoT appli-
cations.

ACKNOWLEDGMENT

This material is based upon work supported by the
National Science Foundation under grant number

853

SE-CLOUD 2018 - Special Session on Software Engineering for Service and Cloud Computing

ITA-1301726. Any opinions, findings, and conclu-
sions or recommendations expressed in this material
are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

REFERENCES

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R. H., Konwinski, A., Lee, G., Patterson, D. A.,
Rabkin, A., Stoica, L., et al. (2009). Above the clouds:
A berkeley view of cloud computing. Technical re-
port, Technical Report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley.

Balalaie, A., Heydarnoori, A., and Jamshidi, P. (2016). Mi-
croservices architecture enables devops: Migration to
a cloud-native architecture. IEEE Software, 33(3):42—
52.

Beecham, S., O’Leary, P., Baker, S., Richardson, 1., and
Noll, J. (2014). Making software engineering research
relevant. Computer, 47(4):80-83.

Ebert, C., Kuhrmann, M., and Prikladnicki, R. (2016).
Global software engineering: Evolution and trends.
In Global Software Engineering (ICGSE), 2016 IEEE
11th International Conference on, pages 144-153.
IEEE.

Economist (2008). Let it rise: A special report on corporate
IT. Special report, The Economist.

Fowler, M. and Lewis, J. (2018a). Microser-
vices: a definition of this new archi-
tectural term. retreived jan 2018, from

https://martinfowler.com/articles/microservices.html.

Fowler, M. and Lewis, J. (2018b). Microser-
vices resource guide. retreived jan 2018, from
https://martinfowler.com/microservices/.

Gamma, E. (1995). Design patterns: elements of reusable
object-oriented software. Pearson Education India.

Garlan, D. (2014). Software architecture: a travelogue. In
Proceedings of the on Future of Software Engineering,
pages 29-39. ACM.

Gorelik, E. (2013). Cloud computing models. PhD thesis,
Massachusetts Institute of Technology.

Guo, C. J., Sun, W., Huang, Y., Wang, Z. H., and Gao, B.
(2007). mework for native multi-tenancy application
development and management. In e-commerce Tech-
nology and the 4th IEEE International Conference on
Enterprise Computing, e-commerce, and E-Services,
2007. CEC/EEE 2007. The 9th IEEE International
Conference on, pages 551-558. IEEE.

Humberto Cervantes, . R. K. (2016). Designing Soft-
ware Architectures: A Practical Approach (SEI Se-
ries in Software Engineering). Addison-Wesley Pro-
fessional; 1st edition.

Killalea, T. (2016). The hidden dividends of microservices.
Communications of the ACM, 59(8):42—45.

Kiswani, J., Muhanna, M., and Qusef, A. (2017). Using
metadata in optimizing the design and development
of enterprise information systems. In Information and

854

Communication Systems (ICICS), 2017 8th Interna-
tional Conference on, pages 188-193. IEEE.

Laplante, P. A., Zhang, J., and Voas, J. (2008). What’s in
a Name? Distinguishing between SaaS and SOA. It
Professional, 10(3).

Len Bass, Paul Clements, . R. K. (2012). Software Ar-
chitecture in Practice (3rd Edition). Addison-Wesley
Professional.

Linda M. Northrop, Paul C. Clements Contributor Reed Lit-
tle,J] M.L.O.E.B.J.K.B.G.C.S.G.C.P.D.L.G.
J.R.W.K.J.(2012). A Framework for Software Prod-
uct Line Practice, Version 5.0. Software Engineering
Institute, Carnegie Mellon University.

Mell, P, Grance, T., et al. (2011). The NIST definition of
cloud computing.

Microsoft (2012). Microsoft Industry Reference Architec-
ture for Banking (MIRA-B).

Richardson, C. (2018). Microservices are not a silver bullet.
retreived jan 2018, from https://microservices.io.
Sommerville (2015). Software Engineering (10th Edition).

AddisonWesley.

Taylor, R. N., Medvidovic, N., and Dashofy, E. M. (2010).
Software Architecture: Foundations, Theory, and
Practice. Wiley.

Tilkov, S. (2018). Dont start with a monolith. retreived
jan 2018, from https://martinfowler.com/articles/dont-
start-monolith.html.

Turner, M., Budgen, D., and Brereton, P. (2003). Turning
software into a service. Computer, 36(10):38—44.

