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Abstract: A new algorithm called LSHADE-RSP, which is based on a modification of the Differential Evolution 

technique, namely the LSHADE algorithm, with a rank-based selective pressure strategy, is presented in this 

paper. The basic idea of the proposed approach LSHADE-RSP consists in the adaptation of its mutation 

strategy, DE/current-to-pbest/1, using the linear rank-based selective pressure. LSHADE-RSP is built to 

tackle complex high-dimensional global optimization problems, and firstly it has been successfully tested on 

the CEC 2018 benchmark functions. Then the LSHADE-RSP was used for solving a real-life engineering 

global optimization problem, more specifically, the circular antenna array design problem. The objective of 

the stated problem is to vary the current and phase excitations of the antenna elements and try to suppress 

side-lobes, minimizing beam width, and to achieve null control at the desired directions. From the obtained 

results, the workability and usefulness of the new approach were confirmed. In addition, it can be concluded 

that the proposed optimization algorithm demonstrates competitive results in comparison with most 

alternative algorithms, thus, LSHADE-RSP can be recommended for solving optimization problems instead 

of them. 

1 INTRODUCTION 

Antenna arrays are intensively used in radar 

(Akcakaya and Nehorai, 2011), sonar (Bellettini and 

Pinto, 2002) and wireless communication systems 

(Zaker et al., 2007) among others. Therefore, the 

optimum design of array patterns is an important 

task in order to increase the channel capacities of 

these systems, broadening their coverage areas and 

ensuring an efficient spectrum utilization 

(Civicioglu, 2013). 

The aim of the circular antenna array design 

problem is to obtain its optimum parameters, thus 

determining the positions of array elements (Das and 

Suganthan, 2010). Many researchers have conducted 

different studies on this subject, for example 

(Dessouky, 2006). In this study, a new modification 

of the well-known LSHADE algorithm (Tanabe and 

Fukunaga, 2014), which, in its turn, is a 

modification of the Differential Evolution technique 

(Storn and Price, 1997), is proposed for solving the 

stated problem. 

Although generally the original LSHADE 

algorithm successfully solves various difficult 

optimization problems, there are still difficulties in 

keeping the balance between exploration and 

exploitation when solving complex multimodal 

problems. In order to achieve better performance, in 

this study the problems of premature convergence 

and search diversification were solved using a 

modification of the LSHADE technique’s mutation 

operator. Namely, the rank-based selective pressure 

strategy (Jebari and Madiafi, 2013) was used for its 

mutation strategy.  

The developed technique was called the 

“LSHADE Algorithm with Rank-Based Selective 

Pressure Strategy” or LSHADE-RSP. Firstly, the 

efficiency of LSHADE-RSP was examined on test 

problems taken from the CEC 2018 competition on 

real-parameter single objective optimization (Awad 

et al., 2016). Experimental results demonstrated that 

LSHADE-RSP performs better in comparison with 

the alternative algorithms. Thus, LSHADE-RSP was 

then used for solving the circular antenna array 

design problem. It was established that the proposed 
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optimization algorithm shows competitive results in 

comparison to different alternative algorithms.  

In this paper, firstly a brief description of the DE 

algorithm and consequently its modification 

LSHADE is given. Then the proposed LSHADE-

RSP technique and its parameters settings and 

adaptation are presented. In the next section, the 

experimental results obtained by the new developed 

LSHADE-RSP algorithm are demonstrated and 

discussed. Finally, some conclusions are given in the 

last section 

2 DIFFERENTIAL EVOLUTION 

Differential evolution (DE) is a global optimization 

evolutionary meta-heuristic first introduced in 1997 

for solving continuous optimization problems (Storn 

and Price, 1997). It is one of the most effective 

methods for complex high-dimensional problems, 

and thus, it became one of the most popular and 

often prize-winning optimization techniques. 

The DE algorithm is simple in its 

implementation due its compact structure. 

Furthermore, it has fewer control parameters in 

comparison to other evolutionary algorithms. 

As with biology-inspired methods, the DE is a 

population-based algorithm, and the population 

contains a number of solutions. Thus, the DE starts 

with a population of N candidate solutions, which 

may be represented as xi,j, where i = 1, … , N 

denotes individual’s index in the population and j = 

1,…,D denotes a variable’s index (or coordinate). 

The DE’s work process depends on the manipulation 

and efficiency of three main operators: mutation, 

crossover and selection. 

One of the main features of a DE is the mutation 

scheme, which was shown to automatically adapt to 

the scale of the optimized function, improving the 

performance. Therefore, the key idea of differential 

evolution is in constructing a mutant vector using 

the difference between two other vectors from the 

current population. 

The LSHADE algorithm (Tanabe and Fukunaga, 

2014) is an extension of the SHADE algorithm 

(Tanabe and Fukunaga, 2013), based on one of the 

adaptive DE modifications JADE (Zhang and 

Sanderson, 2009). LSHADE was first presented at 

CEC 2014, and ranked as the winner-algorithm for 

bound-constrained continuous optimization. 

The original LSHADE algorithm uses the 

DE/current-to-pbest/1 mutation scheme, shown 

below: 

 

   
jrjrjijbjij

xxFxxFxv
,2,1,,,

  (1) 

Here xi,j is the j-th coordinate of the i-th individual 

xi, r1 and r2 are mutually random numbers 

representing indexes of the individuals, vj is the so-

called mutant vector, which will be used in 

crossover operation, and xb is randomly chosen as 

one of the top 100p% individuals of the current 

population with p from the range (0, 1]. The scaling 

factor F is the parameter, usually in range [0, 1]. The 

random index r2 is uniformly selected from the joint 

set of the population and the external archive. The 

external archive keeps parent individuals which 

were replaced by new solutions. 

The next step is the crossover, which is 

performed for each individual xi as a calculation of 

the trial vector t with the crossover rate Cr. The j-th 

variable of the trial vector t is the same as the j-th 

variable of the mutant vector d if a randomly 

generated number in the range (0, 1) is smaller than 

the crossover rate Cr or if j is equal to jrand, where 

jrand is a randomly chosen index from 1 to D, 

otherwise it is the same as the corresponding 

variable of the individual xi. 
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In the last formula, Cr is the control parameter of the 

algorithm in the range [0, 1]. Cr = 1 means that there 

is no crossover, and the trial vector is equal to the 

mutant vector. The jrand index ensures that at least 

one variable is taken from the newly generated 

vector. 

The selection step is performed after calculating 

the fitness value of the trial vector. If the trial vector 

is better than the i-th individual in the population, 

than it is replaced by the trial vector. 

In addition, it should be noted that the LSHADE 

algorithm uses the Linear Population Size Reduction 

(LPSR) scheme (Tanabe and Fukunaga, 2014), 

which significantly boosts its performance. This 

scheme decreases the number of individuals in the 

population by deleting the least fit ones at every 

generation. 

3 PROPOSED APPROACH 

In this section, the proposed algorithm LSHADE-

RSP is introduced. Firstly, a description of the 

LSHADE-RSP is given and then the parameter 

settings of the new algorithm are presented. 
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3.1 LSHADE-RSP 

In this section, the modification of the LSHADE 

algorithm with a Rank-based Selective Pressure 

mutation (LSAHDE-RSP) is described. The rank-

based mutation scheme, which was called current-

to-pbest/r, modifies the current-to-pbest/1 strategy 

so that the second part containing two random 

vectors receives selective pressure. More precisely, 

r1 and r2 are selected according to the rank selection 

typically used in genetic algorithms (Jebari and 

Madiafi, 2013), with the ranks assigned as follows: 
 

  1 iNkRank
i

 (3) 
 

The largest rank is assigned to the individual with 

the largest fitness, and the smallest rank to the least 

fit, i.e. here i taken from the range [1, N] is the index 

in a sorted fitness array. We are considering a 

minimization problem, so larger fitness means a 

smaller goal function value. In (3) k is the scaling 

factor responsible for the greediness of the rank 

selection. Thus, the probability that the individual i 

will be selected is calculated as follows: 
 






N

j
j

i

i

Rank

Rank
pr

1

 
(4) 

 

The new mutation strategy, current-to-pbest/r, tends 

to select individuals with larger fitness values more 

often, although even the worst individual still has a 

possibility of being selected for the mutation 

operation. The motivation behind this is that rank-

based selection should boost the exploitation 

capabilities of the mutation strategy without 

significantly affecting the exploration. The resulting 

mutation strategy uses the modification proposed for 

the jSO algorithm (Brest et al., 2017), i.e. different 

scaling factors for the first (Fw) and second part (F) 

of the equation. Additionally, the scaling factor Fw 

depends on the scaling factor F. At the beginning of 

the search, while NFE<NFEmax*0.2, Fw is set to be 

equal to 0.7F. Next, while NFE<NFEmax*0.4, Fw = 

0.8F, and Fw = 1.2F for the rest of the search, where 

NFE is the current number of function evaluations 

and NFEmax is the total available number of goal 

function evaluations. 

3.2 Parameter Settings 

The two parameters adapted in LSHADE-RSP, are 

the scaling factor F and crossover rate Cr. The 

adaptation uses the same scheme as the original 

LSHADE algorithm, but the initial values and some 

constraints are taken from (Brest et al., 2017). The 

scaling factor F for every mutation operation is 

computed using a Cauchy distribution with location 

parameter μFr and scale parameter 0.1, while Cr is 

computed using a normal distribution with mean 

μCrr and variance 0.1. 

Moreover, µFr and µCrr are randomly chosen 

from the memory M of successful parameter settings 

(where the memory size is defined as H), and r is a 

uniformly chosen random index. Initially all µFr are 

set to 0.3, and µCrr are set to 0.8, and in addition to 

this, one memory cell always keeps µFr and µCrr, 

which are equal to 0.9. The values in µFr and µCrr 

in one memory cell are updated at the end of each 

generation using the Lehmer mean, which takes into 

consideration the fitness improvement. 

While the memory is being updated, the new 

values are calculated as the mean of the old F or Cr 

value and the newly generated value. 

For the first 0.6NFEmax evaluations, (here NFEmax 

denotes the maximum number of function 

evaluations) the F value is constrained to be not 

larger than 0.7 and not larger than 1.0 during the 

remaining computation resource. The p value for the 

current-to-pbest/r strategy, responsible for the 

greediness of the search, is computed by the 

following formula: 
 

max

085.0085.0
NFE

NFE
p   (5) 

 

The idea behind increasing the number of best 

individuals is to prevent premature convergence by 

gradually decreasing the selective pressure as the 

algorithm runs. 

4 EXPERIMENTAL RESULTS 

The efficiency of the new LSHADE-RSP was 

investigated firstly on a set of benchmark problems 

taken from the CEC 2018 competition on real-

parameter single objective optimization (Awad et 

al., 2016). Then, a real-world engineering problem, 

namely the circular antenna array design problem, 

was solved by the proposed technique. 

Subsequently, the experiments as well as the 

obtained results are described. 

4.1 CEC 2018 Benchmark Problems 

Firstly, the algorithm performance was evaluated on 

the CEC 2018 Competition on Single Objective Real 

Parameter Numerical Optimization (Awad et al., 

2016). Therefore, the workability of the new 
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algorithm was tested on 30 benchmark functions, 

which were shifted and rotated. The functions in the 

competition were tested for the corresponding 

numbers of variables: 10 (10D), 30 (30D), 50 (50D) 

and 100 (100D). The computational resource for all 

algorithms and all dimensions was equal and was 

calculated as 10000D. 

In the performed experiments, the parameter k 

for rank-based selection varied from 1 to 9, to be 

more specific k was equal to 1, 2, 3, 5, 7 and 9 in 

this study. However, only the results obtained with k 

= 3 and 10 variables are presented here in Table 1. 

Table 1: Algorithm results for 10D. 

№ Worst Best Mean Std. Dev 

f1 0.000e+00 0.000e+00 0.000e+00 0.000e+00 

f2 0.000e+00 0.000e+00 0.000e+00 0.000e+00 

f3 0.000e+00 0.000e+00 0.000e+00 0.000e+00 

f4 0.000e+00 0.000e+00 0.000e+00 0.000e+00 

f5 2.985e+00 0.000e+00 1.405e+00 7.155e-01 

f6 0.000e+00 0.000e+00 0.000e+00 0.000e+00 

f7 1.281e+01 1.067e+01 1.180e+01 5.087e-01 

f8 2.999e+00 0.000e+00 1.446e+00 6.647e-01 

f9 0.000e+00 0.000e+00 0.000e+00 0.000e+00 

f10 2.240e+02 2.339e-01 1.717e+01 4.244e+01 

f11 0.000e+00 0.000e+00 0.000e+00 0.000e+00 

f12 6.244e-01 0.000e+00 3.632e-01 2.054e-01 

f13 5.584e+00 0.000e+00 3.464e+00 2.303e+00 

f14 0.000e+00 0.000e+00 0.000e+00 0.000e+00 

f15 5.000e-01 8.096e-06 1.742e-01 2.067e-01 

f16 9.357e-01 4.094e-02 5.644e-01 2.172e-01 

f17 1.625e+00 7.174e-02 6.615e-01 4.071e-01 

f18 5.000e-01 3.935e-05 1.685e-01 2.003e-01 

f19 1.973e-02 0.000e+00 8.150e-03 9.504e-03 

f20 6.243e-01 3.122e-01 4.224e-01 1.492e-01 

f21 2.039e+02 1.000e+02 1.221e+02 4.210e+01 

f22 1.003e+02 1.000e+02 1.000e+02 6.716e-02 

f23 3.046e+02 3.000e+02 3.012e+02 1.533e+00 

f24 3.340e+02 1.000e+02 2.531e+02 1.082e+02 

f25 4.433e+02 3.977e+02 4.024e+02 1.350e+01 

f26 3.000e+02 3.000e+02 3.000e+02 0.000e+00 

f27 3.895e+02 3.890e+02 3.894e+02 1.762e-01 

f28 6.118e+02 3.000e+02 3.061e+02 4.323e+01 

f29 2.450e+02 2.267e+02 2.343e+02 3.406e+00 

f30 8.176e+05 3.945e+02 1.642e+04 1.133e+05 

 

During the algorithm run, the error was 

calculated as the difference between the current best 

solution f(x) and the global optimum f(x*). If this 

difference was less than 10–8, then it was considered 

to be small enough and taken as zero. Table 1 

contains the worst, best, mean and standard 

deviation values for every function calculated over 

51 program runs for 30 variables. 

The performance of the LSHADE-RSP 

algorithm was compared to the other methods 

participating in the CEC 2017 competition on single 

objective bound constrained optimization, including 

the original LSHADE algorithm. This was possible 

due to the fact that the test functions were the same 

for the CEC 2017 and the CEC 2018 competitions. 

Therefore, all methods had the same amount of 

computational resources and runs. To compare 

different methods, the Wilcoxon’s rank sum test 

with p = 0.05 was used. For comparison, the jSO 

(Brest et al., 2017), the EBOwithCMAR (Kumar et 

al., 2017), and the LSHADE-SPACMA (Mohamed 

et al., 2017) algorithms were chosen. 

Table 2: Comparison with other methods using statistical 

tests. 

D 
EBOwith 

CMAR 
jSO 

LSHADE-

SPACMA 

LSHADE-

RSP 

(k = 0) 

10 
8+/12=/10- 

2- 

2+/26=/2- 

0 

12+/14=/4- 

8+ 

2+/25=/3- 

1- 

30 
10+/8=/12- 

2- 

7+/19=/4- 

3+ 

12+/11=/7- 

5+ 

8+/21=/1- 

7+ 

50 
13+/7=/10- 

3+ 

13+/13=/4- 

9+ 

13+/12=/5- 

8+ 

10+/19=/1- 

9+ 

100 
13+/8=/9- 

4+ 

16+/9=/5- 

11+ 

8+/6=/16- 

8- 

15+/15=/0- 

15 

 

The numbers in the table represent the number of 

wins (+), losses (-) and equal results (=) when 

comparing LSHADE-RSP (k = 3) with other 

methods. The obtained results demonstrate that the 

proposed approach outperformed most of the 

alternative optimization techniques, including jSO, 

and was outperformed only by the winners of the 

CEC 2017 competition for some dimensions. 

Furthermore, LSHADE-RSP is more successful in 

comparison to other optimization techniques when 

the number of variables increases. Thus, it can be 

concluded that the selective pressure gives an 

improvement and the workability and usefulness of 

the new LSHADE-RSP algorithm were established. 

4.2 Circular Antenna Array Design 
Problem 

As was mentioned before, the circular shaped 

antenna arrays find various applications in sonar, 

radar, mobile and other communication systems. Let 

us consider N antenna elements spaced on a circle of 

radius r in the x-y plane (Das and Suganthan, 2010). 

The antenna elements are said to constitute a circular 

antenna array. The array factor for the circular array 

is written as follows: 
 

     


N

n
nn

krIAF
1

21
coscosexp   (6) 
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where n

ang
 

1
, n

ang
 

02
, Ndkr  . In this 

formula, the following denotations were used: 

  12  nn

ang
  is the angular position of the n-th 

element on the x-y plane; 

 k is the wave number; 

 d is the angular spacing between elements; 

 r is the radius of the circle defined by the antenna 

array; 

 
0
  is the direction of maximum radiation; 

   is the angle of incidence of the plane wave; 

 In is the current excitation; 

 βn is the phase excitation of the n-th element. 
 

The current and phase excitations of the antenna 

elements should be varied in order to suppress side-

lobes, minimize beam width and achieve null control 

at desired directions. In addition, a symmetrical 

excitation of the circular antenna array was 

considered due to (Das and Suganthan, 2010). Thus, 

the objective function is taken as follows: 
 

 
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 (7) 

 

The first component attempts to suppress the side-

lobes. sll  is the angle at which a maximum side-

lobe level is attained. The second component 

attempts to maximize the directivity of the array 

pattern. Nowadays, directivity has become a very 

useful figure of merit for comparing array patterns. 

The third component strives to drive the maxima of 

the array pattern close to the desired maxima des . 

The fourth component penalizes the objective 

function if sufficient null control is not achieved. 

num is the number of null control directions and k  

specifies the k-th null control direction. 

The following parameters were also used for this 

study: 

 the number of elements in circular array was 

equal to 12; 

 the input string can be any string within the 

bounds; 

 null = [50,120] in radians (no null control); 

 d is the angular spacing between elements; 

 180
des
 ; 

 the distance was equal to 0.5. 

The first six optimized variables for this problem 

are in the range [0.2, 1], while the second six are in 

the range [-180,180], and the problem has only 

bound constraints. For our experiments, we have set 

the maximum number of function evaluations equal 

to 150000, as stated in (Das and Suganthan, 2010), 

allowing the results to be compared to those 

achieved by other researchers. 

To show the advantage of using selective 

pressure in the LSHADE-RSP algorithm, we have 

performed several tests, first for the algorithm 

without selective pressure (k=0), and next for 

different coefficients k. Table 3 contains the best, 

average and standard deviation of the results. There 

were 25 runs performed for each algorithm 

configuration. 

Table 3: Results of LSHADE-RSP for the Circular 

Antenna Array Design Problem. 

RSP Mean Best Std. Dev Reliability 

k = 0 -21.6376 -21.6445 0.03214 0.00 

k = 1 -21.6675 -21.8425 0.08624 0.16 

k = 2 -21.6519 -21.8424 0.03889 0.04 

k = 3 -21.6600 -21.8425 0.05380 0.08 

k = 5 -21.6773 -21.8425 0.08855 0.20 

k = 7 -21.6599 -21.8425 0.05383 0.08 

k = 9 -21.6996 -21.8426 0.08908 0.28 

 

The reliability of the algorithm is according to 

the value of the best known solution, found by 

LSHADE-RSP, so if at the end of the search the 

found value was lower than -21.8, the run was 

considered as successful, and the ratio of the number 

of successful runs to the total number of runs was a 

reliability estimation. The algorithm with the highest 

selective pressure coefficient, k = 9, achieved the 

best results in terms of the mean value and best 

found value. However, the mutation strategy without 

selective pressure had a lower standard deviation. It 

should be mentioned that applying even small 

selective pressure with k = 1 allows the algorithm to 

find very good solutions, whose goal function is 

close to -21.8425, while the algorithm without 

selective pressure could not achieve this goal 

function value. 

In Figure 1, the graphs of the average goal 

function values achieved at different stages of the 

search process, namely, 0.01, 0.1, 0.2, …, 1.0 are 

presented. The goal function values are shifted up by 

21.9, and the graphs are built in logarithmic scale so 

that the difference can be seen more easily. 

From the graphs, it can be seen that most of the 

variants of the algorithm achieve the best solution at 

around 0.5 of the available computational resource, 
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i.e. 75000 function calculations. However, 

algorithms with higher selective pressure tend to 

converge faster at the beginning of the search. 

Moreover, as the selective pressure grows, 

LSHADE-RSP is capable of finding better solutions, 

i.e. it increases its search capabilities.  

 

Figure 1: Comparison of the effect of different selective 

pressures on the convergence speed. 

The comparison to other algorithms used to solve 

the same problem is presented in Table 4. The 

amount of computational resource was the same for 

all methods. 

Table 4: Comparison of LSHADE-RSP with other 

methods for the Circular Antenna Array Design Problem. 

Algorithm Mean Best 

LSHADE-RSP -21.6996 -21.8426 

OXCoDE 

(Li and Yin, 2011) 
-21.591 -21.865 

WI-DE 

(Haider et al, 2011) 
-21,70 -21.80 

GA-MPC 

(Elsayed et al., 2011a) 
-21.702 -21.8425 

ED-DE 

(Wang et al., 2011) 
-21.421 -21.832 

Adap.DE171 

(Asafuddoula et al., 2011) 
-20.958 -21.808 

EA-DE-MA 

(Singh et al., 2011) 
-21.2554 -21.7956 

SAMODE 

(Elsayed et al., 2011b) 
-21.6589 -21.8216 

 

The comparison shows that although LSHADE-

RSP is outperformed in terms of the best value by 

one method, and in terms of the mean value by 

another, the difference in the performance is 

insignificant. Considering both mean and best 

values, the closest method is GA-MPC, which has 

almost the same best value found, and similar 

average performance. 

5 CONCLUSIONS 

In this paper, the LSHADE-RSP algorithm was 

presented, which is a modification of Linear 

population size reduction Success History based 

Adaptive Differential Evolution with Rank-based 

Selective Pressure. This algorithm implements a 

number of various parameter adaptions, but most 

importantly, it uses the modified mutation strategy, 

current-to-pbest-w/r, which allows the convergence 

speed of the algorithm to be improved. 

The problem of designing the Circular Antenna 

Array was solved by LSHADE-RSP with different 

selective pressure parameters, and it was observed 

that higher selective pressure results in better results 

in terms of both mean and best values. The achieved 

results are comparable to the best known up-to-date 

results for this problem. 
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