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Abstract:  End stage malaria elimination efforts will require interventions against transmission that is sparse, cryptic and 
spotty, situations suited for explicitly spatial simulation. A simulation of mosquito population dynamics and 
Plasmodium vivax malaria transmission in the Brazilian Amazon is described combining techniques of 
cellular automata and coupled map lattices. Within a 200x200 grid, 64 dispersed communities of 50 
households each are represented with larval breeding sites following a random Gaussian distribution. Discrete 
representation of individual humans allows examination of the effect of circulation and migration. Continuous 
representation of mosquito abundance allows for more realistic scaling over space. Simulations (n=100) reach 
equilibrium within 200 daily time steps. Adult mosquito populations range between 230-241,000 individuals. 
An average parous rate of 56.5% for stable mosquito populations is consistent with values reported in local 
field studies of the primary vector, Anopheles darlingi. Equilibrium prevalence of P. vivax infections averages 
3% (1.8-3.9%) and is highly sensitive to treatment seeking behaviour of asymptomatics. This simulation 
provides a stable platform that may be useful for investigating the role of human migration and asymptomatic 
malaria in perpetuating transmission cycles in this region and interventions supporting malaria elimination 
efforts. 

1 INTRODUCTION 

Plasmodium vivax is currently the dominant species 
of malaria in the Brazilian Amazon (Barbosa et al. 
2014). While less dangerous than P. falciparum, 
infections cause recurrent attacks that impose 
enormous impacts on the health and economic 
potential of residents (Mendis et al. 2001). 

Certain areas of the Amazon have reported 
promising declines of both P. falciparum and P. vivax 
transmission (Barbosa et al. 2014, Vitor-Silva et al. 
2016), However, asymptomatic infections challenge 
malaria elimination efforts because there is less 
incentive to seek treatment in the absence of 
symptoms. Asymptomatic infections can persist and 
remain infectious for many months in the absence of 
treatment (Tripura et al. 2016). 

Anopheles darlingi is the dominant vector of 
malaria in the Brazilian Amazon (Castro et al. 2006, 
Pimenta et al. 2015). Anthropogenic changes to the 
natural landscape have only increased its role in 
maintaining malaria transmission cycles (Vittor et al. 
2006, 2009) in settlement areas. 

Local migration into, from and between (i.e. 
circulation) Amazonian communities may serve to 
disperse and perpetuate foci of transmission (Martens 
and Hall 2000). Residents of Amazonia are highly 
mobile, colonizing new areas and circulating on a 
daily, seasonal and periodic basis within settled 
communities in pursuit of labor and trade (Camargo 
et al. 1994; McGreevy et al. 1989). 

Such movements have the potential to perpetuate 
malaria transmission by repopulating extinct foci 
with new parasites from transmission ‘hot spots.’ 
Thus, these activities also pose a challenge to malaria 
elimination efforts. 

Individual-based models allow the study of 
patchiness and non-random dispersal on the dynamics 
of disease transmission (Auger et al. 2008, de Castro 
et al. 2011), important factors where transmission is 
low and locality-dependent. Thus, we developed an 
explicitly spatial simulation that captures key features 
of malaria transmission in this region including the 
behavior of An. darlingi, human population 
distribution and mobility, intraspecific competition 
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among larvae and the frequency of asymptomatic 
carriage of infectious parasites.  

We aimed to create a platform in which to explore 
surveillance and intervention strategies to achieve 
local elimination of malaria in South America, and to 
assess the advantages of a hybrid automata/couple 
map lattice approach. 

2 METHODS 

This simulation was encoded using the J functional 
programming language (Jsoftware v. 8.06), a 
platform optimized for matrix manipulations. 
Simulations were executed on an ASUS Zenbook 
laptop (16 GB RAM) running Windows 10. 

We combined techniques used in cellular 
automata and “coupled map lattices,” an “n”-
dimensional lattice where each site evolves in time 
through a map (or recurrence equation) of the form:  

Xt+1 = F(Xt)                             (1) 

X represents all values in the n-dimensional 
lattice at time (t) and F(X) represents the set of 
functions describing its transition over time. Time (t) 
advances in discrete units of 12 hours. Each “k” 
(overlay) dimension of the matrix X contains 
information about the i,j (row, column) locations of 
each variable, including larval mosquito stage, adult 
feeding and gonotrophic state, and breeding site 
characteristics. Dispersal of adult mosquitoes beyond 
their i,j locations occurs over an 8 cell Von Neumann 
neighbourhood. 

Multiple superimposed and interacting matrices 
were used to track variables representing larval 
mosquito habitats, human households, and 
mosquitoes and humans in various stages of malaria 
infection. A hybrid numerical approach was 
employed in which humans and disease states were 
tracked as discrete integers while mosquito 
population dynamics and dispersal were represented 
by continuous values representing the number of 
mosquitoes per location.  

The simulation environment was modeled after 
the perennial malaria transmission occurring in and 
around Remansinho, a settlement project in southern 
Amazonas State near the borders of Acre and 
Rondonia. Each cell on the matrix represents an area 
of about 100 m2 for a total simulated area of 4 km2. 

Bodies of water representing suitable larval 
habitats are randomly and Gaussian distributed across 
a 200x200 cell matrix. All are assumed to be of equal 
depth and surface area and begin with equal nutrient 

resources and cycling. For the purposes of the present 
simulation such bodies are assumed to be permanent. 

The primary mosquito vector, An. darlingi, is 
adapted to breeding on the margins of rivers, 
particularly in seasons when rivers flood. It has also 
been associated with anthropogenic environmental 
changes, breeding behind impoundments caused by 
road construction through wetland environments 
(Rufalco-Moutinho et al. 2016). 

Climatic variability is not explicitly depicted. 
Thus, temperatures are held constant using the 
average temperature at the end of rainy season in 
Remansinho (26oC www.worldclim.org). 

2.1 Human Population 

Aerial photos provided a template for the simulation’s 
depiction of settlement density. Patterns derived were 
used to create a basic unit representing a community 
of 50 households along a roadway. These tiles were 
tessellated evenly across the matrix, creating a total 
of 64 identical ‘communities’ for a total of 3,200 
households. Initial household sizes and births 
correspond to survey data collected near Remansinho 
but constrained to a maximum of eight permanent 
residents per household. The maximum population 
supported by this layout is thus 25,600 people. 

Migration and circulation is simulated by shifting 
people between communities. Out-migration and 
returns occur on a stochastic basis with outcomes 
determined by lottery draw from a uniform 
distribution. People who leave a particular household 
always return to the same household, although the 
duration of their absence can vary. Up to two 
household members can be absent at any given time. 
Visitors to households are not constrained by the 
eight member per household limitation. 

2.2 Mosquito Population 

2.2.1 Adults 

Anopheles darlingi is the sole mosquito vector 
species considered in these simulations. Separate 
matrices of continuous variables track adult 
mosquitoes by stage of gonotrophic cycle (host-
seeking, bloodfed, gravid, ovipositing) and day of 
extrinsic incubation, if infected. 

Dispersal is weighted towards households when 
mosquitoes are in a host-seeking state and towards 
larval habitats when they are gravid. Dispersal in the 
absence of environmental cues occurs evenly to all 
adjoining sites on the matrix. Bloodfed, resting 
mosquitoes do not disperse (Hiwat and Bretas 2011). 
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2.2.2 Subadult Mosquitoes 

Larvae only occur on sites where suitable habitats are 
present, as indicated by a reference matrix depicting 
the locations of such habitats (Figure 1). Oviparous 
mosquitoes deposit ova only in such sites.  

 

Figure 1: Distribution of larval mosquito habitats. Bodies 
of water (white) supporting mosquito larvae are distributed 
randomly via a Gaussian algorithm to 20% of grid sites. 

Separate state matrices track larval stages or ‘instars’ 
by stage of development. Daily mortality rates 
derived from life table data (Araujo et al. 2012) are 
specific to instar. Larval population dynamics are 
constrained by density-dependent intraspecific 
interactions (Klomp 1964). Carrying capacity is 
dynamic and emergent, deriving from nutrient 
limitations in larval habitats. 

When nutrients are not limiting, larvae advance in 
the optimal period expected at 26oC for An. darlingi, 
approximately 12 days on average (Bergo et al. 
1990). When nutrients are lacking, larval 
development is delayed until nutrients become 
available (Bar-Zeev 1957, Araújo et al. 2012). 

Nutritional content of larval habitats is assumed to 
fluctuate in response to utilization by larvae, inflow 
from external sources as well as internal inputs 
resulting from microbial decomposition or algal 
photosynthesis. Each day, there is also a negative 
nutrient flux independent of mosquito larval activity 
related to uptake by other organisms, sedimentation, 
decay or other factors. 

Mosquito larvae compete for nutrients with a 
precedence favoring older instars. Heuristically, but 
based on larval studies (Dahl et al. 1993), 30% of the 
available nutriment is assumed to consumed non-

competitively at the rate of 2, 4, 8 and 16% for first 
through fourth larval instars respectively. The 
remaining nutritive content of the site is then obtained 
competitively with priority given to older instars.  

2.3 Malaria Transmission 

2.3.1 Mosquito to Human 

Daily transmission of malaria from mosquitoes to 
humans is a function of the number of infected 
mosquitoes a person is likely to contact within a 
twenty-four hour period. Specifically, the probability 
of a person acquiring a malaria infection each day is 
governed by the expression: 

Pinf(h) = 1 – (1-im)nba (2)

where: im = probability that a single infectious 
mosquito bite triggers a patent malaria 
infection in a person. 
n = number of infectious mosquitoes per 
person in a given household. 
b = biting success (daily probability that an 
infectious mosquito is successful in 
obtaining a blood meal from hosts in its 
vicinity). 
a = anthropophagy (the probability that an 
infectious mosquito obtains a blood meal 
from a person and not an animal). 

Humans are handled as discrete and individual 
entities in this simulation with integers representing 
infection states. Pinf(h) is used to determine the 
probability of a state transition from uninfected to 
infected. This transition is thus executed for only 
those individuals for which a random number from a 
uniform distribution between 0 and 1 is less than or 
equal to the probability of infection. Thereafter, 
infections states for each household member change 
on a daily basis to represent advancing prepatency. 

Risk of acquiring malaria infections is assumed to 
be independent of age, as is typical in areas with 
seasonal malaria transmission and moderate 
prevalence rates (Hay et al. 2004). 

2.3.2 Human to Mosquito 

The proportion of mosquitoes in a given site 
acquiring a malaria infection each day is governed by 
the expression: 

Pinf(m) = ihpba  (3)
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where: ih = probability that a mosquito feeding on 
an infectious human becomes infected. 

p = proportion of humans in a site infectious 
with malaria. 

 b = biting success (daily probability that a 
mosquito is successful in obtaining a blood 
meal). 

 a = anthropophagy (the probability that an 
infectious mosquito obtains a blood meal 
from a person and not an animal). 

We assume that all humans bearing patent malaria 
infections are equally infectious to mosquitoes and 
that asymptomatic infections remain asymptomatic. 

Using Moshkovsky’s formula for extrinsic 
incubation of P. vivax malaria parasites (Detinova 
1962), we assume that infected mosquitoes exposed 
to an average ambient outdoor temperature of 26oC 
would require about 9.13 days (E = 105/T-14.5) to 
become infectious. 

2.3.3 Intrinsic Incubation 

Humans are assigned a discrete integer state 
corresponding to their malaria infection status, with 1 
representing uninfected individuals, 2-15 
representing each day of prepatency for infected 
individuals, 16 representing those presenting with 
clinical symptoms and 17 representing asymptomatic 
individuals. All patent infections are assumed to be 
infectious to vectors. 

Loss of infection can occur with or without 
treatment with infected individuals returning to their 
initial state. For this hypoendemic situation, we do 
not assume the presence of sufficient immunity to 
alter the probability of re-infection. The current 
simulation also does not account for superinfection by 
parasites in differing developmental stages. 

2.4 Sensitivity Analyses 

Model parameters, whenever possible, were extracted 
from literature appropriate to the area targeted in the 
simulation or drawn directly from survey data (Table 
1). Simulations using random sets of all input 
variables were used to explore the parameter space 
and determine the range of outcomes possible, 
including human, mosquito and parasite population 
dynamics and infection rates. Scatter plots were 
generated to track the effect of diverse sets of 
randomly sampled model input distributions on each 
output variable. 

Table 1: Baseline Parameter Assumptions and Sources. 

Parameter Value Range Source 
Mosquito Immature Survival Rate (daily) 

1st instar 0.80 0.75-
0.85 

Araujo et 
al. 2012 

2nd instar 0.90 0.85-
0.95 

“ 

3rd instar 0.92 0.85-
0.95 

“ 

4th instar 0.95 0.92-
0.98 

“ 

Pupae 0.95 0.92-
0.98 

“ 

Immature Development Period 
12 days Gu and 

Novak 
2006 

Mosquito Infection – Extrinsic Incubation 
P. vivax 10  

days 
9-11 
days 

Paaijmans 
et al. 2009 

Human 
Blood 
Index 

0.458 0.40-
0.50 

Kiszewski 
et al. 2004 

Trans-
mission 

 
Prob. of 
trans. to 
human 

 0.05-
0.13 

Krafsur 
and 
Armstrong 
1978 

Prob. of 
trans. to 
mosquito 

 0.1-0.6 Muirhead-
Thomson 
1954, 
1957; 
Rutledge et 
al. 1969 

Intrinsic 
Incub. 
Period 

 9-12 
days 

Molineaux 
and 
Gramiccia 
1980 

Infectious 
period (no 
treatment) 

18  
mos. 

12-24 
months 

Bloland 
and 
Williams 
2002 

Elimination did not occur within the range of 
natural conditions without external forcing or 
intervention. Elimination of parasite populations 
occurred in some runs when treatment rates of 
asymptomatic carriers were equal or greater than 
symptomatics. No parameter sets led to outcomes that 
could not be explained by natural interactions. Adult 
mosquito survival rate and treatment rate among 
asymptomatic humans had the strongest effect on 
equilibrium prevalence of infection in humans and 
mosquitoes, while variables affecting larval 
abundance had the least impact.  

3 RESULTS 

Parameters selected within reported ranges of natural 
values (Table 1) delivered plausible outcomes. 
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Multiple runs (n=100) showed variable but stable 
results between simulations without extreme 
variation (Table 2). 

Table 2: Mean equilibrium values for primary 
outcome variables using default parameters. (n = 
100, 1,000 time steps). 

Variable Mean/ 95% 
CI. 

SD Min Max 

Human 
population 

9,416.8 
(9402.2, 
9431.4) 

73.4 9,259 9,593 

No. People 
infected 

279.35 
(271.02, 
287.68) 

41.98 170 365 

% 
Prevalence 

2.97 (2.88, 
3.06) 

0.45 1.82 3.89 

Asympt. 
Infections 

236.66 
(229.68, 
243.64) 

35.19 143 313 

% Asympt. 93.06 
(92.76, 
93.37) 

1.55 89 96 

Subadult 
Mosquitoe
s  (x 107) 

1.64 (1.64-
1.65) 

0.03 1.58 1.71 

Adult 
Mosquitoe
s 

230,451 
(229,595, 
231,306) 

4,310 220,524 241,256

Infected 
Mosquitoe
s 

1,394.7 
(1,348.6, 
1,440.8) 

232.2 789 2018.3 

Sporozoite 
Rate 

0.61 (0.59, 
0.62) 

0.1 0.34 0.88 

% Parous 56.51 
(56.42, 
56.61) 

0.48 55.46 57.82 

The total population of humans in this simulation 
reaches about 9,417 on average, with a minimum of 
9,259 and a maximum of 9,593. Adult mosquitoes 
reach a mean population size of 230,451 (with a range 
of 220,524 to 241,256). These values correspond to a 
mosquito/human ratio of about 24:1. 

Most outcome variables reach equilibrium in 
about 400 time steps. Point prevalence of malaria 
infection settles at about 3% on average. Other 
measures of transmission stability independent of 
infection, such as parous rate, reach equilibrium more 
quickly, achieving stable oscillations in about 200 
time steps. 

Baseline parameters produced lower prevalence 
(3%) than reported for P. vivax for Amazonia as a 
whole (5.3%) and Rondonia in particular (4.9%, 
Arruda et al. 2007), and significantly less than that 
reported at Remansinho (9.1%, Barbosa et al. 2014). 

An alternative set of parameters employing a 
slightly different treatment rate in asymptomatic 
humans (0.25% treatment probability per day vs. 
0.5%) brought equilibrium prevalence into these 
observed ranges (6.2%) while keeping vector 
sporozoite rates below 1%. 

The number of infected mosquitoes at equilibrium 
(Table 2) averages about 1,394 (789-2,018). As one 
might expect, there was a strong correlation between 
infected mosquitoes and infected humans (R = 0.904, 
P<0.001). Abundance of subadult mosquitoes was not 
significantly correlated with human malaria 
infections (R = 0.19, P=0.059) unlike adult mosquito 
abundance (R = 0.26, P=0.008). 

Mosquito parous rates do not reach equilibrium, 
but rather oscillate stably around a mean of about 
54.6% even in runs in excess of one thousand time 
steps. This value for parity is slightly higher than the 
range observed in natural, stable populations of An. 
darlingi (Moreno et al. 2007; Rubio-Palis et al. 2013). 
Parity in wild mosquito populations tend to be 
observed below 50% except during seasons when 
populations are growing after a seasonal interruption. 

4 CONCLUSIONS 

The baseline parameters of this simulation deliver 
outcomes for both human and mosquito malaria 
infection dynamics comparable to those observed 
within the study areas we are attempting to simulate. 

The age structure of mosquito vector populations 
as indicated by parous rate is a critical determinant of 
vectorial capacity and a sensitive indicator of the 
efficacy of anti-vector interventions. Our baseline 
value of 56.5% is slightly elevated over empirical 
observations of An. darlingi in the region (Moreno et 
al. 2007, de Barros et al. 2011). Baseline sporozoite 
rates of less than 1% are also consistent with local 
observations (Hiwat and Bretas 2011). 

While the simulated prevalence rate for P. vivax 
malaria infection was significantly less than what was 
recently reported from the targeted study area at 
Remasinho in southern Amazonas, prevalence values 
can differ widely between localities and seasons. 
Significant shifts in prevalence have been observed 
even in the same areas over the course of a few years 
(Barbosa et al. 2014). Modest changes in treatment 
rate among asymptomatic people led to simulated  
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Figure 2: Distribution of households and malaria cases. 
Light blue represents households without malaria. Other 
colors (green to red) indicate the presence of malaria in at 
least one household member. 

prevalence rates within the ranges reported in 
surveys.  

Malaria surveys in Amazonia suggest that 
asymptomatic malaria infections far outnumber 
symptomatic infections. While the ratio of 
symptomatic to asymptomatic infections produced by 
this simulation conforms to these observations, the 
ratio we produced (5.54 asymptomatic for every 
symptomatic person) is close to the 4-5X range 
observed in some empirical studies (Alves et al. 
2002).  

Prevalence of parasites in humans and vectors was 
highly sensitive to the presence of asymptomatic 
infections. Such cases may be a critical target for 
elimination campaigns because their presence helps 
perpetuate transmission and asymptomatic 
individuals may be less likely to self-report infections 
and seek treatment than those experiencing acute 
symptoms of malaria. Active surveillance will be 
required to identify these cases.  

Other individual or agent-based models have been 
successful at reproducing the spatial dynamics of 
malaria transmission (Bomblies et al. 2008, Gu and 
Novak 2009, Zhou et al. 2010, Eckhoff 2011, Zhu et 
al. 2015, Pizzitutti et al. 2015) including some aspects 
of human mobility (Zhu et al. 2015, Pizzitutti et al. 
2018). The model presented here is distinct from most 
prior efforts in its detailed simulation of larval 
population dynamics. With few exceptions (Bomblies 
et al. 2009), most simulations impose carrying 
capacity by increasing mortality or limiting 
oviposition in crowded habitats. The present model 

allows carrying capacity and larval development rate 
to fluctuate in response to crowding. Thus, it captures 
the paradoxical effect of enhanced pupal productivity 
after ‘thinning’ by insecticidal interventions 
(Agudelo-Silva and Spielman et al. 1984), and is thus 
well suited for evaluating the impacts of anti-larval 
interventions. The mechanism for regulating 
mosquito population growth in this simulation was 
based on the concept of niche partitioning (Gilbert et 
al. 2008) via intraspecific nutrient selectivity by 
larval instars (Klomp 1964, Merritt 1987, Dahl et al. 
1993).  

The current model also allows depiction of 
circulation of people to other communities with 
overnight stays of variable length with return to their 
original households. Prior efforts (Pizzitutti et al. 
2018) simulate diurnal activities with daily return to 
households of origin. Thus, the influence of 
temporary migration in creating new hot-spots and 
perpetuating malaria transmission in the face of 
elimination campaigns can be assessed. The present 
model also depicts differences in treatment-seeking 
behavior in symptomatic and asymptomatic humans 
which can further facilitate perpetuation of malaria. 

One drawback of our modeling approach as 
currently formulated is its inflexibility with regards to 
simulating climatic variability. Scenarios exploring 
climatic changes are possible with this technique, but 
require alternative versions to the code for a particular 
set of climatic conditions. Because time is discrete 
and variables representing infection status represent 
specific days of incubation, any changes in extrinsic 
incubation period requires changes in the code to 
provide additional or fewer classes of incubation 
states. As such, the current model is best applied to 
shorter time scales where climatic conditions remain 
stable. 

Other refinements of this model might include 
allowing vectors multiple chances to feed over the 
course of a single gonotrophic cycle. Such feeding 
behavior has been observed with An. darlingi in 
natural situations (de Oliveira et al. 2012). The 
authors of this work even observed some mosquitoes 
feeding more than once in the course of a single day. 

Thus, the present study suggests that our 
simulation approach provides a stable and relatively 
realistic platform for evaluations of malaria 
interventions. We hope in particular to exploit the 
features of the current model to explore strategies 
designed to eliminate transmission in hypo- and 
mesoendemic areas, including practices not generally 
undertaken or recommended where transmission is 
hyperendemic. 
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Upon incorporating the refinements suggested by 
these preliminary evaluations, the simulation will be 
applied to several contrasting intervention scenarios. 
These will include larval source reductions as part of 
a broader strategy of integrated vector management 
and mass drug administration in communities. We 
also hope to explore in detail the role of human 
migration and asymptomatic malaria in perpetuating 
transmission cycles in this region towards 
maximizing the impact of malaria elimination efforts. 
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